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Abstract. When there is a steady net flux in a system of interacting particles, the
microscopic structure of the system can no longer be determined from the Boltzmann equi-
librium distribution (partition function). Nonetheless, the pair correlation function can be
calculated for a non-equilibrium system of diffusing particles with pair wise interactions by
solving partial differential equations. These are Poisson-Nernst-Planck-type equations that
involve the pair correlation function, as described below. Equilibrium results are recovered
when no-flux boundary conditions are imposed on the solutions. When non-homogeneous
boundary conditions are given for these equations, the solutions describe densities and
electrostatic potentials of particle systems not in equilibrium. The construction of a pair
function under these conditions will be a new result in statistical physics. A relation be-
tween a higher and a lower order correlation function has to be assumed, as in equilibrium
statistical mechanics. In applications to channel permeation the iterative scheme used to
construct the pair correlation function will lead to a prediction of current through an open
channel, given the spatial structure and fixed charge distribution. The pair correlation
function contains finite size effects that lead to blocking in a narrow channel and possibly
to selectivity.

1 Definitions

Permeation of ions from one electrolytic solution to another through a protein chan-
nel is a biological process of considerable importance. Permeation occurs on a time
scale of micro- to milliseconds, far longer than the femtosecond time scales of atomic
motion. Direct simulations of atomic dynamics are not yet possible for such long
time scales; thus, averaging is unavoidable. The question is what and how to average.
Specifically, we consider a solution containing Nh ions of type h (h = Na+, Cl−, Ca++, . . .),∑

h Nh = N . We denote the coordinates of a point by x = (x, y, z). We number the
ions in the solution at time t = 0 and denote the vectors of coordinates and velocity of
the j-th positive ion at time t by xh

j (t) and ẋh
j (t), respectively, the coordinate vector
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of all ions in configuration space is denoted x̃ =
(
xNa+

1 , . . . , xN ...
...

)
, while in analogy,

the vector of all velocities is denoted as ˙̃x or ṽ. For future reference, the vector of
coordinates of all 2N − 1 ions, excluding the j-th ion of type h is denoted x̃h

j . Our
point of departure is the following memoryless system of Langevin equations. For
h = Na+, Cl−, Ca++, . . .

ẍh
j + γh

(
xh

j

)
ẋh

j =
fh

j (x̃)

mh
+

√
2γh(xh

j )kBT

mh
ẇh

j , (j = 1, 2, . . . , Nh), (1.1)

where a dot on a variable denotes differentiation with respect to time, fh
j (x̃) denotes

the electrostatic force acting on the j-th ion of type h, γh(x) is the location dependent
friction coefficient per unit mass of the ionic species of type h, and ẇh

j are, by assump-
tion, independent standard Gaussian white noises. The parameter kB is Boltzmann’s
constant, T is absolute temperature, and mh is an effective mass of an ion of type
h. The electrostatic forces consist of inter-ionic attractions and repulsions, the im-
posed external field, and a self force near dielectric interfaces. When Lennard-Jones
repulsions are included and no flux boundary conditions are imposed, the equilibrium
theory of [?]-[?] applies. It does not apply when a steady flux is flowing through the
system.

2 Densities

We denote by ch(x) the time-averaged steady state concentration of ions of species h
at location x. In the scaling

ch(x) = ρhph(x), (2.1)

the factor ρh is the average density of ions of type h in the bath,

ρh =
1

|Ω|
∫

Ω

ch(x) dx, (2.2)

where |Ω| is the volume of Ω. Thus the function ph(x) is the probability density
function of finding an ion of type h at the point x in the bath.

The joint pdf of ions of types h, h′ at points x,y is denoted ph,h′(x, y). The
conditional pdf of ions of type h′ at y, given an ion of type h at x is denoted ph′|h(y |x).
It is related to the joint densities by

ph′|h(y |x) =
ph,h′(x,y)

ph(x)
. (2.3)

Similarly, ph,h′,h′′(x,y,z) denotes the joint density of ions of types h, h′, h′′ located at
x, y, z, respectively, ph′′|h′,h(z |y, x) denotes the conditional density of ions of type
h′′ at z, given ions of types h′ and h located at y and x, respectively, and so on. We
have

ph′′|h′,h(z |y,x) =
ph,h′,h′′(x, y, z)

ph,h′(x, y)
. (2.4)
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3 Nernst-Planck equations for one and two ion

densities

We denote by ph
j (x), j = 1, . . . , Nh, the stationary probability density function (pdf)

of the location of the j-th ion of species h. By definition, the pdf of a single particle
is simply the marginal density of all particles integrated over all particle locations
except the j-th ion of species h,

ph
j (x

h
j ) =

∫

Ω̃h
j

pN(x̃)dx̃h
j . (3.1)

Since all ions of a given species are indistinguishable, ph
j (x) = ph(x), for all j.

