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Density functional theory of charged, hard-sphere fluids
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An approximate electrostatic~ES! excess free energy functional for charged, hard sphere fluids is presented.
This functional is designed for systems with large density variations, but may also be applied to systems
without such variations. Based on the Rosenfeld method of perturbation about a bulk~homogeneous! reference
fluid @Y. Rosenfeld, J. Chem. Phys.98, 8126 ~1993!#, the new ES functional replaces the reference fluid
densities with a functional of the particle densities, called the RFD functional. The first-order direct correlation

function~DCF! in the particle densities is computed using as input the first- and second-order DCFs in$r̄ i(x)%,
the inhomogeneous densities defined by the RFD functional. Because this formulation imposes noa priori

constraints on the form of the RFD functional—it is valid for any choice of$r̄ i(x)%—the RFD functional may

be chosen~1! so that the input DCFs~that is, DCFs in$r̄ i(x)%) may be approximated and~2! so the combi-

nation of$r̄ i(x)% and input DCFs yields a good estimate of the first-order DCF in the particle densities. In this
way, the general problem of finding the excess free energy functional has been replaced by the specific problem
of choosing a RFD functional. We present a particular RFD functional that, together with bulk formulations for
the input DCFs, accurately reproduces the results of Monte Carlo simulations.

DOI: 10.1103/PhysRevE.68.031503 PACS number~s!: 61.20.Gy, 61.20.Qg
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I. INTRODUCTION

Fluids of charged, hard spheres are widely used to re
sent physical systems such as electrolyte solutions. In b
~homogeneous! systems, these fluids have been successf
modeled by solving the Ornstein-Zernike equation with va
ous closures including the mean spherical approxima
~MSA! @1# and the hypernetted chain~HNC! approximation
@2#. In inhomogeneous hard-sphere systems, density fu
tional theory~DFT! has been applied to both uncharged~see
Refs. @3,4#, for example! and charged~see Refs.@5–8#, for
example! hard-sphere fluids.

DFT determines thermodynamic properties of inhomo
neous fluids from the excess free energyFex and its func-
tional dependence on the set of all the particle densi
$rk(y)%:

Fex5Fex@$rk~y!%#. ~1!

We decomposeFex into two terms, namely the hard-sphe
~HS! and electrostatic~ES! excess free energy functionals, s
that

FES@$rk~y!%#5Fex@$rk~y!%#2FHS@$rk~y!%#. ~2!

Various formulations of the HS functionalFHS exist @9#, in-
cluding Rosenfeld’s@10# and improved formulations base
on it @11–13#. On the other hand, a first-principles formul
tion of the ES functional is not known, although several a
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proximations exist@5,11,14#. ~Mier-y-Teranet al. @5# give an
overview of other approximations.! Although Monte Carlo
~MC! methods can simulate charged systems, they are
ited to equilibrium systems~cf. Refs.@15,16#! and relatively
high ion densities. Furthermore, because of the vast dif
ence in computation time between MC and DFT metho
MC simulations sample a much smaller parameter space
DFT methods. Of course, MC simulations are invaluable
compare the approximate DFT results against a system
less restrictive approximations.

One approximation of the ES functional, introduced
Rosenfeld, is based on the perturbation of a bulk~homoge-
neous! reference fluid@11#. This formulation of the func-
tional has been applied to several inhomogeneous sys
@7,8#. However, not all systems are amenable to perturba
around a bulk fluid; implicit in any perturbation approxim
tion is the expectation that the final results should be a sm
correction to the reference~unperturbed! system. If the par-
ticle densities vary by large amounts within the system, th
the bulk-fluid perturbation ansatz probably will not wor
Moreover, such large density variations occur in many s
tems of interest, especially biological ones; active sites
proteins are often highly charged, attracting high concen
tions of counter charge@17#. One example is theL-type cal-
cium ion channel whose pore wall contains four negativ
charged amino acids in a ring@18#. Inside the channel the
Ca21 concentration is tens of molar, while in the baths s
rounding the channel it is of the order of 1026M @16,19#.

To describe such electrolyte systems, we recently p
posed a version of the ES functional that replaces Ros
feld’s spatially uniform reference fluid with a location
dependent reference fluid @16#. In addition, the
inhomogeneous reference fluid densities were compu
©2003 The American Physical Society03-1
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GILLESPIE, NONNER, AND EISENBERG PHYSICAL REVIEW E68, 031503 ~2003!
from the densities produced by the previous calculation
iterated to self-consistency. The numerical results compa
well to MC simulations~Figs. 2 and 3 of Ref.@16#!.

