
SA

PHYSICAL REVIEW E 68, 021905 ~2003!
Dielectric boundary force and its crucial role in gramicidin
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In an electrostatic problem with nonuniform geometry, a chargeQ in one region induces surface charges
@called dielectric boundary charges~DBC!# at boundaries between different dielectrics. Theseinducedsurface
charges, in return, exert a force@called dielectric boundary force~DBF!# on the chargeQ that induced them.
The DBF is often overlooked. It is not present in standard continuum theories of~point! ions in or near
membranes and proteins, such as Gouy-Chapman, Debye-Huckel, Poisson-Boltzmann or Poisson-Nernst-
Planck. The DBF is important when a chargeQ is near dielectric interfaces, for example, when ions permeate
through protein channels embedded in biological membranes. In this paper, we define the DBF and calculate it
explicitly for a planar dielectric wall and for a tunnel geometry resembling the ionic channel gramicidin. In
general, we formulate the DBF in a form useful for continuum theories, namely, as a solution of a partial
differential equation with boundary conditions. The DBF plays a crucial role in the permeation of ions through
the gramicidin channel. A positive ion in the channel produces a DBF of opposite sign to that of the fixed
charge force~FCF! produced by the permanent charge of the gramicidin polypeptide, and so the net force on
the positive ion is reduced. A negative ion creates a DBF of the same sign as the FCF and so the net~repulsive!
force on the negative ion is increased. Thus, a positive ion can permeate the channel, while a negative ion is
excluded from it. In gramicidin, it is this balance between the FCF and DBF that allows only singly charged
positive ions to move into and through the channel. The DBF is not directly responsible, however, for selec-
tivity between the alkali metal ions~e.g., Li1, Na1, K1): we prove that the DBF on a mobile spherical ion is
independent of the ion’s radius.

DOI: 10.1103/PhysRevE.68.021905 PACS number~s!: 87.15.Aa, 83.10.Mj, 87.16.Uv
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I. INTRODUCTION

Complex systems of atoms are necessarily studied
many length scales. While essential properties often dep
on the behavior of the individual atoms at the picoseco
Angstrom time and length scales, the macroscopic func
of many systems is usually characterized by the collec
behavior at much coarser time and length scales. Studyi
system that operates on a micron/microsecond scale,
detailed molecular simulation of all the motions of all pa
ticles, is a daunting process, not always necessary and
haps even impossible because of the enormous numbe
numbers needed to describe the wildly fluctuating potenti
forces, concentrations, and fluxes of atoms on the femto
ond and even picosecond time scales. Even if it were p
sible to calculate so many numbers reliably, it is not cle
what one would do with all of them. Clearly, some averag
estimators are needed to characterize atomic motions. F
nately, atomic fluctuations are usually dramatically smooth
when considered on the micron/microsecond time scale
biological function and can be described in a greatly c
densed manner by only a few numbers.

Continuum theories tacitly avoid these fluctuations by
ing constitutive relations and~macroscopic! conservation
laws. In the Gouy-Chapman, Debye-Huckel, Poiss
Boltzmann or Nernst-Planck treatments of ions in solutio
near membranes and proteins@1–4#, the concentrations ar
described by mean values of number density, and the fo
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acting on the ions is the gradient of a mean-field poten
that satisfies a suitable Poisson equation~in self-consistent
theories!. Continuum theories do not, however, include stru
ture ~on the atomic scale! because discrete particles are n
found in these theories. Continuum theories usually ign
the finite volume of atoms~and resulting effects of crowd
ing!, and so their structure is, in fact, specified~mostly! by
the spatial distribution of dielectric coefficient and diffusio
coefficient, and a continuum description of fixed charges

We now see the essence of the problem of compu
properties of ions in solutions and proteins. On the one ha
continuum treatments automatically satisfy conservat
laws, and are built to describe the constitutive equations
describe the averaged properties of such systems on
micron/microsecond scale, but the roles of atomic struct
and forces are unclear. On the other hand, particle treatm
have well-defined structures and forces on the atomic sc
but contain huge fluctuations, may be impossible to comp
reliably for the required time scales, and may not even s
isfy macroscopic conservation laws and constitutive eq
tions.