The quantities ch(x) and ph(x) are related by

ch(x) = Nhph(x). (3.2)

The concentration ch(x) is the physical density of ions and it integrates to the total
number of ions of species h in the solution. An equation for ph(x) readily turns into
an equation for ch(x) by the relation (??).

Starting from the Langevin model (??), the following equation for the single par-
ticle probability density was derived in [?]-[?],

0 = ∇x · Jh(x) = −∇x ·
(

f̄
h
(x)

Mhγh(x)
ph(x)− kBT

Mhγh(x)
∇xph(x)

)
. (3.3)

where Jh(x) is the probability flux density of a single ion of type h, given by

Jh(xh
j ) =

∫

Ω̃h
j

Jxh
j
(x̃)dx̃h

j (3.4)

and

f̄
h
(x) =

∫
Ω̃h

j
fh

j (x̃)pN−1(x̃
h
j |xh

j = x) dx̃h
j . (3.5)

is the average force on an ion of type h.

Equation (??) is a Fokker-Planck type equation for the probability density of a
single ion of species h. It is defined in the finite domain Ω, and contains an average

force f̄
h
(x) whose calculation, according to eq.(??), depends on the conditional prob-

ability density of all ions, given the phase space coordinates of the j-th ion of species
h. However, this conditional density depends on the solution of the full Fokker-Planck
equation for all N particles. Therefore all of these quantities are coupled, and the
Fokker-Planck equation for the stationary probability density of a single ion cannot be
solved independently of the full Fokker-Planck equation of all other ions. Obviously,
equation (??) is not very useful as long as its force term is not known.
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However, even if the force term is known, boundary conditions on ∂Ω must be
specified in order to determine the unique solution for ph(x). Obviously, on ∂ΩR,
ph(x) satisfies no flux boundary conditions,

Jh(x) · ν
∣∣∣∣
x ∈ ∂ΩR

= 0. (3.6)

In addition, on ∂ΩF , according to our assumptions, the concentrations ch(x) are
maintained at fixed known values by the feedback mechanism. Therefore, regardless
of the exact method by which the feedback mechanism maintains these concentrations,

ph(x)

∣∣∣∣
x ∈ ∂ΩF

=
ch(x)

Nh
. (3.7)

3.1 The average force

In the case of charged ions in solution, the ion-ion interaction forces are pair-wise
additive, and thus the force on the j-th ion of species h can be written as

fh
j (x̃) = fh

ed(x
h
j ) +

∑

(i,h′)6=(j,h)

fh,h′(xh′
i , xh

j ), (3.8)

where fh,h′ is the ion-ion interaction force that an ion of type h′ acts on an ion of
type h. It includes both Coulombic interactions as well as short range interactions,
such as excluded volume or Lennard-Jones potentials. Note that this force is not
necessarily radial, due to boundary conditions on ∂Ω for the corresponding Poisson
equation. The force fh

ed contains both the effects of an applied external field as well
as the dielectric self-force near dielectric boundaries [?], [?].

As shown in [?], with the specific form (??) for the force on a single ion, equation

(??) for the average force f̄
h

simplifies to

f̄
h
(x) = fh

ed(x) + (3.9)

(Nh − 1)

∫

Ω
fh,h(y,x)ph|h(y|x)dy +

∑

h′
Nh′

∫

Ω
fh,h′(y, x)ph′|h(y|x)dy,

where ph′|h(y|x) is the conditional probability density of a type h′ ion at location y,
given that an ion of species h is located at x,

ph′|h (y|x) =
ph,h′(x,y)

ph(x)
. (3.10)

According to equations (??),(??) and (??), the solution for the single particle density
ph(x) depends on the pair probability density functions ph,h′(x,y).
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Thus, we now write an equation for the pair densities. Employing similar methods
to those of [?], we obtain that ph,h′(x, y) satisfies the following equation

∇xhJh,h′

xh

(
x,y

)
+∇yh′J

h,h′

yh′

(
x,y

)
= 0 (3.11)

where Jh,h′

xh (x,y) is given by

Jh,h′

xh (x,y) = −∇x ·
(

f̄
h,h′

(x,y)

Mhγh(x)
ph,h′(x,y)− kBT

Mhγh(x)
∇xph,h′(x, y)

)
, (3.12)

and Jh,h′

yh′ is given by a similar expression.