In this paper, we reformulate this iterative method~Sec.
II ! into a new ES functional using the key idea that ite
tively updating the reference fluid is equivalent to maki
the ‘‘reference’’ fluid densities into functionals of the flui
densities~the RFD functional!. This new functional depen
dence is the basis for the ES functionalFES ~Sec. III!. The
first-order ES direct correlation function~DCF! ci

(1),ESresult-
ing from this ES excess free energy is discussed in Sec
The functional differentiation that yieldsci

(1),ES includes
terms that arise because the reference densities are func
als of the densities. These terms were not considered in
previous work@16#. We show that these terms cancel exac
and therefore the previously described iteration method
the new ES functional are, in fact, mathematically equival
~Appendix B!. One further consequence of this analysis
that the problem of finding an accurate ES functional is
duced to finding a suitable RFD functional~Sec. IV!. Finally,
we discuss one possible form for the RFD functional~Sec.
V! and analyze the strengths and weaknesses of this ES
tional ~Sec. VI!.

II. INHOMOGENEOUS REFERENCE FLUID
AND ITERATION

In Ref. @16# we proposed an ES functional based on p
turbation of an inhomogeneous reference fluid. This gen
alization of Rosenfeld’s method@11# expands the ES func
tionalFES@$rk(y)%# in a functional Taylor series in powers o

Dr i~x!5r i~x!2r i
ref~x!, ~3!

where r i
ref(x) is a given inhomogeneous reference dens

profile. The original derivation@11# used homogeneous re
erence fluid densities for whichr i

ref(x) is independent ofx.
Following Rosenfeld, we truncate after the quadra

term:

FES@$rk~y!%#'FES@$rk
ref~y!%#2kT

3(
i
E ci

(1),ES@$rk
ref~y!%;x#Dr i~x!dx

2
kT

2 (
i , j

E E ci j
(2),ES@$rk

ref~y!%;x,x8#

3Dr i~x!Dr j~x8!dxdx8, ~4!

whereci
(1),ES@$rk

ref(y)%;x# andci j
(2),ES@$rk

ref(y)%;x,x8# are the
ES components~that is, they exclude the HS components! of
the first- and second-order DCFs, respectively, of the re
ence fluid. The relation

ci
(1),ES@$rk~y!%;x#52

1

kT

dFES

dr i~x!
~5!

implies that
03150
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(1),ES@$rk~y!%;x#'ci

(1),ES@$rk
ref~y!%;x#

1(
j
E ci j

(2),ES@$rk
ref~y!%;x,x8#

3Dr j~x8!dx8. ~6!

The notationci
(1),ES@$rk(y)%;x# ~following Rosenfeld@11#! is

used to indicate explicitly thatci
(1),ES is a function ofx and

that, at every locationx, it is also a functional of the densi
ties $rk(y)%. Similar notation is used for
ci j

(2),ES@$rk
ref(y)%;x,x8#.

Next we discuss general aspects of the functional, leav
the details of estimating ci

(1),ES@$rk
ref(y)%;x# and

ci j
(2),ES@$rk

ref(y)%;x,x8# for a given inhomogeneous referenc
fluid until Sec. V.

Equation~6! is the first-order ES DCF we used to com
pute the output densitiesr i(x) in Ref. @16#. In that paper, the
final fluid densities were determined by iteratively updati
the reference fluid densitiesrk

ref(y): an initial guess for the
densitiesr i(x) was chosen and an initial set of referen
fluid densitiesrk

ref(y) was calculated~Sec. V! and used in Eq.
~6! to compute a new set of output densitiesr i(x); these, in
turn, were used to compute the next set of reference fl
densitiesrk

ref(y). This cycle was continued until there was n
significant change in the output densitiesr i(x).

We illustrate this procedure for the inhomogeneous re
ence fluid with an example developed in Ref.@16#. Consider
two large compartments: the left compartment contain
fluid of 6M Ca21 and 24M anions with valence21/2 ~de-
note themA1/22); the right compartment contains 0.1M
CaCl2. These two compartments are brought into contact
allowed to equilibrate with the restriction thatA1/22 are con-
fined to the left compartment with a hard-wall potentia
Ca21 and Cl2 are allowed to equilibrate throughout bo
compartments. A discussion of the valence21/2 species and
specific details of the system are given in Appendix A.

In Figs. 1 and 2 the DFT results are compared to M
simulations. Figure 1~a! shows the output Ca21 concentra-
tion for each of the four different Ca21 reference fluid con-
centrations shown in Fig. 1~b!. Figure 2 shows these concen
trations forA1/22. To compare our results to the bulk-flui
reference method, we choose for the initial reference fl
the bulk fluid of the right compartment. The results for th
case@dot-dashed line in Figs. 1~a! and 2~a!# are poor because
~i! the large differences between the output and refere
densities challenge the perturbation ansatz in this situa
and ~ii ! the MSA is used to estimate the second-order
DCF in Eq. ~6! ~Sec. V!. These sources of error will be
discussed in detail in Sec. VI B. The effect of these errors
an inaccurate calculation of the first-order ES DCF in the
left compartment. Thus, in this grand canonical ensem
the resulting inaccurately computed concentrations in t
bath do not reach the 24M and 6M levels for A1/22 and
Ca21, respectively@dot-dashed line in Figs. 1~a! and 2~a!#.
Although we do not show them, similar inaccuracies we
3-2
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DENSITY FUNCTIONAL THEORY OF CHARGED, HARD- . . . PHYSICAL REVIEW E 68, 031503 ~2003!
found when we chose the bulk reference fluid densities to
24M A1/22, 6M Ca21, and 0M Cl2, the densities in the fa
left compartment.

