PHYSICAL REVIEW E 68, 031503 (2003
Density functional theory of charged, hard-sphere fluids

Dirk Gillespiel?* Wolfgang Nonnef:" and Robert S. Eisenbérg
Department of Molecular Biophysics and Physiology, Rush University, 1750 West Harrison Street, Suite 1291,
Chicago, lllinois 60612, USA
2Department of Physiology and Biophysics, University of Miami School of Medicine, P.O. Box 016430,
Miami, Florida 33101-6430, USA
(Received 18 April 2003; published 19 September 2003

An approximate electrostati€S) excess free energy functional for charged, hard sphere fluids is presented.
This functional is designed for systems with large density variations, but may also be applied to systems
without such variations. Based on the Rosenfeld method of perturbation about @bu&geneoyseference
fluid [Y. Rosenfeld, J. Chem. Phy88, 8126 (1993], the new ES functional replaces the reference fluid
densities with a functional of the particle densities, called the RFD functional. The first-order direct correlation
function (DCF) in the particle densities is computed using as input the first- and second-order D{,‘:_IF(SQI}I,
the inhomogeneous densities defined by the RFD functional. Because this formulation imp@sesiom
constraints on the form of the RFD functional—it is valid for any choicéﬁ(x)}—the RFD functional may
be choser(l) so that the input DCF&hat is, DCFs in{E(x)}) may be approximated an@) so the combi-
nation of{E(x)} and input DCFs yields a good estimate of the first-order DCF in the particle densities. In this
way, the general problem of finding the excess free energy functional has been replaced by the specific problem
of choosing a RFD functional. We present a particular RFD functional that, together with bulk formulations for
the input DCFs, accurately reproduces the results of Monte Carlo simulations.
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I. INTRODUCTION proximations exisf5,11,14. (Mier-y-Teranet al.[5] give an
overview of other approximationsAlthough Monte Carlo
Fluids of charged, hard spheres are widely used to reprgMC) methods can simulate charged systems, they are lim-
sent physical systems such as electrolyte solutions. In bulked to equilibrium systeméf. Refs.[15,16]) and relatively
(homogeneoyssystems, these fluids have been successfullfigh ion densities. Furthermore, because of the vast differ-
modeled by solving the Ornstein-Zernike equation with vari-ence in computation time between MC and DFT methods,
ous closures including the mean spherical approximationc simulations sample a much smaller parameter space than
(MSA) [1] and the hypernetted chalhiNC) approximation  pET methods. Of course, MC simulations are invaluable to

[2]. In inhomogeneous hard-sphere systems, density funGsompare the approximate DFT results against a system with
tional theory(DFT) has been applied to both unchardede |oqs restrictive approximations.

Refs.[3,4], for exampl¢ and chargedsee Refs[5-8], for One approximation of the ES functional, introduced by

ex%n;[_}le}dh?rd-s_pherti quidsd. . " finh Rosenfeld, is based on the perturbation of a Hhkmoge-
etermines thermodynamic properties of in OmOge'neous reference fluid[11]. This formulation of the func-

neous fluids from the excess free enefgy and its func- . . )
tional has been applied to several inhomogeneous systems

tional dependence on the set of all the particle densitief7 8]. However, not all systems are amenable to perturbation
o)k around a bulk fluid; implicit in any perturbation approxima-
Fo=Fel oY)} (1)  tionis the expectation that the final results should be a small

correction to the referendeinperturbedl system. If the par-
We decomposé,, into two terms, namely the hard-sphere ticle densities vary by large amounts within the system, then
(HS) and electrostatitES) excess free energy functionals, so the bulk-fluid perturbation ansatz probably will not work.
that Moreover, such large density variations occur in many sys-
tems of interest, especially biological ones; active sites of
Fed{pk(W)H=Fal{ocY) = Fud{p(¥)}]. (2)  proteins are often highly charged, attracting high concentra-
tions of counter charggl7]. One example is the-type cal-
Various formulations of the HS function&l,;s exist[9], in-  cium ion channel whose pore wall contains four negatively
cluding Rosenfeld’§10] and improved formulations based charged amino acids in a rind.8]. Inside the channel the
on it[11-13. On the other hand, a first-principles formula- C&* concentration is tens of molar, while in the baths sur-
tion of the ES functional is not known, although several ap-rounding the channel it is of the order of 1M [16,19.
To describe such electrolyte systems, we recently pro-
posed a version of the ES functional that replaces Rosen-

*Email address: dirk_gillespie@rush.edu feld’s spatially uniform reference fluid with a location-
TEmail address: wnonner@chroma.med.miami.edu dependent reference fluid[16]. In addition, the
*Email address: beisenbe@rush.edu inhomogeneous reference fluid densities were computed

