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Gramicidin A (Wallace, B. A. Gramicidin channels and pores. Annu. Rev. Biophys. Biophys. Chem. 1990,
19, 127-157) is a neutral polypeptide that acts as a channel to allow ions to cross otherwise impermeable
membranes. We compute sodium chloride currents through the gramicidin A channel using the spectral
element method to solve the three-dimensional Poisson-Nernst-Planck equations. The potential profiles
through the channel can be resolved into an intrinsic and extrinsic component with surprisingly little
ambiguity; that is, the system is nearly linear in that sense. However, the intrinsic potential depends
strongly on the bath concentrations: variations in the bath concentrations change the intrinsic potential
by several (≈6.6) times the thermal voltage kT/e and thus might be expected to change fluxes and current
substantially, by a factor of e6.6 ) 735. Shielding is an important determinant of the properties of this
polypeptide channel, even though the polypeptide has no net charge: the nonuniform distribution of fixed
charge in gramicidin has many properties expected from a molecule with net charge.

Introduction

Channels are proteins with holes down their middle
that allow ions to cross otherwise impermeable cell
membranes, thereby controlling a wide range of biological
function: a substantial fraction of all drugs act directly
or indirectly on channels.2,3 The physics of ion movement
through channels is simple, as is their structure. Ions
move through channels much as charged spheres migrate
and diffuse through charged cylinders. Steric effects and
chemical binding are also involved at narrow parts of the
channel, and the possibility of convection and heat flow
must not be entirely ignored.4

Channels have mostly been studied in the chemical
tradition that postulates the binding of ions to specific
sites driven by chemical interactions of the ion and the
channel protein.5,6 High-resolution simulations in this
tradition have tried to calculate the location and movement
of every atom of the channel protein and every atom in
its pore.7-9

Lower-resolution traditional models of permeation,
following traditional models of enzymes, have described
the rate of ion movement across the potential barriers

that separate and thus define “states” of the protein.3,10,11

The rate constants of movement in these models depend
exponentially on the height of the potential barriers,
according to “Eyring rate theory” (often of the gas
phase).3,12-16 In nearly all cases, these potential barriers
are assumed to be independent of ion concentration. In
this paper, we will show that potential barriers depend
in an important way on concentration, calling into question
one of the fundamental assumptions of traditional enzy-
mology and channel biophysics. This is not the only
criticism of such traditional models; see the appendix of
ref 17.

An alternative approach to the study of channels uses
the physical tradition.18-50 These physical theories and
simulations use as little detail, chemical or structural, as
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necessary to describe the function of channels seen in
experiments and real life. At low resolution, physical
theories describe the channel as a distribution of fixed
charge;18-31 at higher resolution, they include the chemical
effects of the finite size of ions and the channel pore;32-37

at still higher resolution, they describe individual tra-
jectories of spherical ions.38-41

For several reasons, no attempt is made in physical
theories to describe the motion of all atoms. It is not easy
for simulations to include macroscopic variables such as
concentration and membrane potential, particularly in
the nonequilibrium situations in which channels function.
It is also not easy for simulations to span the gap between
atomic and biological length scales, while correctly
predicting the relationship of the macroscopic variables.
Most biological phenomena occur on meso- or macroscopic
time and length scales and involve staggering numbers
of atoms acting together for micro- to milliseconds. In
simple special cases, the collective behavior of atoms on
these scales can be described by Ohm’s “law” and Fick’s
law (for example). Simulations in atomic detail must be
able to reproduce these simple situations quantitatively
if they are be relied on to analyze biological function and
experiments.

In physical models, permeation is described in the
multiscale/multiresolution tradition of engineering and
physics, using collective parameters (e.g., concentration,
macroscopic electric field, diffusion coefficient, and di-
electric coefficient) to describe properties that are hard to
simulate in full atomic detail. Simulation has an indis-
pensable but limited role in such models, namely, to
provide estimates of the collective parameters of materials,
for example, diffusion and dielectric coefficient. It seems
to us that such simulations can be made more easily and
are more reliable quantitatively than direct calculations
of macroscopic fields.

The “engineering” approach to permeation in channels
often involves the PNP equations, which are (probably)
the simplest self-consistent nonequilibrium extension of
the Poisson-Boltzmann, Gouy-Chapman, and Debye-
Huckel treatments of ionic solutions and proteins.54-59

The PNP equations consist of the Poisson equation, which
relates total charge density F (consisting of the sum of
fixed charge density and charge densities of all mobile
ionic species) and electric potential φ,

and the Nernst-Planck equations, one for each species i
of mobile ion, which relate flux density Ji, electric potential
φ, and ion concentration Ci:
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Here ε0 is the permeability of free space, εrel is the relative
dielectric coefficient, and zi, µi, and Di are the charge state,
mobility, and diffusion coefficient, respectively, of ion
species i. By assuming a time-independent solution and
by requiring the conservation of mass for each ionic species,
that is, ∇ ‚ Ji ) 0, these equations can be rewritten in a
form in which they can be used to solve for Ci.