The errors are substantially reduced when iteration is u
to successively revise the reference fluid densities. Figu
1~a! and 2~a! show substantial improvement in just one iter
tion ~short-dashed lines!, with A1/22 having almost con-

FIG. 1. Electrical double layer at the interface of two electroly
compartments described in Appendix A. Panel~a! shows the four
concentration profiles of Ca21 calculated from the correspondin
Ca21 reference fluid concentrations shown in panel~b!. The curves
converge to the final solution~solid line! in three iterations. In pane
~a! the symbols are the results of Monte Carlo simulations. T
curves in panel~b! are initial reference concentration~dot-dashed
line!; first iterative refinement~short-dashed line! calculated using
output concentrations of the previous computation@dot-dash curve
in panel ~a!# using Eq. ~16!; second iterative refinement~long-
dashed line! calculated using the short-dash curve in panel~a!; third
~and final! iterative refinement~solid! calculated using the long
dash curve in panel~a!.
03150
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verged to its final concentration profile. While Ca21 requires
more iterations, still only two or three iterations are need
to reach stable output concentrations. In this example, u
reference fluid densities that depend on the output dens
yields accurate results whereas the bulk-fluid refere
method fails.

In all the inhomogeneous systems we have studied so
the computed densities converge to their final values in th
iterations or less@16,20#.

III. ELECTROSTATIC FUNCTIONAL

In perturbation theory, a reference~unperturbed! system,
by definition, does not depend on the final, output variab
At each step of the iteration in the preceding section, suc
fixed reference fluid is used to calculate fluid densities. Ho
ever, the iteration cycle taken as a whole makes the refere

e

FIG. 2. Same as Fig. 1 except that in panel~a! are the output
concentrations ofA1/22 and in panel~b! are their reference fluid
concentration ofA1/22.
3-3
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GILLESPIE, NONNER, AND EISENBERG PHYSICAL REVIEW E68, 031503 ~2003!
fluid densitiesrk
ref(y) depend on the densitiesr i(x). In this

view, the reference fluidper seno longer exists. In the cas
we consider here, at each locationy, everyrk

ref(y) is made a
functional of allr i(x):

rk
ref~y!5 r̄k@$r i~x!%;y#. ~7!

We call r̄k@$r i(x)%;y# the RFD functional, recalling its ori-
gin as the ‘‘reference fluid density’’ functional. Howeve
strictly speaking, this functional eliminates the concept of
reference fluid entirely.

The ES functional~4! may then be written as

FES@$rk~y!%#'FES@$r̄k~y!%#1FES
(1)@$r̄k~y!%,$rk~y!%#

1FES
(2)@$r̄k~y!%,$rk~y!%#, ~8!

whereFES@$r̄k(y)%# is the ES excess free energy of a flu
with densities$r̄k(y)%,

2
1

kT
FES

(1)@$r̄k~y!%,$rk~y!%#5(
i
E c̄i

(1),ES~x!Dr i~x!dx

~9!

and

2
1

kT
FES

(2)@$r̄k~y!%,$rk~y!%#

5
1

2 (
i , j

E E c̄i j
(2),ES~x,x8!Dr i~x!Dr j~x8!dxdx8,

~10!

with

Drk~x!5rk~x!2 r̄k~x!, ~11!

c̄i
(1),ES~x!5ci

(1),ES@$r̄k~y!%;x#52
1

kT

dFES@$r̄k~y!%#

dr̄ i~x!
,

~12!

and

c̄i j
(2),ES~x,x8!5ci j

(2),ES@$r̄k~y!%;x,x8#

52
1

kT

d2FES@$r̄k~y!%#

dr̄ i~x!dr̄ j~x8!
. ~13!

The RFD functionalr̄k@$r i(x)%;y# remains to be specified
One possible choice is a given and fixed reference fluid, a
the Rosenfeld bulk-reference method, whereas another
sibility involving nonlocalr̄k(y) is given in Sec. V. Proper
ties that the RFD functional must satisfy are given in S
VI A.
03150
e
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IV. FIRST-ORDER DIRECT CORRELATION FUNCTION

Because of the technical nature of the derivation of
first-order ES DCF, it is presented in Appendix B. Here w
merely state the result

ci
(1),ES~x!' c̄i

(1),ES~x!1(
j
E c̄i j

(2),ES~x,x8!Dr j~x8!dx8,

~14!

where

Drk~x!5rk~x!2 r̄k~x!. ~15!

Comparing this to the formulation for a given and fixed s
of reference densities$r̄k(x)% @Eq. ~6!# shows that these two
formulations are identical; that is,the formula used to com
pute the first-order ES DCF is the same for any choice

RFD functionalr̄k(x). Of course, differentspecificchoices
of RFD functionals will give different functionsci

(1),ES(x),

but the formula@that is, the dependence on ther̄k(x)] is the
same. The problem remaining to be solved is finding a R
functional that accurately estimates the first-order ES DCF
the fluid being studied.