What is needed is thus a mathematical averaging pro
dure, to derive exact macroscopic equations from the un
lying molecular model. In Ref.@5#, we began a systemati
general analysis of this problem. Starting from a molecu
model of diffusing and interacting particles, a mathemati
derivation of continuity equations is presented. As shown
Ref. @5#, the averaged single particle density satisfies
Nernst-Planck–~drift-diffusion! type equation, driven by an
average force. This force contains three terms. The first is
averaged electrostatic force acting on a point particle,
©2003 The American Physical Society05-1
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second is the average short range force due to part
particle Lennard-Jones-type interactions, and the third is
dielectric boundary force~DBF!. The last two terms, each o
considerable importance in the context of molecular biolo
are absent from the standard continuum theories.

In this paper, we concentrate on the DBF defined bel
show how the DBF can be included in continuum treatme
and estimate its size and importance. In Sec. II, we de
precisely the dielectric boundary force, discuss different p
sible ways to efficiently compute it, and show that for t
case of charged spheres, the DBF is independent of the
dius of the sphere. It is the same on a point particle an
spherical particle. Mathematically, this result is important b
cause it allows the DBF to be naturally added into the us
continuum treatment of point particles, allowing the cons
erable investment in such models to remain productive. B
logically, the independence of particle size is also importa
the DBF is not directly responsible for the selectivity of pr
tein channels to different~spherical! ions such as the alkal
metal ions Li1, Na1, K1. In Sec. III, we calculate the di
electric boundary force for two simple geometries. The fi
is a point charge near a planar dielectric wall, for which
analytic solution is known. The second is a point charge i
narrow tunnel chosen to resemble the gramicidin chan
widely studied in channology@6#. Our results show tha
while the DBF is not large even at microscopic distanc
from a planar dielectric wall, it is certainly large in narro
channels.

In the gramicidin channel, comparing the DBF to t
fixed charge force~FCF! gives a striking result, directly re
lated to the function of this macromolecule. In gramicid
the DBF and FCF nearlycancelwhen the ion in the channe
has a single positive charge. It is this almost exact cance
tion that allows monovalent positive ions to enter and p
meate through gramicidin. When the ion in gramicidin ha
negative charge, however, both DBF and FCF forces are
pulsive and add up in magnitude. The summation of the
forces keeps negative ions out of gramicidin so that th
cannot even begin to permeate through the channel.

The addition of forces for negative ionsdoes notdepend
on a special property of gramicidin. It occurs automatica
in any channel with a negatively charged wall: negative io
are excluded from and therefore do not permeate chan
with negatively charged walls.

The cancellation of forces for positive ionsdoesdepend
on a special property of gramicidin. The cancellation do
not occur automatically for any positive ion in any narro
channel. Cancellation is a consequence of the partic
structure of gramicidin, and its spatial distribution of fixe
charge. Indeed, our analysis suggests that divalent ions,
as Ca11, do not permeate gramicidin because the DBF a
FCF are not in balance for them.

The cancellation of forces is evidently a result of the ev
lution that optimized the architecture of the gramicid
polypeptide to allow permeation of positive monovale
ions. Properties of the gramicidin polypeptide have been
timized to perform a specific function, e.g., the spatial dis
butions of fixed charge and dielectric coefficient have be
optimized to balance the DBF and FCF and allow the p
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meation of positive ions that make gramicidin a conduct
channel. The balance between the DBF and the FCF nee
be investigated further in other proteins and enzymes.