1063-651X/2003/68)/03150310)/$20.00 68 031503-1 ©2003 The American Physical Society



GILLESPIE, NONNER, AND EISENBERG PHYSICAL REVIEW B8, 031503 (2003

from the densities produced by the previous calculation and Ci(l)’E‘Ql{pk(y)};X]~Ci(l)'ET{pLEf(y)};x]

iterated to self-consistency. The numerical results compared

well to MC simulations(Figs. 2 and 3 of Refl16]). NV ES [ ref a1
In this paper, we reformulate this iterative meth@&ec. +§j: J el =o)X x|

II) into a new ES functional using the key idea that itera-

tively updating the reference fluid is equivalent to making XApj(x")dx’". (6)

the “reference” fluid densities into functionals of the fluid

densities(the RFD functiongl This new functional depen-

dence is the basis for the ES functior&ls (Sec. Ill). The The notatiomi(l)’Ei{pk(y)};x] (following Rosenfeld 11]) is

first-order ES direct correlation functidbCF) c{?"* result-  ysed to indicate explicitly that{"ESis a function ofx and

ing from this ES excess free energy is discussed in Sec. I\fhat, at every locatiom, it is also a functional of the densi-

The functional differentiation that yields(" = includes ties {p,(y)l.  Similar notaion is used for

terms that arise because the reference densities are functiog_e),es[{pref(y)}.x x'].

als of the densities. These terms were not considered in our’ Next V\I;e diséu,ss general aspects of the functional, leaving

previous work 16]. We show that these terms cancel exactlyt e details of estimating cE{p(y)}:x] :':md

and therefore the previously described iteration method an(ﬂz) ES [ refr a1.e. w1 ng & Pk W)

the new ES functional are, in fact, mathematically equivalenfii S[{{’k (¥)};x,x'] for a given inhomogeneous reference

(Appendix B. One further consequence of this analysis isfuid until Sec. V. _

that the problem of finding an accurate ES functional is re- Equation(6) is the first-order ES DCF we used to com-

duced to finding a suitable RFD functior@ec. IV). Finally, ~ pute the output densitigs(x) in Ref.[16]. In that paper, the

we discuss one possible form for the RFD functiof@éc. final fluid densities were determined by iteratively updating

V) and analyze the strengths and weaknesses of this ES funifte reference fluid densitigs/(y): an initial guess for the

tional (Sec. V). densitiesp;(x) was chosen and an initial set of reference
fluid densities'(y) was calculatedSec. \j and used in Eq.
Il. INHOMOGENEOUS REFERENCE FLUID (6) to compute a new set of output densitjgéx); these, in

AND ITERATION turn, were used to compute the next set of reference fluid

agn I’ef . . .
In Ref. [16] we proposed an ES functional based on per_densmeSpk (y). This cycle was continued until there was no

turbation of an inhomogeneous reference fluid. This generS'dNificant change in the output densitjegx).
alization of Rosenfeld's methofL1] expands the ES func- We illustrate this procedure for the inhomogeneous refer-

tional Fed {pi(y)}] in a functional Taylor series in powers of €nce fluid with an example developed in Rief6]. Consider
two large compartments: the left compartment contains a

Api(x)=pi(x) = pri(x), (3)  fluid of 6M (i/sz and 2LM anions with valence- 1_/2 (de-
note themA*<"); the right compartment contains 041