V. RFD FUNCTIONAL: ONE POSSIBLE CHOICE

In this section we describe one possible choice for
RFD functional. Beyond choosing a RFD functional, ho
ever, the first- and second-order ES DCFs of the fluid w
densitiesr̄ i(x) must also be calculated. We do this by takin
advantage of the idea thatthe fluid with densitiesr̄ i(x) does
not have to be a physically real fluid; the functional
r̄ i@$rk(x8)%;x# is a mathematical construction that one
free to choose so that the required DCFs can be calcula
This is opposite of the overall problem being solved: to mi
mize the free energy of the system, the fluid densitiesr i(x)
of the system are determined fromci

(1),ES(x) and the other
components of the chemical potential; on the other hand
calculateci

(1),ES(x) with Eq. ~14!, we chooser̄ i(x) in such a

way thatc̄i
(1),ES(x) and c̄i j

(2),ES(x,x8) can be approximated.
To illustrate this, we use the new functional dependen

~7! to recast the iterative updating of the reference fluid
Sec. II and Ref.@16# into a specific choice of the RFD func
tional r̄ i@$rk(x8)%;x#. We define

r̄ i@$rk~x8!%;x#5E a i~x8!r i~x8!w~x8,x!dx8, ~16!

where, ifzi>0 ~wherezi is the valence of ion speciesi ),

a i~x!5A~x! ~17!

and, if zi,0,

a i~x!5A~x!B~x!, ~18!

with
3-4
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A~x!5

(
k

zk
2rk~x!

(
zk>0

zk
2rk~x!1B~x! (

zk,0
zk

2rk~x!

~19!

and

B~x!5

(
zk>0

zkrk~x!

(
zk,0

uzkurk~x!

. ~20!

This choice of scaling factora i(x) ensures that the fluid with
densities$a i(x)r i(x)% is charge neutral and has the sam
ionic strength at every pointx as the fluid with densities
$r i(x)%. The weight functionw(x8,x) is given by

w~x8,x!5
u„ux82xu2RES~x!…

4p

3
RES

3 ~x!

, ~21!

whereu is the unit step function@that is, u(x.0)50 and
u(x<0)51]. The radius of the sphereRES(x) over which
we average is the local electrostatic length scale. ‘‘Len
scale’’ is not a well-defined quantity and we approximate
as the sum of average ion radiiRk and the local screening
lengths(x):

RES~x!'

(
k

ak~x!rk~x!Rk

(
k

ak~x!rk~x!

1s~x!. ~22!

To estimate the first-order ES DCFc̄i
(1),ES(x) at each

point, we use a bulk formulation~specifically the MSA! at
each pointx with densitiesr̄k(x). Similarly, for the second-
order ES DCFc̄i j

(2),ES(x,x8) we use an approximation of th
MSA ES DCF@21# due to Blum and Rosenfeld@7,22#. This
use of the bulk correlation functions at each pointx is why

the densitiesr̄k(x) were made locally charge neutral. In gen-
eral, the densitiesr̄k(x) do not have to be charge neutr
everywhere, as long as these densities can be chosen s
the first- and second-order ES DCFs can be approximated
all x.

The MSA bulk formulation also allows estimation of th
screening length by using the MSA screening length 1/2G at
each point with densities$r̄k(x)%:

s~x!5
1

2G~x!
. ~23!

Thus the screening length depends on the densitiesr̄k(x)
which, in turn, depend on the screening length; at every p
x the screening length 1/2G used to calculate r̄k(x) must
equal the screening length 1/2G calculated fromr̄k(x). For
03150
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eachx, this equality is a one-dimensional algebraic equat
in G which may be solved by iteration@16#, although other
algorithms for root finding are significantly more efficie
@23#. In this paper, we used Brent’s method for such cal
lations @23#.

We estimate the input ES DCFs with the MSA becau
the MSA gives analytic results for both the first-order DC
~excess chemical potential! @1# and the second-order DC
@21,22#. Other bulk formulations such as the HNC or tes
particle self-consistent method@11# could be used instead
and may yield better results. However, even with other b
theories, we note that one can still approximate the ES len
scaleRES with the same MSA screening length formulatio
used here. Because the value ofRES used to average the
densitiesrk(x8) ranges~approximately! from 0.1 to 1 nm or
more, small differences inRES from different calculation
methods have little effect on the averaged densitiesr̄ i(x).
Furthermore, the calculation ofRES with the MSA screening
length is straightforward and computationally efficient,
described above.

