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ABSTRACT

Ionic permeation through protein channels is a pro-
cess of considerable physiological importance. Perme-
ation occurs on a microsecond time scale, so direct molec-
ular simulations with femtosecond time increments are
not possible and a coarser description is unavoidable.
Standard continuum formulations based on macroscopic
conservation laws, such as the Poisson-Nernst-Planck
equations, however, cannot be assumed valid in nar-
row channels. Thus the problem at hand is the descrip-
tion of ionic diffusion through narrow regions by aver-
aged continuum equations. In this paper we propose a
mathematical averaging procedure that, starting from a
Langevin model of ionic motion, yields a coupled system
of Poisson and Nernst-Planck type equations, contain-
ing conditional and unconditional charge densities. The
proposed system of equations includes molecular details
such as excluded volume effects and the dielectric force
on a discrete ion that are absent in the PNP system.

K eywords: Ion Channels, Brownian motion, Non Equi-
librium Statistical Physics

1 INTRODUCTION

Protein channels embedded in biological membranes
are natural nano-devices of considerable physiological
importance [1]. Ionic permeation through protein chan-
nels occurs on a microsecond time scale, so direct molec-
ular simulations of the permeation process with fem-
tosecond time increments are not possible and a coarser
description is unavoidable [2].

One of the common coarse grained descriptions of ion
channels is based on the Poisson-Nernst-Planck (PNP)
system [3], [4]. This system of equations, commonly
used in plasma physics and semiconductor device mod-
elling, is based on macroscopic conservation laws. While
macroscopic conservation laws clearly govern the macro-
scopic behavior of ensembles of channels, their applica-
tion to a single protein channel that can contain at most
one on two ions at a time is questionable [5].

One of the key missing elements in PNP is its deriva-
tion from a molecular model. In this paper we present a
molecular model of permeation, based on diffusive mo-
tion of ions, and propose a mathematical averaging pro-
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cedure that results in a hierarchy of Poisson and Nernst-
Planck type equations containing conditional and un-
conditional charge densities. The proposed conditional
system, denoted C-PNP, includes molecular details such
as excluded volume effects and the dielectric force on a
discrete ion that are absent in the standard PNP sys-
tem. The C-PNP system, along with a closure relation
and boundary conditions thus enables the theoretical
study of nen-equilibrium diffusing systems. Its applica-
tion to ion channels can predict blocking and possibly
selectivity. :

2 FORMULATION

We consider a finite system composed of two macro-
scopic volumes connected by one or more protein chan-
nels. The system, containing a solution of different
species of diffusing interacting ions, is driven out of equi-
librium by a connection to a feedback mechanism that
keeps different average concentrations in the two vol-

" umes (see fig. 1). The feedback mechanism, located

only on parts of the system boundaries, senses the con-
centrations at these boundaries and removes or injects
ions instantly so as to maintain average fixed concentra-
tions there at all times. ‘
The problem at hand is to deduce the function of the
channel given its structure, that is, to describe the de-
pendence of the steady diffusion current flowing between
the two baths as a function of the geometry and charge
distribution of the channel, the molecular properties of
the diffusing ions (their radii and interaction forces), and
as a function of the experimentally controlled variables,
such as bath concentrations and the external potential.
We introduce the following notation. The finite do-
main, that consists of the two macroscopic volumes and
the connecting channel, is denoted Q. Its boundary 802
is composed of reflecting boundaries 8Qr and the feed-
back boundaries 8Qr. We assume that there are Nt
ions of species h (h = Cat*, Na*,Cl™,...) in Q, which
are numbered at timet =0, 3., N* = N, and we follow
their trajectories at all times t > 0. The coordinates of
a point are denoted by = = (z,y,z), while the location.
and velocity coordinates of the j-th ion of species h at
time ¢ are denoted by z/(t) and v}(t), respectively. Ac-
cording to our assumptions, an ion that reaches 0QF is
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Figure 1: The region Q

instantly re-injected by the feedback mechanism at one
or another part of the boundary, so that its individual
identity is preserved, and consequently the total number
of ions inside  is fixed at all times.

2.1 Equations of motion

Under physiological conditions, ionic solutions con-
tain many more solvent water molecules than solute dif-
fusing ions. Thus, the collective motion of only the ions

(without the water) is a lower dimensional projection of .

the joint motion of all water and ion molecules in the
solution. Since the motion of ions in solution is strongly
overdamped, on time scales larger than the relaxation
time of the solution, memory effects due to the thermal

motion of the solvent can be neglected [6]. Thus, the

joint motion of only the ions can be described by the
following memoryless system of coupled Langevin equa-
tions for the different ion species h = Ca*+, Na*,Cl™,
etc., j=1,...,Nh,

h
B @)z} = T e @) wh, ()

where a dot on a variable denotes differentiation with
respect to time, ¥*(z”) is the location dependent fric-
tion coefficient per unit mass, M" is the effective mass
of an ion of species A, €* = kgT/M™", kg is Boltzmann’s
constant and T is absolute temperature. The force on
the 7-th ion of species h, denoted f;-‘, includes all ion-
lon interactions and thus depends on the locations of all
ions. The functions 11;;-‘ are, by assumption, independent
standard Gaussian white noises.