where p}’e'f(x) is a given inhomogeneous reference densit)paCE. These two Compartments are brought into contact and
profile. The original derivatiofil1] used homogeneous ref- allowed to equilibrate with the restriction that’”” are con-
erence fluid densities for Whidj\ref(X) is independent oK. fined to the left Compartment with a hard-wall potential;
Following Rosenfeld, we truncate after the quadraticC&  and CI' are allowed to equilibrate throughout both
term: compartments. A discussion of the valere&/2 species and
specific details of the system are given in Appendix A.
Fed{p(Y)}1=Fed {piE(y)}]—kT In Figs. 1 and 2 the DFT results are compared to MC
simulations. Figure (B) shows theéoutput ca concentra-
(1),ES s ref 7. _ tion for each of the four different Ga reference fluid con-
XEi f ¢ S[{pk (Y)Fx]Api(x)dx centrations shown in Fig.(fh). Figure 2 shows these concen-
trations forAY?~. To compare our results to the bulk-fluid
kT ference method, we choose for the initial reference fluid
- J J P E o y)hixx'] e emos W :
2 1 g the bulk fluid of the right compartment. The results for this
casd dot-dashed line in Figs.(4) and Za)] are poor because
X Api(X)Apj(x’)dxdx’, (4) (i) the large differences between the output and reference
(1).ES 1 refy 1. (2.ES s 16l a1 e o densities challenge the perturbation ansatz in this situation
wherec™ F{{pie(y)};:x] andc{? = {pi(y)}ix.x'] are the  and (ii) the MSA is used to estimate the second-order ES
ES component&hat is, they exclude the HS componerdé  DCF in Eq. (6) (Sec. V). These sources of error will be
the first- and second-order DCFs, respectively, of the referdiscussed in detail in Sec. VI B. The effect of these errors is
ence fluid. The relation an inaccurate calculation of the first-order ES DCF in the far
left compartment. Thus, in this grand canonical ensemble,
c-(l)'E‘T{ (Y)hix]=— — oFEs 5) the resulting inaccurately computed concentrations in that
' Py KT 8pi(x) bath do not reach the ® and @V levels for AY?~ and
C&™", respectively{dot-dashed line in Figs.(4) and 2a)].
implies that Although we do not show them, similar inaccuracies were
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FIG. 1. Electrical double layer at the interface of two electrolyte ~ FIG. 2. Same as Fig. 1 except that in pat®lare the output
compartments described in Appendix A. Pat@lshows the four ~concentrations oAY>” and in panel(b) are their reference fluid
i 1/2—
concentration profiles of G4 calculated from the corresponding concentration oA™<".
ca&* reference fluid concentrations shown in pafi®l The curves

converge to the final solutiofsolid ling) in three iterations. In panel verged to its final concentration profile. While Carequires
(&) the symbols are the results of Monte Carlo simulations. Themore iterations, still only two or three iterations are needed
curves in panelb) are initial reference concentratiqdot-dashed  to reach stable output concentrations. In this example, using

line); first iterative refinementshort-dashed linecalculated using  reference fluid densities that depend on the output densities
output concentrations of the previous computafidot-dash curve  yields accurate results whereas the bulk-fluid reference
in panel (a)] using Eg.(16); second iterative refinemerftong-

method fails.
dashed lingcalculated using the short-dash curve in paakithird In all the inhomogeneous systems we have studied so far,
(and fina) iterative refinementsolid) calculated using the long-  {he computed densities converge to their final values in three
dash curve in pandh).

iterations or les$16,2(Q.

found when we chose the bulk reference fluid densities to be
N Ill. ELECTROSTATIC FUNCTIONAL
24M AY2~ 6M C&*, and QM CI~, the densities in the far

left compartment. In perturbation theory, a referencenperturbed system,
The errors are substantially reduced when iteration is usedy definition, does not depend on the final, output variables.

to successively revise the reference fluid densities. Figureat each step of the iteration in the preceding section, such a
1(a) and Za) show substantial improvement in just one itera-fixed reference fluid is used to calculate fluid densities. How-
tion (short-dashed lings with AY?>~ having almost con- ever, the iteration cycle taken as a whole makes the reference
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ref

fluid densitiesp,(y) depend on the densitigs(x). In this
view, the reference fluigher seno longer exists. In the case
we consider here, at each Iocatip,neveryprff(y) is made a

functional of allp;(X):

ref

piE(y)=pul {pi(0)};y]. (7

We call p,[{pi(X)};y] the RFD functional, recalling its ori-
gin as the “reference fluid density” functional. However,
strictly speaking, this functional eliminates the concept of th
reference fluid entirely.

The ES functional4) may then be written as

Fed {p(¥)}1=Fed {p(¥)} 1+ FE{pW)} {pe(¥)}]

+FA{ (W) oW}, 8)

whereFEs[{E((X)}] is the ES excess free energy of a fluid
with densities{p\(y)},

1 _
— PRI =3 | T E04p 00

9
and
1 Qs
- ﬁFEs[{Pk(y)}1{Pk(Y)}]
:%2 JJa(jz)’Es(x,x’)Api(x)Apj(x’)dxdx’,
(10
with
Api(X) = pi(X) = pi(X), (12)

TW-ESx) = ¢ {pr(y)}:x] = — 1 Fed{puy)}] |

PHYSICAL REVIEW B8, 031503 (2003

IV. FIRST-ORDER DIRECT CORRELATION FUNCTION

Because of the technical nature of the derivation of the
first-order ES DCEF, it is presented in Appendix B. Here we
merely state the result

cME )~ Ex) + 2 f P Ex X ) Apj(x")dx’,
J
(14)

where

€

Api(X) = pi(X) = py(X). (15)

Comparing this to the formulation for a given and fixed set
of reference densitiep(x)} [Eq. (6)] shows that these two
formulations are identical; that ishe formula used to com-
pute the first-order ES DCF is the same for any choice of
RFD functionalp,(x). Of course, differenspecificchoices

of RFD functionals will give different functions{"5x),

but the formuldthat is, the dependence on thgx)] is the
same. The problem remaining to be solved is finding a RFD

functional that accurately estimates the first-order ES DCF of
the fluid being studied.