While small differences inRES do not result in significant
differences in fluid densities, the choice ofRES(x) is impor-
tant. For instance, using12 RES(x) or 2RES(x) in the example
of Sec. II gives different answers. As shown in Fig. 3, neith
function captures the length scale of the Ca21 concentration
as well as the original definition ofRES(x) in Eq. ~22!: the
Ca21 concentration calculated from 2RES(x) decays to the
bulk densities away from the interface too slowly; the co
centration calculated from1

2 RES(x) has a density peak that i
too large, resulting in spurious HS packing effects. In bo
casesDrk(x8) are larger than when the concentration is c
culated fromRES(x). When 1

2 RES(x) is used,r̄ i(x) are less
smooth so that the pointwise application of the MSA theo
is less accurate.

FIG. 3. The effect of using different length scales in the RF
functional ~16! on calculated fluid concentrations:1

2 RES(x) ~short-
dashed line!, RES(x) ~solid line!, and 2RES(x) ~long-dashed line!,
whereRES(x) is defined in Eq.~22!. The symbols are the results o
MC simulations.
3-5
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GILLESPIE, NONNER, AND EISENBERG PHYSICAL REVIEW E68, 031503 ~2003!
We have also reversed the two steps in the calculatio
r̄k(x), this time first individually averagingrk(x8) over the
sphere of radiusRk1s(x) and then computingr̄k(x) by en-
forcing local charge neutrality and preserving local ion
strength. The results were similar to those shown in F
1~a! and 2~a!.

Finally, we note that there is an infinite number of ways
maker̄ i(x) charge neutral~although, in general, they are no
required to be!. We choose the scaling factora i(x) in Eq.
~16! because it is the simplest choice that changes both
ion and anion densities. By scaling all the cation densi
with one factor and all the anions with another factor, t
problem of charge neutrality simplifies to solving tw
coupled equations for two unknowns (A andB) at each point
x. This can be solved analytically when retaining the sa
ionic strength at eachx.

VI. DISCUSSION

In this paper, we propose an improved formulation of t
ES free energy functionalFES @Eq. ~8!# based on the work o
Ref. @16#. The functional generalizes Rosenfeld’s perturb
tion of a bulk reference fluid@11# by including a new func-
tional dependence@the RFD functional of Eq.~7!# that elimi-
nates the concept of a fixed reference fluid altogether. E
with the addition of the RFD functionalr̄ i@$rk(x8)%;x#, the
first-order ES DCF formula@Eq. ~14!# does not become mor
complex than Rosenfeld’s formula@11# because all additiona
terms due to the RFD functional cancel~Appendix B!. Thus,
Rosenfeld’s perturbation approach to computing the fi
order ES DCF is more general than the original derivat
would imply: if the functional dependence ofFES on r i(x)
andr̄ i(x) is given by Eq.~8!, thenci

(1),ES(x) is given by Eq.

~14! for any choice of the RFD functionalr̄ i@$rk(x8)%;x#.
Since differentspecificchoices of the RFD functional wil
yield different ES free energies and first-order ES DCFs,
problem of finding the ES free energy functional that c
rectly describes a system is essentially reduced to findin
reasonable RFD functional. Futhermore, this search
greatly simplified by the following observations:~1! evaluat-
ing a new RFD functionals requires only a substitution in
Eq. ~14! to determine the first-order ES DCF;~2! the RFD
functional may be evaluated numerically since no functio
derivatives of the RFD functional are required to comp
the first-order ES DCF;~3! if fluid densitiesr i(x) can be
determined for a given set of densities$r̄ i(x)%, c̄i

(1),ES(x),

and c̄i j
(2),ES(x,x8), then the problem can be solved iterative

as in Ref.@16# ~reviewed in Sec. II! by updating$r̄ i(x)%,
c̄i

(1),ES(x), and c̄i j
(2),ES(x,x8).

A. The RFD functional

Equation~14! is, in principle, valid for any choice of den
sities r̄ i(x). While there are noa priori constraints on the
RFD functionalr̄ i@$rk(x8)%;x# that may be used in Eq.~14!,
there are important practical considerations in choosin
RFD functional that yields an accurateFES: Drk(x8) must
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be small throughout the system and, for the fluid with de

sities $r̄ i(x)%, one must be able to calculate~either analyti-
cally or numerically! both the first- and second-order DCF

c̄i
(1),ES(x) and c̄i j

(2),ES(x,x8).
This may seem more difficult than the original proble

where, to determine the structure of an inhomogeneous fl
in equilibrium, only the first-order DCF needs to be det
mined; now one must also compute a second-order D
However, unlike the actual fluid densitiesrk(x8), the densi-

ties r̄ i(x) can bechosenso that one can approximate bo

the DCFsc̄i
(1),ES(x) andc̄i j

(2),ES(x,x8); r̄ i(x) are not required
to represent a physically real fluid. For example, the spec

functional form ofr̄ i@$rk(x8)%;x# we adopt in Eq.~16! is an
average of local densitiesrk(x8) over a sphere with radius
equal to the ES length scaleRES. In practice,RES extends
~approximately! from 0.1 to 1 nm~or more! beyond the ion
radius, depending on the local screening length@Eq. ~22!#.

Thus, the densitiesr̄ i(x) are nonlocal and average out loc

variations in density;r̄ i(x) vary smoothly and slowly, even i
the local densitiesrk(x8) do not @compare Figs. 2~a! and

2~b!#. Sincer̄ i(x) were also made charge neutral, it follow

that the ES DCFsc̄i
(1),ES(x) and c̄i j

(2),ES(x,x8) may be ap-
proximated~at least to first order! by their local bulk values.