2.2 The Fokker-Planck Equation

We define by pn(z1,...,ZN,v1,...,vnN) the station-
ary probability density function (pdf) of the system of
all N ions. Since the coupled motion of all ions is

governed by the Langevin system (1) with independent
noise terms, the stationary pdf py satisfies the multi-
dimensional stationary Fokker-Planck equation (7]

Nh
0 = > 5 Lipn, (2)

" h j=1

“where L% is the Fokker-Planck operator acting on the .

phase space coordinates of the j-th ion of species A. It
is given by ,

fh
Ll = Ty - (et - F ) o

+Byh "M (zh)py — v} - Varpn,

where the operators Vq and Ay denote the gradient and
the Laplacian with respect to the variable v, respec-
tively. Equation (2) is defined in the 3/V dimensional
region (z1,...,zn) € O and (vi,...,vN) € Rr,

3 THE C-PNP SYSTEM

3.1 Concentrations and Probability
Densities

We denote by c*(z) the time-averaged steady state
concentration of ions of species h at location z, and by
pi(z), 7 = 1,...,N*, the stationary probability den-
sity function of the location of the j-th-on of species
h. By definition, the pdf of a single particle is simply
the marginal density of all particles integrated over all
particle locations except the j-th ion of species h,

p;(z}) =/Q~—1 XRaNde:z;; dvy...dvy  (3)

where 5:5' is the vector of all N — 1 particle coordinates
except z}.

Since all ions of a given species are indistinguishable,
pi(z) = p*(z), for all j. The quantities ¢*(z) and o’ (z)
are thus related by

ct(z) = N*p*(=). (4)

The concentration c*(z) is the physical density of ions
and it integrates to the total number of ions of species
h in the solution. An equation for p*(z) readily turns
into an equation for ¢*(z) by the relation (4).

Starting from the Langevin model (1), by integrating
the full Fokker-Planck equation (2) over all coordinates
but one, the following Nernst-Planck type equation for
the concentration c*(z) was derived in [5],

= "‘VI ‘Jh(x)s (5)
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where J*(z) is the flux density of type A ions, given by

. ;,
Ihz) = M—’Z%chm - Vad(m). ®

. <k . .
The quantity f () in (6) is the average force on a single
ion of type h. It is given by

(@) = [ qr-s fiowa(@h 2} =z ash, (0

where p,\“l(irg.x | a:g-‘ = z) is the conditional probability
density of the N — 1 remaining ions given a type h ion
located at z.

In the case of charged ions in solution, the ion-ion
interaction forces are pair-wise additive, and thus the
force on the j-th ion of species h can be written as

> MR, zh),  (8)

(i,h")(4,h)

f_? = f:d(f’:?) +

where f""" is the ion-ion interaction force that an ion
of type h' acts on an ion of type h. It includes both
Coulombic interactions as well as short range interac-
tions, such as excluded volume or Lennard-Jones forces.
The force ffd contains both the effects of an applied
external field as well as the dielectric self-force near di-
electric boundaries {5}, [8]. :

As shown in [5], with the specific form (8) for the
force on a single ion, equation (7) for the average force
simplifies to

Fla) = Fu@) + Fsa@) - vyt yio)|
where

Pontz) = 3 [ 758 2 My, ' (9)
A

is the average short range force on a type h ion, z* is

the valence of type A ions and ¢"(y|z) is the conditional
electrostatic potential at y given a type h ion at =. It
satisfies the (conditional) Poisson equation

Vy - ely)Vydt(ylz) = —e > MMl (ylz),  (10)
v

where e(y) is the dielectric coefficient at y. In both eq. -

(9) and (10), ¢ (y, =) is the conditional concentration
of ' ions at y given an h-type ion at z. In terms of
unconditional quantities, it is given by

_M(zy)

&V le) = 5

(11)

To summarize, the density c*(x) satisfies a Nernst-
Planck type equation (5), with an average force ]-"h that
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is the sum of a dielectric self force, an averaged short
range force (9) and an averaged electrostatic force. The
latter is a solution of a conditional Poisson equation that
depends on conditional densities, in contrast to the un-
conditional densities in the standard PNP formulation.
We denote this resulting system of conditional Poisson
and Nernst-Planck equations by C-PNP.