The PNP theories by themselves can account for many
properties of channels18-31 and if extended to include the
finite size of ions can account for the selectivity of channels
for different ions as well.32-37 The success of these theories
is surprising because the physical theories ignore the
chemical interactions of electron orbitals of ions and
channel protein. But the systems studied are highly
charged (having some 4 glutamates in some 300 Å3,
producing solutions between 10 and 20 M!) and relatively
large in diameter (7-8 Å), and it was not clear if the
physical approach will work in narrow channels with no
net charge, such as gramicidin.1

Physical models are, however, able to predict IV
relations19,20,30,31 even in narrow channels such as grami-
cidin that have no net charge, probably because a
substantial electrical potential acts on ions within grami-
cidin despite the overall neutrality of the molecule. The
potential arises because the (partial) negative charges of
the carbonyl oxygens are much closer to permeating ions
than the partial positive charges of the carbonyl carbons.
The fixed charge of the gramicidin molecule is not
uniformly distributed when viewed from inside the pore
of the channel. Viewed from inside, the channel is highly
charged, with a large electrical potential. Only when
viewed from outside does gramicidin seem neutral.

The fact that a physical model, with no chemical forces
beyond diffusion, is able to deal so well with data is
surprising: most of the literature of channels3,8,9 uses
models dominated by the chemical forces absent in the
PNP theory. Indeed, some models of permeation and most
models of enzymes ignore electrical terms altogether,
allowing ions to bind to specific sites on proteins without
changing the electrical potential required by Coulomb’s
law10,11,55,56 as well as found in measurements of single-
electron devices.57 The question is, what features of the
physical model provide the nonlinearity characteristic of
channel function (e.g., the variation in conductance with
ionic concentration)? The answer seems to be shielding.
The variation of potential with concentration is, of course,
a dominant determinant of the properties of ionic
solutions.58-60

What is surprising is that a calculation like that
presented here, which includes only these effects, is
sufficient to explain many properties of this channel
protein. This work suggests then a specific working
hypothesis21,22 to test and falsify by experimentation in
other channels and proteins: the dominant determinant
of ion permeation and binding is the energy of the electric
field and the variation of that energy with ion concentra-
tion (i.e., shielding). This hypothesis is nearly the opposite
of that in standard treatments of permeation and ion
binding that more or less ignore the electrical
terms.3,8-11,55,56 Undoubtedly, in many cases both chemical
and electrical effects will be involved.7,33-37 It will be the
role of experimentation, simulation, and theory to evaluate
the relative contributions of each force and to see if purely
physical treatments of physical forces are sufficient.33-37

Methods
The PNP equations are solved here using the spectral

element method, a particular type of finite element
method.61,62 Very briefly, in the finite element method,
the computational domain is broken up into subdomains
called elements. Inside each element, functions are
approximated by polynomial expansions, which are used
to discretize the differential equations into matrix equa-
tions. In “standard” finite elements, the order of the
polynomial expansions is fixed and relatively low, and
there is a relatively large number of finite elements; if the
computed solution is insufficiently accurate, some or all
of the finite elements are subdivided, and the problem is
solved once more. In contrast, in the spectral element
method, there are relatively few elements, and higher-
order polynomials are used; if the computed solution is
insufficiently accurate, the polynomial order rather than
the number of elements is increased. The spectral element
method has the advantage that it converges exponentially
to the true solution as the polynomial order is increased,
provided that the solution is smooth enough. In addition,
the nodes of each element are not distributed uniformly
within that element but are bunched toward the bound-
aries; as a result, it is possible to have very high resolution
at interfaces between dissimilar materials, where it is
most needed, and much lower resolution elsewhere, where
high resolution would be wasted. Judicious use of these
two properties allows us to include, without excessive
computational effort, realistic portions of the baths in our
simulations, therebyallowing theuseofphysically realistic
boundary conditions.19,20

The PNP equations have several inputs: (1) the three-
dimensional charge distribution of the gramicidin mol-
ecule, (2) the dielectric coefficients, and (3) the diffusion
coefficients for the mobile ions in the different regions in
the simulation domain. Our PNP calculation contains
(almost) no internal nonphysical parameters that might
be adjusted to improve the fit between simulation and
experiment; the placement of the individual spectral
elements could in principle be adjusted (by moving the
boundary between different regions) to improve fit, but
the placement has not in fact been used in that way in
this paper.