A shortcoming of the nonlocal densitiesr̄ i(x) defined in
Eq. ~16! is that they do not follow fluid density peaks that a
more narrow thanRES, the length scale of the averagin
@compare Figs. 2~a! and 2~b!#. In such regions,Drk(x8) will
not be small. In the cases we have considered~Figs. 1 and 2,
and Refs.@16,20#!, density peaks are still accurately com
puted because thetotal chemical potential is dominated b
its other components~especially the HS and electrostat
mean-field components!.

On the other hand, the RFD functional described in Sec
seems to succeed because it tends to keepDrk(x8) small. In
the example of Figs. 1 and 2, it is correct in the both co
partments far from the interface. Moreover, near the int

face, the RFD densitiesr̄k(y) have the correct length scale t
make Drk(x8) small, especially for Ca21 @compare Figs.
1~a! and 1~b!#.

B. Sources of error

As discussed previously, an important source of error
the ES functional~8! is the size of the perturbation@that is,
Drk(x8)]. Other sources of error are the inputs to the fun
tional, specifically the formulas used to estimate the fir

and second-order DCFsc̄i
(1),ES(x) and c̄i j

(2),ES(x,x8). In our
calculations, we use the MSA to estimate both of these qu
tities. While the deficiencies of the MSA are well know
@24#, the choice of the MSA is especially problematic for th
second-order ES DCF, as we briefly demonstrate.

Consider the case when both the fluid and reference fl
densities areuniform and the ions have the same radiusR
@the restricted primitive model~RPM!#. In the RPM, the
MSA second-order ES DCF is@1#
3-6



t-

r
rs
u
tio
y
n
ft

n,
a

r-
io
s

tl
2

e

e

su

s
e-

re

lied
ou-

po-

ot
fluid

te

of

n
ted
e,
rror
-
ini-

on

ex-
or
d-

his

nd
nu-

om
le

as

C
on

one

DENSITY FUNCTIONAL THEORY OF CHARGED, HARD- . . . PHYSICAL REVIEW E 68, 031503 ~2003!
kTc̄i j
(2),ES~x,x8!'2

zizje
2

4pee0
S B

R
2

B2

4R2
ux2x8u D ~24!

if ux2x8u,2R and

kTc̄i j
(2),ES~x,x8!'2

zizje
2

4pee0

1

ux2x8u
~25!

otherwise. Here,

B5
x112A112x

x
, ~26!

where

x25
4R2e2

kTee0
(

k
zk

2r̄k . ~27!

From this it follows that the perturbation term for the firs
order ES DCF is identically zero ifDr j (x8) is constant~and
nonzero!:

(
j
E c̄i j

(2),ES~x,x8!Dr j~x8!dx850. ~28!

This means that the computed first-order ES DCF@Eq. ~14!#
is that of the reference fluid. Therefore, even in this ve
simple case, it is not possible to correctly compute the fi
order ES DCF using the MSA second-order ES DCF. F
thermore, when the ions are of different size, the perturba
term remains small~although not necessarily identicall
zero! when Dr j (x8) is constant. This correlation functio
error is one source of the discrepancies in the le
compartment results in the initial calculations of Figs. 1~a!
and 2~a! ~dot-dashed lines!.

The contribution of this correlation function error ca
however, be controlled by choosing a RFD functional th
minimizesDr j (x8). For such a RFD functional, the pertu
bation term is minimal and therefore so is the correlat
function error. Furthermore, in the limit of uniform densitie
~as considered in this section!, Dr j (x8)50 for such a RFD
functional and the first-order ES DCF is computed correc
by the bulk formulation. This is illustrated in Figs. 1 and
~Sec. II! wherer̄k(x8) in the far left compartment converg
to the final fluid densities~solid lines!.

Thus both major sources of errors are minimized wh
the RFD functional is chosen to makeDr j (x8) as small as
possible.

Like many others@5–8#, we use the MSA formulation
because of its analytic results and because the overall re
of the DFT calculations compare well to MC results~Figs. 1
and 2, and Refs.@16,20#!. We describe some of the problem
with using this particular correlation function not only b
cause one must be aware of these, but also to show how
ES functional~8! overcomes these problems. Other, mo
accurate, bulk formulations should also be investigated.
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C. Generalizations of the method

It was recently pointed out to us by Roth@25# that the
method described in this paper and the ES functional~8! is
more general than was originally intended: it can be app
to systems with particle-particle interactions other than C
lombic ~for example, Yukawa or square well!. This can be
seen by noting that the derivation of the ES functional~8!
does not assume any specific particle-particle interaction
tential ~except that it is something in addition to HS!. There-
fore it is not until the RFD functionalr̄ i@$rk(x8)%;x# and the
corresponding DCFsc̄i

(1),ES(x) and c̄i j
(2),ES(x,x8) are chosen,

that the interaction potential must be specified.~Note that the
RFD functional described in Sec. Vdoesdepend on the in-
teraction potential.! Since the interaction potential does n
appear anywhere else in the theory, the inhomogenous
described by the excess free energy~8! is the fluid with the
particle-particle interaction potential used to compu
c̄i

(1),ES(x) and c̄i j
(2),ES(x,x8).