V. RFD FUNCTIONAL: ONE POSSIBLE CHOICE

In this section we describe one possible choice for the
RFD functional. Beyond choosing a RFD functional, how-
ever, the first- and second-order ES DCFs of the fluid with

densitiesE(x) must also be calculated. We dot_his by taking
advantage of the idea thtte fluid with densitiep;(x) does
not have to be a physically real flyidthe functional

pil{pk(x")};x] is a mathematical construction that one is
free to choose so that the required DCFs can be calculated.
This is opposite of the overall problem being solved: to mini-
mize the free energy of the system, the fluid densipi€s)

of the system are determined frogf'¥Yx) and the other
components of the chemical potential; on the other hand, to

calculatec™ EYx) with Eq. (14), we choosep;(x) in such a
way thatc{"Fgx) andc{?F(xx') can be approximated.

KT spi(x) To illustrate this, we use the new functional dependence
(12 (7) to recast the iterative updating of the reference fluid of
Sec. Il_and Ref[16] into a specific choice of the RFD func-
and tional pi[{pk(x")};x]. We define
o Exx) = {pu(y) }ixx'] —
! ! S pil{pu(x)}ix]= f (X)) pi (X W(x' X)dx’,  (16)
_ 1 Fed{py}] 13
kT 5E(X) 5;j(x’) ' where, ifz;=0 (wherez; is the valence of ion specie,
— (X)=A(X 1
The RFD functionalp,[{pi(X)};y] remains to be specified. (X =AM an
One possible choice is a given and fixed reference fluid, as iand, ifz<0,
the Rosenfeld bulk—refereime method, whereas another pos- '
sibility involving nonlocalp,(y) is given in Sec. V. Proper- ai(X)=A(X)B(x), (18

ties that the RFD functional must satisfy are given in Sec.
VIA. with
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§ 22p(X)

A(X)= (19
> ZEp(¥)+B(X) X ZEpy(X)
=0 7,<0
and
ZZO Zkpi(X)
B(x)= (20)

> lzdpk(®)
7 <0

This choice of scaling factax;(x) ensures that the fluid with

densities{a;(x)p;(x)} is charge neutral and has the same

ionic strength at every point as the fluid with densities
{pi(X)}. The weight functiorw(x’,x) is given by

(/X" —X| — Reg(x))
4w _, '
?RES(X)

w(x’,x)= (21

where 6 is the unit step functioiithat is, 6(x>0)=0 and
0(x<0)=1]. The radius of the spher@:4X) over which
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FIG. 3. The effect of using different length scales in the RFD
functional (16) on calculated fluid concentrationéREs(x) (short-
dashed ling Rgg(x) (solid line), and Rg(x) (long-dashed ling
whereRgg(X) is defined in Eq(22). The symbols are the results of
MC simulations.

we average is the local electrostatic length scale. “Lengtrgachx, t_his equality is a one—di_mens_ional algebraic equation
scale” is not a well-defined quantity and we approximate itin I' which may be solved by iteratigii6], although other

as the sum of average ion radRj and the local screening
lengths(x):

ay(X) pr(X)Ry

+5s(X). (22
a(X) pi(X)

>
Reg(X)~
>

To estimate the first-order ES DC&YEYx) at each
point, we use a bulk formulatiofspecifically the MSA at

each pointx with densitiesﬁ(x). Similarly, for the second-

order ES DCFc{?®x,x") we use an approximation of the
MSA ES DCF[21] due to Blum and Rosenfel,22]. This
use of the bulk correlation functions at each painis why

the densitiessTk(x) were made locally charge neutrah gen-
eral, the densitiep,(x) do not have to be charge neutral

everywhere, as long as these densities can be chosen so t
the first- and second-order ES DCFs can be approximated foc{iffer

all x.
The MSA bulk formulation also allows estimation of the
screening length by using the MSA screening lengt 142

each point with densitie§p,(x)}:

sS(X)= Tx)°

(23

Thus the screening length depends on the dens«i_t,iex)

which, in turn, depend on the screening length; at every poin

x the screening length W2 usedto calculateﬁ(x) must
equal the screening length I’/Zalculated fromp,(x). For

algorithms for root finding are significantly more efficient
[23]. In this paper, we used Brent's method for such calcu-
lations[23].