Our previous work computed (mainly) the current-
voltage (IV) curves for gramicidin; various sensitivity
analyses were performed to determine how parameters of
the model changed the IV curves.

In this paper, the electric potential inside the gramicidin
molecule is studied, as voltage and the concentrations of
Na+Cl- are varied in the surrounding baths. We compute
the average potential in the channel by multiplying the
potential at a point by a three-dimensional Gaussian of
half-width 1 Å and then integrating the result over the
entire computational domain. This procedure helps us
display and compare results for different parameter
values. The plots of potential along the channel axis were
computed by moving the center of the Gaussian along the
channel axis in steps of 0.1 Å, so that each point on the
curve represents a spatially averaged potential akin to
the spatially averaged potential acting on a real ion of 1
Å radius.

Results & Discussion
Before we describe the results we have found, a bit of

terminology is in order: we define “intrinsic” and “ex-
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trinsic” components of potential as follows: if we have left
and right electrode voltage boundary conditions Vl and Vr
and concentration boundary conditions Cl and Cr, then
we may write the potential which satisfies the PNP
equations with these boundary conditions as Φ(Vl, Vr, Cl,
Cr). The intrinsic potential is simply the potential with
zero voltages at both terminals: Φint ) Φ(0, 0, Cl, Cr), and
the extrinsic potential is the difference between the two:
Φext ) Φ(Vl, Vr, Cl, Cr) - Φint. Since in these simulations
we always hold Vr at zero, we can normalize the extrinsic
potential by dividing it by Vl: Φext:norm ) (Φ(Vl, Vr, Cl, Cr)
- Φint)/Vl.

We begin by examining the variation of the electric
potential as a function of the externally applied voltage,
for a “naked” (i.e., unscreened) gramicidin molecule, a
gramicidin molecule with zero electrolyte concentrations
in the surrounding baths. (The dielectric coefficient of the
bath and channel regions is kept at 80, and the dielectric
coefficient of the protein and lipid regions is kept at 2 for
this calculation: this is not a gramicidin channel in a
vacuum.) Figure 1 shows the average potential with -200,
-100, 0, 100, and 200 mV applied at the left electrode,
when the right electrode is held at 0 mV. Most of the
potential drop is seen across the channel itself, as one
might expect, because the channel has the highest
“resistance” of any portion of the circuit. From the figure,
it appears that the overall potential can be decomposed
into intrinsic and extrinsic components as described above.
Because the electrolyte concentrations are zero in this
particular case, the Poisson equation is linear and this
decomposition is in fact exact (and not surprising). Figure
2 shows the normalized extrinsic potential.

Figure 3 shows an analogous potential profile, computed
now with the same (so-called symmetric) electrolyte
concentrations of 2.0 M in both baths, using the same
applied voltages as in Figures 1 and 2. Most of the extrinsic
potential drop occurs across the channel itself, but now
the intrinsic potential is quite significantly attenuated
compared with the previous case. In this case, the system
is not linear, and so the normalized extrinsic potential
will vary with the applied voltage.

Figure 4 shows the normalized extrinsic potential for
this second case, with 2.0 M symmetric concentrations.
The various curves are all very close to each other, showing
that (in some sense) the system is nearly linear, despite
the relatively large electrolyte concentration. Although
the curves are close together by visual inspection, the

change in shape does have a noticeable effect on IV
curves: they are not quite straight lines.

Changes in the concentration of ions in the bath do
change the potential inside gramicidin, even though the
gramicidin is net neutral and no charges are present in
our model of the lipid membrane. Figure 5 shows how the
intrinsic potential varies with concentration: plots are
given with both electrodes at 0 mV, for bath concentrations
from 0.0 to 2.0 M. As the concentration of ions increases
from 0.0 to 2.0 M, the potential φ is attenuated about 6.6

Figure 1. The average potential inside the channel as a
function of position, for five applied voltages: -200, -100, 0,
100, and 200 mV. The electrolyte concentration in the baths
and channel is 0.0 M. The middle curve shows the intrinsic
potential.

Figure 2. The normalized extrinsic potential across the
channel, for 0.0 M electrolyte concentration.

Figure 3. The average potential inside the channel as a
function of position, for five applied voltages: -200, -100, 0,
100, and 200 mV. The electrolyte concentration in the baths
and channel is 2.0 M. Again, the middle curve shows the intrinsic
potential.