VII. CONCLUSION

We have shown that the ES functional~8! is a starting
point for computing the first-order ES DCF for any choice
RFD functionalr̄ i@$rk(x8)%;x# @Eq. ~7!#. The specific choice
of RFD functional discussed in Sec. V works well whe
combined with first- and second-order ES DCFs compu
from point-by-point applications of the MSA. Furthermor
this RFD functional reduces the two largest sources of e
by keepingDrk(x8) small throughout the system. This pre
serves the perturbation ansatz while at the same time m
mizing the effects of using a poor input correlation functi
in the perturbation term in Eq.~14!.

For charged, hard-sphere fluids, this work may be
tended by using bulk formulations other than the MSA
using other RFD functionals for which the first- and secon
order ES DCFs can be computed.
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APPENDIX A: DESCRIPTION OF THE EXAMPLE
SHOWN IN FIGS. 1–3

To illustrate the iterative method, we use an example fr
our previous paper@16#. We choose to use the same examp
here for the following two reasons.

~1! It is a general and challenging system since it h
three ion species, each with a different size and charge.

~2! In this paper, the purpose of the example and the M
simulations is a step-by-step illustration of the iterati
method and its convergence~Figs. 1 and 2!. In Fig. 3, we
also use it to illustrate the consequences of changing
3-7
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component of the ES functional. We show in this paper t
the iteration method of Ref.@16# and the new ES functiona
~8! are equivalent~Appendix B!. Therefore, it has alread
been established that the new ES functional compares we
MC simulations@16,20#.

For the example, we consider two half-infinite compa
ments in the planar~slab! geometry brought into contact a
x50. As bulk fluids, left compartment (x,0) contains 6M
Ca21 and 24M anions with valence21/2, denotedA1/22

~see below!, and the right compartment (x.0) contains
0.1M CaCl2. These two compartments are brought into co
tact and allowed to equilibrate with the restriction thatA1/22

are confined to the left compartment with a hard-wall pot
tial; Ca21 and Cl2 are allowed to equilibrate throughout bo
compartments.

The system is treated as a grand canonical ensem
A1/22 are assigned a chemical potential corresponding to
in a 6M CaA4 bulk solution that is at the electrostatic pote
tial f(2`). Ca21 and Cl2 are assigned the chemical pote
tials corresponding to a 0.1M CaCl2 bulk solution at the
electrostatic potentialf(`)50. The excess chemical poten
tials are calculated with the MSA andf(2`) is the Donnan
potential between the two bulk solutions. In all DFT calc
lations, the HS component was computed with the ‘‘antisy
metrized’’ excess free energy density of Ref.@12#. A1/22,
Ca21, and Cl2 were given diameters of 0.280, 0.198, a
0.363 nm, respectively.

In this example we use ions of valence21/2 to make a
very general electrostatic system: the three ion species
very differentuzi u. The origin of this species is the modelin
of carboxyl (COO2) groups of certain amino acids whe
both oxygens share the ionizing electron. In a charged, h
sphere fluid model, we chose to model one COO2 groups as
two independent O1/22 ions @16,19#.

APPENDIX B: DERIVATION OF THE FIRST-ORDER
DIRECT CORRELATION FUNCTION

By definition,

ci
(1),ES~x!5ci

(1),ES@$rk~y!%;x#52
1

kT

dFES

dr i~x!
. ~B1!

Functional differentiation of Eq.~8! gives

2kTci
(1),ES~x!'(

j
E dFES@$r̄k~y!%#

dr̄ j~x8!

dr̄ j~x8!

dr i~x!
dx8

1
dFES

(1)

dr i~x!
1

dFES
(2)

dr i~x!
. ~B2!

The derivative ofFES
(1) is given by

2
1

kT

dFES
(1)

dr i~x!
52

1

kT (
j
E dFES

(1)

d c̄ j
(1),ES~x8!

d c̄ j
(1),ES~x8!

dr i~x!
dx8

1 c̄i
(1),ES~x!2(

j
E c̄ j

(1),ES~x8!
dr̄ j~x8!

dr i~x!
dx8,

~B3!
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which may be expanded and rearranged to

2
1

kT

dFES
(1)

dr i~x!
5 c̄i

(1),ES~x!2(
j
E c̄ j

(1),ES~x8!
dr̄ j~x8!

dr i~x!
dx8

1(
j ,m

E E d c̄ j
(1),ES~x8!

dr̄m~x9!
Dr j~x8!

dr̄m~x9!

dr i~x!

3dx8dx9, ~B4!

where

Drk~x!5rk~x!2 r̄k~x!. ~B5!

The derivative ofFES
(2) is given by

dFES
(2)

dr i~x!
5(

k,m
E E dFES

(2)

d c̄km
(2),ES~x8,x9!

d c̄km
(2),ES~x8,x9!

dr i~x!
dx8dx9

1(
k
E dFES

(2)

dDrk~x8!

dDrk~x8!

dr i~x!
dx8

1(
m

E dFES
(2)

dDrm~x9!

dDrm~x9!

dr i~x!
dx9. ~B6!