We estimate the input ES DCFs with the MSA because
the MSA gives analytic results for both the first-order DCF
(excess chemical potentjdll] and the second-order DCF
[21,22. Other bulk formulations such as the HNC or test-
particle self-consistent methdd.1] could be used instead
and may yield better results. However, even with other bulk
theories, we note that one can still approximate the ES length
scaleRgg with the same MSA screening length formulation
used here. Because the value R used to average the
densitiesp,(x') ranges(approximately from 0.1 to 1 nm or
more, small differences iRRgg from different calculation

methods have little effect on the averaged densjiig€x).
Furthermore, the calculation &z with the MSA screening
length is straightforward and computationally efficient, as
ﬁig cribed above.

hile small differences ifRgs do not result in significant
ences in fluid densities, the choice REg(x) is impor-
tant. For instance, usingReg(X) or 2Rg4(X) in the example

of Sec. Il gives different answers. As shown in Fig. 3, neither
function captures the length scale of the?Caoncentration
as well as the original definition dRgg(X) in Eq. (22): the
ca* concentration calculated fromRg4(x) decays to the
bulk densities away from the interface too slowly; the con-
centration calculated frotiRgg(x) has a density peak that is
too large, resulting in spurious HS packing effects. In both
casesA p(x') are larger than when the concentration is cal-
Lulated fromRgg(x). When3Re4(X) is used,p;(x) are less

smooth so that the pointwise application of the MSA theory
is less accurate.
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We have also reversed the two steps in the calculation dbe small throughout the system and, for the fluid with den-
pi(x), this time first individually averaging,(x’) over the sities{E(x)}, one must be able to calculateither analyti-
sphere of radiufR,+ s(x) and then computin@(x) by en-  cally or numerically both the first- and second-order DCFs
forcing local charge neutrality and preserving local ionicc{?)-ESx) anda(jz)*ES(x,x’).
strength. The results were similar to those shown in Figs. This may seem more difficult than the original problem
1(a) and Za). _ o where, to determine the structure of an inhomogeneous fluid

Finally, we note that there is an infinite number of ways toj, equilibrium, only the first-order DCF needs to be deter-
makep;(x) charge neutralalthough, in general, they are not mined; now one must also compute a second-order DCF.
required to bg We choose the scaling factar(x) in Eq.  However, unlike the actual fluid densitipg(x’), the densi-

(16) because it is the simplest choice that changes both Caﬁ'es;(x) can bechosenso that one can approximate both
ion and anion densities. By scaling all the cation densities !

1),E 2),E ne - H
with one factor and all the anions with another factor, thethe DCFsef =) ?ndgi(i) S(X’X_ ); pi(x) are not required
problem of charge neutrality simplifies to solving two O represent a phy_smally real fluid. For example, the specific
coupled equations for two unknown& @ndB) at each point  functional form ofp;[{p(X")};x] we adopt in Eq(16) is an

X. This can be solved analytically when retaining the sameverage of local densities(x') over a sphere with radius

ionic strength at eack. equal to the ES length scaR:s. In practice,Rgs extends
(approximately from 0.1 to 1 nm(or more beyond the ion
VI. DISCUSSION radius, depending on the local screening lerdh. (22)].

In this paper, we propose an improved formulation of theThUS’ the densitiep;(x) are nonlocal and average out local

ES free energy functiond s [Eq. (8)] based on the work of variations in densityp;(x) vary smoothly and slowly, even if
Ref. [16]. The functional generalizes Rosenfeld’s perturbathe local densitiep,(x’) do not[compare Figs. @ and
tion of a bulk reference fluid11] by including a new func-  2(b)]. Sincep;(x) were also made charge neutral, it follows
tional dependencithe RFD functional of Eq(7)] that elimi-  ihat the ES DCFs_:i(l)'ES(x) anda(jz)'ES(x,x’) may be ap-

nates the concept of a fixed reference_fl;lid alto}gether. Eveproximated(at least to first ordérby their local bulk values.

with the addition of the RFD functional;[{p«(X")};x], the A shortcomin L ' :

) g of the nonlocal densitieg(x) defined in

first-order ES DCF forml,JIéEq. (14)] does not becomg more Eq. (16) is that they do not follow fluid density peaks that are

complex than Rosenfeld’s formulal] because all additional more narrow tharR the length scale of the averaging
ES»

terms due to the RFD functional can¢@ppendix B. Thus, [compare Figs. @) and Zb)]. In such regionsA py(x') wil