II. THE DIELECTRIC BOUNDARY FORCE

For simplicity, we consider the dielectric boundary for
for an electrostatic problem defined in whole space. T
modifications needed in a finite computational region w
Dirichlet ~or other! boundary conditions are straightforwar
and do not change the main results of this section.

Consider thus the following setup: The three-dimensio
space is composed of an arbitrary number of regions of
bitrary shapes, denoted byV i . Further assume that in eac
regionV i the dielectric coefficient is constant with value« i .
Now consider a charge distribution located, for example,
side the regionV1. A simple example is an ion in an aquat
solution with «1580, located near the wall of a biologica
membrane with«252.

In the presence of a fixed charge, surface charges are
duced at all boundaries between regions of different pola
ability, and most standard textbooks on electrostatics exp
itly write formulas expressing these induced surface char
as gradients of the electrostatic potential@7,8#. However, an
important point, which is usually not discussed explicitly,
that these induced surface charges, in turn, exert a force
the charge distribution itself. We denote this force byF ind ,
and refer to it as thedielectric boundary force.

The force on a test particle in a homogeneous system
be computed from the gradient of the electrostatic poten
due to allother charges, evaluated at the particle’s locati
and ignoring the particle itself; this is not the case for
inhomogeneous system. In inhomogeneous systems, an
tional component of force—the DBF—is produced by t
surface charges induced by the particle in question. Th
fore, to compute these induced surface charges, the char
the test particle~on which we want to compute the force!
must be included in the Poisson equation. However, if
test particle is a point charge this introduces a singularity
the location of the particle. In the following section, we e
plicitly describe the calculation of the DBF for a charge d
tribution and for a point charge.

A. The dielectric boundary force on a charge distribution

Let r(r) denote a charge distribution located only insi
the regionV1 @that is,r(r)50 for r¹V1]. The electrostatic
potential in whole space,F(r), satisfies the Poisson equatio

“•@«~r!“F~r!#52
1

«0
r~r!, ~1!

where «(r) is the relative dielectric coefficient atr. Since
«(r) is discontinuous across the boundaries]V i , the poten-
tial F(r) satisfies the standard jump conditions for the n
mal component of the field@7#:

@«~r!¹F~r!•n#u]V i
50, ~2!
5-2
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DIELECTRIC BOUNDARY FORCE AND ITS CRUCIAL . . . PHYSICAL REVIEW E 68, 021905 ~2003!
wheren is a unit vector in the outer normal direction to
surface element on]V i , and square brackets denote the d
ference in the variables enclosed within them, between
value outside the regionV i and inside it.

In addition, we assume that the electrostatic potentia
infinity is zero, so thatF(r) satisfies the additional conditio

F~r!50 as uru→`.

The presence of the charge distributionr(r) induces sur-
face chargess ind at the dielectric boundaries]V i , given by

s indu]V i
5@“F•n#u]V i

. ~3!

These induced surface charges, in return, exert a force on
charge distributionr(r) that induced them. One way to com
pute this force is to first calculate these induced surf
charges, and then calculate the electric potentialF ind(r)
formed by them. Then, the total force on the charge distri
tion due to these induced surface charges is given by

F ind52E r~r!“F ind~r!dr. ~4!

We now consider the equation that the potentialF ind(r)
satisfies. Since the polarization of the different regionsV i
has already been taken into account in the computation o
induced surface charges via Eqs.~1!–~3!, the potential
F ind(r) satisfies Laplace’s equation with a dielectric coe
cient of vacuum, i.e., with a relative dielectric coefficie
«(r)51 throughout the whole space,

DF ind~r!50. ~5!

In addition, as withF(r), the potentialF ind(r) also vanishes
asuru→`. The charge distributionr(r) is not present in Eq.
~5!, since the potentialF ind is only due to the surface
charges induced at the dielectric interfaces.

While there are no dielectric boundaries for the poten
F ind(r) @recall that«(r)51 everywhere#, there are surface
charges, given by Eq.~3!, located at these boundaries. Th
amounts to the following jump conditions:

@“F ind•n#u]V i
5s indu]V i

. ~6!