The force f̄
h,h′

(x,y) appearing in (??) is the average force on an ion of species h,
given an ion of species h′ located at y. In general it is given by

f̄
h,h′

(x,y) =

∫

Ω̃h,h′
i,j

fxh
i
(x̃)pN−2

(
xh,h′

i,j |xh
i = x, xh′

j = y
)

dx̃h,h′
i,j (3.13)

while for the case of pair-wise additive forces, it can be simplified to

f̄
h,h′

(x,y) = fh
ed(x) + fh,h′(x,y) + (Nh − 1)

∫

Ω
fh,h(x,z)ph|h,h′(z|x, y) dz

+(Nh′ − 1)

∫

Ω
fh,h′(x,z)ph′|h,h′(z|x,y)dz (3.14)

+
∑

h′′ 6=h,h′
Nh′′

∫

Ω
fh,h′(x,z)ph′′|h,h′(z|x,y)dz

for h 6= h′ and a similar expression for h = h′. In these equations ph′′|h,h′(z|x, y) is
the conditional density of a type h′′ ion located at z, given the presence of a type h
ion at x and a type h′ ion at y,

ph′′|h,h′(z|x, y) =
ph,h′,h′′(x, y, z)

ph,h′(x, y)
(3.15)

As seen from (??), the determination of the forces f̄
h,h′

(x,y) appearing in eq.
(??), requires the determination of the triplet densities ph,h′,h′′(x, y,z). In the case of
either equilibrium or non-equilibrium infinite systems, closure relations relating the
triplet densities to the pair densities are employed in order to close the system [?],
[?].

However, since in our case we are concerned with a finite system, a closure re-
lation between the triplet and the pair densities is not enough to close the system.
Specifically, the Smoluchowski type equation (??) is defined in the finite domain
(x,y) ∈ Ω × Ω. Therefore, to uniquely determine its solution, boundary conditions
have to be prescribed on the domain boundaries, e.g. for (x, y) ∈ ∂Ω × Ω and
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(x,y) ∈ Ω× ∂Ω. Only after these boundary conditions are specified, the pair corre-

lation function ph,h′ (x, y) is completely determined, provided the forces f̄
h,h′

(x, y)
are known.

As in the case of the single ion densities, the boundary conditions for the pair
densities should also be determined by the action of the feedback mechanism. For the
case of the single ion densities we assumed that the action of the feedback mechanism
is to keep an average fixed concentration on the domain boundaries. This leads to
the natural concentration boundary conditions (??).

4 Boundary Conditions and the feedback mecha-

nism

To understand the need for boundary conditions, we consider the full Fokker-Planck
equation for the joint pdf of all particles, pN . Since all trajectories are confined to
the finite domain Ω, this equation is defined in Ω̃. By definition, a complete physical
description of the system is one that yields a unique solution for pN . However, in
defining the problem the exact injection method of new particle trajectories by the
feedback mechanism is not specified in detail. Rather, it is only stated that the action
of the feedback mechanism is instantaneous, leading to conservation of the number
of particles, and that the feedback mechanism keeps fixed average concentrations at
the boundaries. This is obviously not a complete physical description as it does not
describe the exact method employed by the feedback mechanism in injecting new
particle trajectories (for example, their location, etc.).

For the derivation of boundary conditions for the joint pair density function, we
first consider two exactly solvable cases. The first one is that of equilibrium, which
is characterized by vanishing flux. The other is that of a system of independent
(non-interacting) ions diffusing in an external potential V (x) between two fixed con-
centrations. The equilibrium case, as far as boundary conditions are concerned, is
trivial and un-instructive. However, it can be used as a benchmark, because non-
equilibrium results have to reduce to equilibrium results in the limit of vanishing
flux. Specifically, we assume now that the interaction forces are pairwise additive, so
that the total potential of the system, denoted UN , is given by

UN(x̃) =
∑

1≤i<j≤N

U(|xi − xj|). (4.16)

We also assume, for the sake of simplicity, that the friction is state-independent. Thus
the Langevin equations (??) take the form

ẍi + γẋi +
1

Mh
∇xh

i
UN(x̃) =

√
2ε ẇh

i , i = 1, 2, . . . , N, (4.17)

where

εh =
γkBT

Mh
.
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In an overdamped system the stationary Smoluchowski equation for the joint pdf of
all ions takes the form