Figure 4. The normalized extrinsic potential across the
channel, for 2.0 M electrolyte concentration.
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times the thermal voltage kT/e (roughly 25 mV at room
temperature), suggesting a substantial effect on current.

Figure 6 shows 0.2 and 0.5 M again and adds an
asymmetric configuration, 0.2 M on the left and 0.5 M on
the right. It is clear that the degree of attenuation varies
along the length of the channel: the asymmetric curve is
near the symmetric 0.2 M curve on the left side of the
channel and near the symmetric 0.5 M curve on the right-
hand side.

Finally, in Figure 7 we plot the magnitude of the
potential at the center of the channel versus the electrolyte
concentration for the six symmetric cases. It is clear that
there is a relatively simple relationship between the
central potential and the concentration; however, it is not
a simple power law as would be expected for Debye
shielding in a bulk solution: on this log-log plot, a power-
law relationship would be visible as a straight line. We
do not find a simple decomposition of the intrinsic potential
into either a product of a concentration-dependent piece
and a concentration-independent piece or a sum of two
such pieces. This is not particularly surprising. At high
concentrations, the shielding is strong, and thus an ion
at some point along the central axis of the channel will
experience a relatively simple potential: mainly the
externally applied background, with relatively little effect
due to the fixed charge of the gramicidin molecule.
Effectively, the ion acts (locally) as though it were in a
bulk solution with a fixed electric field. At low concentra-

tions, on the other hand, the shielding is weaker, and the
potential in which the ion finds itself contains both the
externally applied background and the quickly varying
and anisotropic internal potential of the channel: the ion
interacts strongly with the walls of the channel, even when
it is located at the central axis of the channel. Thus, the
“effective geometry” varies in a somewhat complicated
fashion both as the concentration and thus the shielding
length are varied and as a function of the location.

The minimum intrinsic potential, as shown in Figure
5, varies quite significantly as the bath concentration is
varied: from about -24 mV at 2.0 M to about -190 mV
at 0.0 M. This change of 166 mV amounts to some 6.6
times the thermal voltage. The variation in potential
computed here has a profound effect on flux. Crudely
speaking, flux varies exponentially with potential,6,10-13

and the potential change here would produce (in this crude
view) changes in flux of the order of e6.6 ) 735, a dominating
effect. Less crudely, flux depends on the integral of an
exponential of the potential,63,64 producing a smaller but
still large effect, although not as much as expected by a
simple exponential rate theory. The reason is that
essentially all of the current is carried by Na+ ions, and
the concentration profile and thus the flux of these ions
are largely fixed by the need to maintain approximate
electrical neutrality within the channel volume.

The model considered here shows the profound effect
of shielding on the properties of an ion channel, suggesting
that models containing more atomic detail must also
describe shielding with some precision. It seems possible
to us that the effects of shielding on ion binding and
enzymatic function are as profound as they are on
permeation. If this possibility is proven to be true, a
substantial revision inourapproachtodrugdesign,protein
folding, and enzymatic function would be necessary.
Testing the possibility is likely to be revealing, showing
how proteins use both macroscopic phenomena like
shielding and atomic phenomena like interaction of atomic
orbitals to perform biological functions.

Conclusions
We find that the potential inside the channel can be

decomposed into two parts: an intrinsic potential that
depends only on the bath concentration (and of course on
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Phys. 1995, 102, 1767-1780.

Figure 5. The average intrinsic potential inside the channel
as a function of bath electrolyte concentration. The electrolyte
concentration varies from 0.0 M (the same as in Figures 1 and
2) to 2.0 M (the same as in Figures 3 and 4) symmetrically on
both sides of the channel.

Figure 6. Average intrinsic potential: two of the same curves
as in the previous figure, but with an asymmetric case
superposed: 0.2 M on the left and 0.5 M on the right.

Figure 7. The magnitude of the intrinsic potential at the center
of the channel as a function of electrolyte concentration.
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the charge distribution of the gramicidin molecule and its
shape) and an externally applied potential that depends
mostly on the applied voltages. The response of the system
to the applied voltages is relatively linear; however, the
intrinsic potential depends strongly on the bath concen-
trations: variations in the bath concentrations change
the intrinsic potential by several (≈6.6) times the thermal
voltage kT/e and thus might be expected to change fluxes
and current substantially. We look forward to a theoretical
analysis of the PNP equations which justifies the parsing
of the potential profiles and which explains the physical

meaning of the components. Parsing a nonlinear theory
into linear components is a nontrivial business, even
numerically, and can take decades judging by numerical
work65 on the P-N junction. Mathematical analysis of
this sort is in fact rarely possible unless small parameters
can be exploited.66-68
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