The NP equation (5) is defined in the finite domain
Q2. Therefore, in addition to the determination of the
averaged force j""h, boundary conditions on 802 must be
specified in order to determine the unique solution for
ci(z). Obviously, on 8Qp, c* (z) satisfies no flux bound-
ary conditions,

Tha) v 0. (12)

xeaﬂ,q:

In addition, on 01, according to our assumptions, the

concentrations ¢*(z) are maintained at fixed known val-
ues c(z) by the feedback mechanism. Therefore, re-
gardless of the exact method by which the feedback
mechanism maintains these concentrations,

cMz) = chi(z), forzedp. (13)

3.2 The C-PINP Hierarchy

An important difference from the PNP system is that -
the C-PNP system is not closed. As seen from (9) and

(10), the averaged force in the Neérnst-Planck equation

(5) depends on conditional higher order concentrations.
Thus, we now write an equation for the pair concentra-
tions. Employing similar methods to those of [5], we
obtain that c®* (z,y) satisfies the following equation

V zh -Jg:'fl (:z:,y) +Vy).' -J;‘,{‘,' (:z:,y) =0 | (14)

Wherg

h,h'(

™ (z,y),

<h,A’
AR 1 oy
th (Iy y) = "yh(I) [ Mh' —£& vl:

~h,A' . . .
" (z,vy) is the average force on an ion of species h
located at z, given an ion of species A’ located at y, and

1
J ;'!f is given by a similar expression.
For the case of pair-wise additive forces, this force

can be simplified to

Py = fhue)+ Y () + TR (29)
—e2" V" (zlz,y)|___ (19)

where ]‘Q;ﬁ" and @™ are the higher order analogues of
(9) and (10) which depend on the higher order condi-
tional concentrations ¢ ®* . Thus, the determination

of the forces fh'h (z,vy) requires the determination of
the triplet densities ¢ " (z,y, z).
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Similarly, it is possible to write an equation for the
triplet density, whose average forces depend on yet higher
conditional densities. Thus, we obtain an infinite hi-
erarchy of conditional Poisson and Nernst-Planck type
equations, all defined in finite domains. The resulting
equations are very similar to those used in the study of
macroscopic bulk dynamical properties of electrolytes
[6], where the time dependence of similar equations is
considered in infinite domains. In these studies, closure
relations between the triplet and pair densities, similar
to those of equilibrium statistical mechanics, are em-
ployed in order to compute the average forces [9].

In our case, however, since we are concerned with a
finite system in non-equilibrium, a closure relation be-
tween the triplet and the pair densities is not enough
to close the system. Specifically, the Smoluchowski type
equation (14) is defined in the finite domain (z,y) €
Q1 x Q. Therefore, to uniquely determine its solution,
boundary conditions have to be prescribed on the do-
main boundaries, e.g. for (z,y) €90 x Q and (z,y) €
1 x 002, Only after these bounda.ry conditions are speci-
fied, the pair concentration ¢’ (:z: y) is completely de-

termined, provided the forces ;o (z,y) are known. As
in the case of the single ion densities, the boundary con-
ditions for the pair densities should also be determined
by the action of the feedback mechanism. For the single
ion densities, the assumption that the feedback mecha-
nism keeps an average fixed concentration on the domain
houndaries leads to the natural concentration bound-

ary conditions (13). The derivation of boundary condi-

tions for the pair concentrations, as well as for higher
order densities, requires a more detailed description of
the feedback mechanism [10].

3.3 The PNP System Revisited

The simplest possible closure is ¢*'!*(y|z) = c* (y).
This approximation, that assumes independence of ions
and thus neglects ion-ion finite size effects, recovers the
(unconditional) PNP system used so far, but with an
additional force term, f,4, the dielectric self force on a
single ion near dielectric interfaces. This term represents
the forces on a single ion by surface charges induced by
the ion itself at dielectric interfaces [8], [5].

Thus, the standard PNP system, which neglects both
the discreteness of charge and the finite size of ions, is
not valid neither near dielectric interfaces nor in con-
fined regions 5], a property that recently has also been
observed in simulations [11].

4 DISCUSSION

The main result of this paper is a coupled system
of Poisson and Nernst-Planck type equations, contain-

ing conditional and unconditional charge densities and"

potentials. The main difference from the PNP system

is the inclusion of molecular details, such as finite size
effects and the dielectric force on a discrete ion.

While traditional molecular models consider equilib-
rium systems based on the partition function and thus
contain no dynamics, our underlying molecular model
is based on particle trajectories, and can thus describe

‘ non-equilibrium systems governed by diffusion. Indeed,

when equilibrium (no-flux) boundary conditions are im-
posed on the C-PNP system, the BBGKY hierarchy of
equilibrium statistical mechanics is recovered. Thus,
the C-PNP system is a non-equilibrium generalization
of this hierarchy and its conditional densities are the
non-equilibrium analogues of the well studied pair corre-
lation functions of equilibrium statistical mechanics. In
contrast to standard PNP, the C-PNP system includes
the finite size of ions, which are known from equilibrium
theories to cause first order effects on bulk properties of
electrolytes [6]. We note that the importance of ex-
cluded volume effects has been recently observed in the
context of ion channels, where models including the fi-
nite size of ions are able to predict measured selectivity
of L-type calcium channels [12]. :
Finally, we note that our work can also serve asa part

. of a multi-scale analysis, in which the local diffusion co-

efficients and pair correlation functions of our effective .
equations are the output of more detailed molecular dy-

namics simulations.
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