0 =
∑

i

∇i ·
[

1

Mγ
∇iUN(x̃)pN(x̃) +

kBT

Mγ
∇ipN(x̃)

]
= −

N∑
j=1

∇xj
· J j(x̃). (4.18)

The equilibrium condition of vanishing flux is

J j(x̃) = 0, for all j,

and the solution of the Smoluchowski equation (??) in this case is

pN(x̃) =
e−UN (x̃)/kBT

ZN

,

where ZN is the configurational partition function of equilibrium statistical mechanics
[?], [?]. An insight into non-equilibrium problems can be gleaned from the second
case, that is, from a system of independent (non-interacting, i.e., uncharged) particles
diffusing in an external potential V (x) between two fixed concentrations. In this case,

UN(x̃) =
N∑

j=1

V (xj). (4.19)

Since the ions are independent, the solution of the Nernst-Planck equation for the
joint probability density in configuration space is given by

pN(x̃) =
N∏

j=1

p(xj), (4.20)

where p(xj), the probability density of the j-th ion, is the solution of the three-
dimensional Smoluchowski equation

0 = ∇xj
· 1

Mγ

[
∇xj

V (xj)p(xj) + kBT∇xj
p(xj)

]
= −∇xj

· Jj(xj) (4.21)

with vanishing flux conditions on reflecting boundaries and given concentrations on
the other boundaries. Note that the concentrations have to be normalized so that the
condition ∫

Ω

p(x) dx = 1

is satisfied. We denote the reflecting boundaries by ∂Ωr, and the part of the boundary,
where the feedback mechanism maintains fixed concentrations, by ∂ΩF . The bound-
ary conditions determine the boundary fluxes, Jj(xj) · ν(xj) = 0 for xj ∈ ∂Ωr and
Jj(xj) · ν(xj) 6= 0 for xj ∈ ∂ΩF , which are the same for all j. We denote the single
ion probability flux density on the boundary ∂Ω by J 1(x) and assume henceforward
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that it is known. The Smoluchowski equation for pN(x̃) in eq.(??) is eq.(??) with
UN(x̃) given in eq.(??). This means that

J j(x̃) = J 1(xj)
∏

i 6=j

p(xi) = J 1(xj)pN−1(x̃j) = J 1(xj)pN−1(x̃j |xj). (4.22)

The last equality in eq.(??) expresses the independence of xj of the remaining x̃j. This
conditioning anticipates the case of dependent ions. This means that the boundary
condition for the joint pdf pN(x̃), when xj ∈ ∂Ω and x̃j ∈ Ω̃j is eq.(??). Equation
(??) with the known J 1(x) means that the feedback mechanism removes and inserts
ions into the system at the boundary, depending on the configuration of ions inside
the domain, with a flux that maintains the boundary concentrations. With this
interpretation in mind, we adopt the relation (??) as the connection between the j-th
component of the 3N -dimensional flux and the the 3-dimensional singlet flux of the
j-th ion on the boundary. Thus the boundary condition for the joint pdf pN(x̃) is

J j(x̃) · ν(xj) = J 1(xj) · ν(xj)pN−1(x̃j |xj) for xj ∈ ∂Ω, x̃j ∈ Ω̃j, (4.23)

where ν(xj) is the unit normal to the boundary at the point xj ∈ ∂Ω, and J 1(x) is
the single ion boundary flux density, determined by the single ion density in eq.(??).
The boundary condition (??) can be written as

−kBT
∂ log pN(x̃)

∂ν(xi)
− ∂U(x̃)

∂ν(xi)
= MγJ 1(xi) · ν(xi)

pN−1(x̃i |xi)

pN(x̃)
(4.24)

= Mγ
J 1(xi) · ν(xi)

p(xi)
for xi ∈ ∂Ω, x̃i ∈ Ω̃i.

Integration of eq.(??) over the domain with respect to any number of coordinates
gives the boundary conditions

J i(x1, x2, . . . , xk) · νi(x1,x2, . . . , xk) = J 1(xi) · ν(xi)p(x1, x2, . . . , xk |xi) (4.25)

for xi ∈ ∂Ω, x1, x2, . . . , xk ∈ Ω, (i > k). The boundary condition (??) holds for
the flux of each species h, where the one-dimensional flux J 1(xi) is that of species h.
This condition is equivalent to the boundary conditions

−kBT
∂ log pk(x1,x2, . . . , xk)

∂νi(x1, x2, . . . , xk)
+ f̄ i(x1, x2, . . . , xk) · νi(x1, x2, . . . , xk)