Since

22

kT

dFES
(2)

d c̄km
(2),ES~x8,x9!

5Drk~x8!Drm~x9!, ~B7!

d c̄km
(2),ES~x8,x9!

dr i~x!
5(

j
E d c̄km

(2),ES~x8,x9!

dr̄ j~x-!

dr̄ j~x-!

dr i~x!
dx-,

~B8!

22

kT

dFES
(2)

dDrk~x8!
5(

m
E c̄km

(2),ES~x8,x9!Drm~x9!dx9,

~B9!

22

kT

dFES
(2)

dDrm~x9!
5(

k
E c̄km

(2),ES~x8,x9!Drk~x8!dx8,

~B10!

dDrk~x8!

dr i~x!
5d ikd~x2x8!2

dr̄k~x8!

dr i~x!
, ~B11!

and

c̄i j
(2),ES~x,x8!5

d2FES@$r̄k~y!%#

dr̄ i~x!dr̄ j~x8!
5

d2FES@$r̄k~y!%#

dr̄ j~x8!dr̄ i~x!

5 c̄ j i
(2),ES~x8,x!, ~B12!

we have
3-8
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2
1

kT

dFES
(2)

dr i~x!
5(

k
E c̄ik

(2),ES~x,x8!Drk~x8!dx82(
k,m

E E c̄km
(2),ES~x8,x9!Drm~x9!

dr̄k~x8!

dr i~x!
dx8dx9

1
1

2 (
j ,k,m

E E E d c̄km
(2),ES~x8,x9!

dr̄ j~x-!

dr̄ j~x-!

dr i~x!
Drk~x8!Drm~x9!dx8dx9dx-. ~B13!

We now have two formulations of the first-order ES DCF: the one used in Ref.@16# given by Eq.~6! and the one given by
Eqs.~B2!, ~B4!, and~B13!. Comparing these relations shows that there are several extra terms in the latter formulati
now show that the additional terms cancel exactly for a general functional dependence ofr̄k(x8) on $r i(x)%. Therefore,
explicitly accounting for the RFD functional~7! is equivalent to the iteration method.

We start with definitions~12!, ~13!, and

d c̄km
(2),ES~x8,x9!

dr̄ j~x-!
5 c̄km j

(3),ES~x8,x9,x-! ~B14!

to rewrite the first-order DCF~B2!:

ci
(1),ES~x!'(

j
E c̄i

(1),ES~x8!
dr̄ j~x8!

dr i~x!
dx82

1

kT

dFES
(1)

dr i~x!
2

1

kT

dFES
(2)

dr i~x!
, ~B15!

where

2
1

kT

dFES
(1)

dr i~x!
5 c̄i

(1),ES~x!2(
j
E c̄i

(1),ES~x8!
dr̄ j~x8!

dr i~x!
dx81(

j ,m
E E c̄ jm

(2),ES~x8,x9!Dr j~x8!
dr̄m~x9!

dr i~x!
dx8dx9 ~B16!

and

2
1

kT

dFES
(2)

dr i~x!
5(

k
E c̄ik

(2),ES~x,x8!Drk~x8!dx82(
k,m

E E c̄km
(2),ES~x8,x9!Drm~x9!

dr̄k~x8!

dr i~x!
dx8dx9

1
1

2 (
j ,k,m

E E E c̄km j
(3),ES~x8,x9,x-!

dr̄ j~x-!

dr i~x!
Drk~x8!Drm~x9!dx8dx9dx-. ~B17!

Adding these together and using relation~B12! gives

ci
(1),ES~x!' c̄i

(1),ES~x!1(
j
E c̄i j

(2),ES~x,x8!Dr j~x8!dx8

1
1

2 (
j ,k,m

E E E c̄km j
(3),ES~x8,x9,x-!

dr̄ j~x-!

dr i~x!
Drk~x8!Drm~x9!dx8dx9dx-. ~B18!

Although we do not show it, by continuing this process for successive terms in theuntruncatedseries~4!, the last term in Eq.
~B18! is canceled by the next term in the series because of the relation

c̄km j
(3),ES~x8,x9,x-!5 c̄mk j

(3),ES~x9,x8,x-!5 c̄ jmk
(3),ES~x-,x9,x8!. ~B19!

Thus we conclude that all the terms that include functional derivatives ofr̄ j (x8) cancel and that

ci
(1),ES~x!' c̄i

(1),ES~x!1(
j
E c̄i j

(2),ES~x,x8!Dr j~x8!dx8 ~B20!

with the DCFsc̄i
(1),ES(x) and c̄i j

(2),ES(x,x8) given by Eqs.~12! and ~13!. This result isnot true for any general ES functiona

G@r j (x),r̄ j (x8)#; if r̄ j (x8) is a itself a functional ofr j (x), then the extra terms created in the first-order DCF by the n
functional dependence~16! cancel because we start with a Taylor series expansion of the free energy in Eq.~4!.
031503-9
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