Rosenfeld’s perturbation approach to computing the first b I h h el d
order ES DCF is more general than the original derivatior’0tPe small. In the cases we have consideféids. 1 and 2,
would imply: if the functional dependence Bt on p;(x) and Refs[16,2(), density peaks are still accurately com-

—N e (1).E o puted because thttal chemical potential is dominated by
andp;(x) is g|ver'1 by Eq/8), thenc; .S(X)LS given by Eq. its other componentgespecially the HS and electrostatic
(14) for any choice of the RFD functionab;[{p«(x')};x]. mean-field components

Since differentspecificchoices of the RFD functional will On the other hand. the RED functional described in Sec. V
yield different ES free energies and first-order ES DCFs, theseems to succeed bécause it tends to Keeggx') small. In '

problem of flndlng the ES_free energy functional thf'ﬂ €O e example of Figs. 1 and 2, it is correct in the both com-
rectly describes a system is essentially reduced to finding &

reasonable RFD functional. Futhermore, this search igartments far from_t.hE interface. Moreover, near the inter-

greatly simplified by the following observationd) evaluat- ~ face, the RFD densitigs,(y) have the correct length scale to

ing a new RFD functionals requires only a substitution intomake Apy(x’) small, especially for C& [compare Figs.

Eq. (14) to determine the first-order ES DCE) the RFD  1(a) and 1b)].

functional may be evaluated numerically since no functional

derivatives of the RFD functional are required to compute B. Sources of error

the first-order ES DCF(3) if fluid densitiesp;(x) can be . . . .
) ] e e As discussed previously, an important source of error in

determined for a given set of densitiés ()}, ¢{”""1%), e ES functional®8) is the size of the perturbatidithat is,

andc{?"®gx,x"), then the problem can be solved iteratively A p,(x")]. Other sources of error are the inputs to the func-

as in Ref.[16] (reviewed in Sec. )l by updating{p;(x)}, tional, specifically the formulas used to estimate the first-

cMEYx), andc?EYx,x). and second-order DCRs{""5x) and c{?"¥(x,x"). In our
calculations, we use the MSA to estimate both of these quan-
A. The RFD functional tities. While the deficiencies of the MSA are well known

. S . . [24], the choice of the MSA is especially problematic for the
Equation(14) is, in principle, valid for any choice of den- second-order ES DCF, as we briefly demonstrate.

sities p;(x). While there are na priori constraints on the Consider the case when both the fluid and reference fluid
RFD functionalp;[{pk(x")};x] that may be used in E414),  densities arauniform and the ions have the same radiRs
there are important practical considerations in choosing @the restricted primitive mode(RPM)]. In the RPM, the
RFD functional that yields an accurafgs: Ap(x’) must MSA second-order ES DCF [4]
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C. Generalizations of the method

(24) It was recently pointed out to us by RofB5] that the
method described in this paper and the ES functid8glis
more general than was originally intended: it can be applied
to systems with particle-particle interactions other than Cou-

5 lombic (for example, Yukawa or square wellThis can be

Zizje - seen by noting that the derivation of the ES functio(@l

if [x—x'|<2R and

-~2).E " —
kTg| Txx')= Ameey |x—x'| (25 does not assume any specific particle-particle interaction po-
tential (except that it is something in addition to HS here-
otherwise. Here, fore it is not until the RFD functionad;[{p(x')};x] and the
corresponding DCFs{™ #x) andc{?Yx,x’) are chosen,
x+1—+1+2x that the interaction potential must be specifigdte that the
B= - x (26 RFD functional described in Sec. doesdepend on the in-

teraction potential.Since the interaction potential does not
appear anywhere else in the theory, the inhomogenous fluid

where
described by the excess free ene(8yis the fluid with the
AR2e? particle-particle interaction potential used to compute
2__ 2 - ’
“Teeg 4 2P @7 c™MEYx) andcfP F(x,x').

From this it follows that the perturbation term for the first- VII. CONCLUSION

order ES DCF is identically zero &p;(x") is constantand We have shown that the ES function@) is a starting
nonzero: point for computing the first-order ES DCF for any choice of
RFD functionalp;[{p«(x")};x] [EQ. (7)]. The specific choice
T ES % x"VAp (x")dx' =0. 28 of RFD functional discussed in Sec. V works well when
; f i XD Ay (X) 28 combined with first- and second-order ES DCFs computed

from point-by-point applications of the MSA. Furthermore,

This means that the computed first-order ES OER. (14)]  this RFD functional reduces the two largest sources of error
is that of the reference fluid. Therefore, even in this veryby keepingAp,(x") small throughout the system. This pre-
simple case, it is not possible to correctly compute the firstserves the perturbation ansatz while at the same time mini-
order ES DCF using the MSA second-order ES DCF. Furmizing the effects of using a poor input correlation function
thermore, when the ions are of different size, the perturbatioin the perturbation term in Eq14).
term remains smallalthough not necessarily identically  For charged, hard-sphere fluids, this work may be ex-
zerg when Ap;(x") is constant. This correlation function tended by using bulk formulations other than the MSA or
error is one source of the discrepancies in the left-using other RFD functionals for which the first- and second-
compartment results in the initial calculations of Figéa)l order ES DCFs can be computed.
and 2a) (dot-dashed lines