= Mγ
J 1(xi) · ν(xi)

p(xi)
, (4.26)

for xi ∈ ∂Ω, x1,x2, . . . , xk ∈ Ω, (i > k). The force f̄ i(x1,x2, . . . , xk) is the force
acting on ion i at the boundary point xi, given the coordinates of the first k ions,
(x1,x2, . . . , xk). In particular, the boundary conditions for the pair density are

J
h|h′
i (xi,xj) · ν(xi) = J h(xi) · ν(xi)p

h′|h(xj |xi) for xi ∈ ∂Ω, xj ∈ Ω,(4.27)
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or equivalently,

−kBT
∂

∂ν(xi)
log ph,h′(xi, xj) + f̄

h|h′
i (xi,xj) · ν(xi) = MhγhJ h(xi) · ν(xi)

ph′|h(xj |xi)

ph,h′(xi,xj)

(4.28)

= MhγhJ h(xi) · ν(xi)

ph(xi)
for xi ∈ ∂Ω, xj ∈ Ω.

Note that in the general case the single ion flux J h(x) is not known on the boundary,
due to the unknown forces f̄ i(x1, x2, . . . , xk) for all combinations of species. Thus
the boundary conditions eq.(??) couple the equation and boundary conditions for
ph,h′(xi,xj) to those of ph(x), and the same is true for all ph1,...,hk(x1,x2, . . . , xk) of

all combinations of species. The probability flux density components Jh,h′
xi

(xi,xj) ·
ν(xi) for xi ∈ ∂Ω, xj ∈ Ω, of the six-dimensional flux of ph,h′(xi,xj) are the three-
dimensional “normal components” of the boundary flux. The boundary condition
(??) requires some clarification when ph(x) = 0 for x ∈ ∂Ω, y ∈ Ω. In this case the
boundary condition for ph,h′(x,y) is

ph,h′(x,y) = 0 for x ∈ ∂Ω, y ∈ Ω. (4.29)

because
ph,h′(x,y) ≤ ph(x) for all x,y ∈ Ω.

With these boundary conditions, the Smoluchowski equations for all ph(x) and ph,h′(x,y)
are coupled through the single ion fluxes J h(x) and the forces. The the concentra-
tion and flux boundary conditions determine the single ion density and the joint pdfs,
provided the forces are known. However, the forces are unknown and require further
analysis.

5 Summary and Discussion

The feedback mechanism may be an actual device, as in a chemical reactor. Alterna-
tively, one may think of a smaller macroscopic subsystem, containing a macroscopic
or microscopic channel, that connects two effectively infinite reservoirs with fixed con-
centrations at infinity. In this case, the boundaries of the subsystem can be chosen
anywhere in the reservoirs, far enough from the connecting channel, at a location
where the concentrations can be assumed known. This is the case, for example, in
the description of ionic permeation through a single protein channel: the diffusion
current through the channel is so small and the two baths are so large that the con-
centrations of the two baths, sufficiently far from the channel, are effectively uniform
and equal the bulk concentrations [?]. In this case the number of ions diffusing in the
subsystem undergoes fluctuations in time. Neglecting these fluctuations is equivalent
to assuming that there is an external feedback mechanism on the boundaries of the
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subsystem that maintains both fixed averaged concentrations at the boundaries and
a fixed number of ions in the system. We have found the boundary conditions that
the pair correlation function in a non-equilibrium system of uncharged diffusing ions
satisfies on the boundary of a finite domain. The equations and boundary conditions
are derived from a system of Langevin equations for all diffusing ions, coupled by
the pairwise interaction forces. These forces may be Lennard-Jones interactions, ex-
cluded volume, or any other type of interactions. If a closure relation is assumed,
the boundary conditions for the Nernst-Planck equations determine the singlet and
pair correlation functions uniquely. The boundary conditions drive the system out of
equilibrium, due to the net flux they create. In the absence of net flux the results of
equilibrium theory are recovered. This seems to be a new result in non-equilibrium
statistical mechanics.

The generalization of the present results to the diffusion of ions in solution is rel-
evant to biological applications in the theory of protein channels of biological mem-
branes. In this application the diffusion of ions through a protein channel embedded
in an impermeable membrane can be described in terms of a system of simple partial
differential equations and boundary conditions, thus reducing the enormous com-
putations involved in MD or Langevin simulations. The interaction forces become
significant within the confined volume of the protein, where ions block each other.
This case will be discussed in a separate paper.
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