The contribution of this correlation function error can,
however, be controlled by choosing a RFD functional that
minimizesAp;(x"). For such a RFD functional, the pertur- ~ We are most grateful to the late Yasha Rosenfeld for his
bation term is minimal and therefore so is the correlationencouragement of our work. We thank De&uda for pro-
function error. Furthermore, in the limit of uniform densities viding the Monte Carlo simulations used in the figures and
(as considered in this sectipmdp;(x’)=0 for such a RFD  Roland Roth for his many valuable comments on the manu-
functional and the first-order ES DCF is computed correctlyscript. This work was supported by grants from N(@8rant
by the bulk formulation. This is illustrated in Figs. 1 and 2 No. T32NS07044 to D.G.and DARPA(R.S.E. and W.N.

(Sec. 1) wherep,(x') in the far left compartment converge
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to the final fluid densitiegsolid lines. o APPENDIX A: DESCRIPTION OF THE EXAMPLE
Thus both major sources of errors are minimized when SHOWN IN EIGS. 1-3
: . , 1
the RFD functional is chosen to makep;(x’) as small as
possible. To illustrate the iterative method, we use an example from

Like many otherg5-8|, we use the MSA formulation our previous papdrl6]. We choose to use the same example
because of its analytic results and because the overall resultere for the following two reasons.
of the DFT calculations compare well to MC resulisgs. 1 (1) It is a general and challenging system since it has
and 2, and Ref4.16,20). We describe some of the problems three ion species, each with a different size and charge.
with using this particular correlation function not only be-  (2) In this paper, the purpose of the example and the MC
cause one must be aware of these, but also to show how tlsémulations is a step-by-step illustration of the iteration
ES functional(8) overcomes these problems. Other, moremethod and its convergend€igs. 1 and 2 In Fig. 3, we
accurate, bulk formulations should also be investigated. also use it to illustrate the consequences of changing one
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component of the ES functional. We show in this paper thatvhich may be expanded and rearranged to

the iteration method of Ref16] and the new ES functional

(8) are equivalen{Appendix B. Therefore, it has already 1 5|:(

been established that the new ES functional compares well to— KT 5p1(X) _(1) EYx)— E f_(l) X)) p,((x))

MC simulations[16,20. Pi
For the example, we consider two half-infinite compart- 5;(1) ESx') 5; (X"

ments in the plana¢slab geometry brought into contact at f f Apj(x') m

x=0. As bulk fluids, left compartment0) contains &/ (x") opi(X)

ca&" and 24/ anions with valence-1/2, denotedA?"

(see below, and the right compartmentxt0) contains xdx"dx”, (B4)
0.1M CaCl. These two compartments are brought into con- Where

tact and allowed to equilibrate with the restriction tRaf?

are confined to the left compartment with a hard-wall poten- —

tial; C&" and CI” are allowed to equilibrate throughout both Api(X) = pi(X) — pi(X). (BS)

compartments.

The system is treated as a grand canonical ensembl&N€ derivative o
AY2" are assigned a chemical potential corresponding to that
in a 6M CaA, bulk solution that is at the electrostatic poten- F & FE SC2yEIX' X"
tial ¢(—). C&" and CI are assigned the chemical poten- 5p|(X) - J J 5;(2) ES(X X) 5pi(X)
tials corresponding to a 0M. CaCl, bulk solution at the
electrostatic potentiap()=0. The excess chemical poten- 5|:(E2S) SApy(X")
tials are calculated with the MSA angl —) is the Donnan j N op(X)
potential between the two bulk solutions. In all DFT calcu- K SAp(X’) P
lations, the HS component was computed with the “antisym- SE@ s .
metrized” excess free energy density of REf2]. AY2, + f ES Pm(X )dx”. (B6)
c&*, and CI were given diameters of 0.280, 0.198, and m SApm(X")  Opi(X)
0.363 nm, respectively.

In this example we use ions of valene€l/2 to make a  Since
very general electrostatic system: the three ion species have
very different|z|. The origin of this species is the modeling -2 SF2)
of carboxyl (COO') groups of certain amino acids where FW:APK(XI)APm(X/,)a (B7)
both oxygens share the ionizing electron. In a charged, hard- km '
sphere fluid model, we chose to model one COgdoups as o
two independent &~ ions[16,19. SR E(X’ X") 3 f SCa EIx' X") 8p;(X") e

]

=2 is given by

dx’ dx”

!

So; v So: !
APPENDIX B: DERIVATION OF THE FIRST-ORDER pi(X) 5PJ(X ) pi(x) (B8)
DIRECT CORRELATION FUNCTION
By definition, -2 oF2
=2 f EIX X Apr(X)dX”,
1 oF KT sAp(x') "
(1),E _~(1)E Nl ES Pk
e T 00 =clV U=~ {7 500 B (B9)
Functional differentiation of Eq(8) gives 0 (2) j_(
o - 2), ES( " ’ ’
, ¢ X" X" App(x")dx’,
T E =S f SFed (Y1 opiX) KT 5Apu(x') . ‘
] spy(x')  opi(X) (B10)
SFEd  oFE SAp(x') Spr(X)
+ . B2 OBPRT ) s s(x—x')— 2Pk
50100 3pi(0) (B2 Spi(0~Owdx) = e (BLY
The derivative oﬂ:(l) is given by and
1) 1) S~ (1).ES g
e f e o S*Fed{puy)}] _ *Fed{pu(y)}]
KT opi(0) kT 5 ) scMEqx) — dpi(x) P Eqx )= Tt B O TR P
opi(X)op;(x")  p;(x") dpi(x)
Opi(x
+a(1),Es(X) f_(l) ES( x) 2P~ PJ((X)) =E]-(i2)’ES(X’,X), (B12)
I

(B3) we have

031503-8
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1 5FEE2$) ~(2),E ’ ’ ' _(2) E " " ( ) I A
i o =§k: B EIx, X ) Apy(x")dx’ — X XA p (X ) 5o (%) dx’ dx
50 ~(2), ES(X XH) 5;]_()(!//)
+—J 28 f f f X" (%) Ap (X" )Appr(X")dx"dx"dx". (B13)

We now have two formulations of the first- order ES DCF: the one used in[R&fgiven by Eq.(6) and the one given by
Egs.(B2), (B4), and(B13). Comparing these relations shows that there are several extra terms in the latter formulation. We
now show that the additional terms cancel exactly for a general functional dependepge<9f on {p;(x)}. Therefore,
explicitly accounting for the RFD functiondV) is equivalent to the iteration method.

We start with definitiong12), (13), and

)E X XH
# ES(X X" Xm) (814)
opj(x")
to rewrite the first-order DCFB2):
(1) SF@)
(1).E 0).E P;(X) oL SFE 1 oFE
@000~ 2 J T ) .(X) KT 8pi(x) KT 8pi(x)’ (B15)
where
1 OFE 5p(X) 5 )
KT :_.(1)’E - _'(l)YE ! : d ’+ JAJ'TZ),E ! /’ d rd ” 816
kT 5p|(X) C| S(X) 2 IC| S(X) 5p|(x) X I’Em C]m S(X ,X ]( ) (X) X ( )
and
1 5|:(2) E f72) B, X" ) Ap(x')d ffg(z) X X)) A pr ,,) Pk( ) dx’ dx”
5;()(!//)
+—ka j f fck?%JES(X X, /”) I(X) Apk(X,)Apm(XH)dX,dX”de. (Bl?)

Adding these together and using relati@12) gives

cME ) ~cWE ) + ) f Ei(jz)'ES(x,x’)Apj(x’)dx’
]

+— J'ffck?%fs(x ) (( ))Apk(x’)Apm(x”)dx’dx”dx’”. (B19)
2 jkm Pi

Although we do not show it, by continuing this process for successive terms imthencatedseries(4), the last term in Eq.
(B19) is canceled by the next term in the series because of the relation

EE;%}ES(X,,X”,XW) _(n?IZJES(X"!X’va) _J(gq)kES(X'",X".X’)- (Blg)
Thus we conclude that all the terms that include functional derivative_g(af) cancel and that

M E )~ E )+ X J P Exx ) Apj(x)dX’ (B20)
J

with the DCFsc{"Fgx) andc{?®(xx') given by Egs(12) and(13). This result isnot true for any general ES functional

G[p;j(x) ,Fj(x’)]; if Fj(x’) is a itself a functional op;(x), then the extra terms created in the first-order DCF by the new
functional dependencél6) cancel because we start with a Taylor series expansion of the free energy (#).Eq.
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