According to this formulation, in order to compute th
dielectric boundary force, one has to compute the solution
two Poisson equations; one for the electrostatic poten
F(r) throughout space and another for the electrostatic
tential created only by the induced surface chargesF ind(r).

However, as shown below, for any arbitrary continuu
charge distribution, it is possible to compute this force fro
just the solution of the first Poisson equation for the elec
static potentialF(r). The singular case of a point charge a
its connection with the DBF for a charged sphere are p
poned to the following section.

We now show the connection between the dielec
boundary force, given by Eq.~4!, the induced potentia
F ind , and the electrostatic potentialF by writing F ind(r)
5F(r)1W(r), so that
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F ind52E r~r!“F~r!dr2E r~r!“W~r!dr. ~7!

Equations~1! and~5! imply thatW(r) satisfies the following
Poisson equation:

DW~r!5
r~r!

«0«1
~8!

as if the whole space was composed of a single dielec
medium of strength«1. In addition, becauseF and F ind
satisfy the same jump conditions at]V i , W is continuous,

@¹W•n#u]V i
50. ~9!

Therefore,W(r ) is simply the free space Coulomb potenti
created by the charge distribution2r(r),

W~r!52
1

4p«1«0
E r~j!

ur2ju
dj .

Thus,

E r~r!¹W~r!dr5
1

4p«1«0
E E r~r!r~j!

r2j

ur2ju3
drdj .

This integral vanishes, because each pair of points (x,y)
appears twice; once asx2y ~when r5x,j5y) and once as
y2x ~whenr5y,j5x). The physical explanation is that thi
integral is simply the total force that a charge distribution
free space exerts on itself, which is obviously zero accord
to Newton’s third law. Combining this result with Eq.~7!
gives

F ind52E r~r!“F~r!dr. ~10!

Thus, for the purpose of computing the DBF, there is no n
to actually compute the induced potentialF ind(r).

B. The dielectric boundary force on a point charge and
on a sphere

Consider the case where the charge distributionr(r) is
either a point charge or a uniformly charged sphere of rad
a, both centered at a pointr1PV1 and with overall chargeq.
We denote byF0(r) and Fa(r) the corresponding electro
static potentials throughout space, and byF0(r1) andFa(r1)
the corresponding dielectric boundary forces. In the case
charged sphere, we assume that its radiusa is smaller than
the distance fromr1 to ]V1, so that the whole sphere i
enclosed insideV1.

For the case of the charged sphere, we can apply form
~10! to computeFa . However, for the case of a point charg
we cannot use Eq.~10! becauser(r) is a d function and the
potential is singular at the required point. Instead, we h
the following relation for this case@5#.

Lemma 1.The dielectric boundary force on a point char
of strengthq located atr1 can be computed from the tota
potential throughout space by the following formula:
5-3
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F0~r1!52q “r S F0~r!2
q

4p«0«1ur2r1u D U
r5r1

. ~11!

In other words, the force acting on the point charge can
computed by subtracting from the total electric potential
singular Coulombic term produced by the point charge, a
then computing the gradient of the resulting smooth poten
at the charge location.

Proof. Consider as above the decompositionF ind5F
1W, thenW(r) is now given by

W~r!52
1

4p«1«0

q

ur2r1u
.

Combining this equation with Eq.~7! proves the lemma.h
Note that the potentialF0(r) is proportional to the charge

q at r1. Thus, according to Eqs.~3! ~5!, and ~6! both the
induced surface charges and the potentialF ind are also pro-
portional to q. This renders the dielectric boundary forc
given by Eq.~4!, proportional toq2. Thus, as expected, th
dielectric boundary force has thesamedirection and magni-
tude regardless of the sign of the charge atr1.

Before showing that the dielectric boundary force is s
independent, we prove the following auxiliary lemma.

Lemma 2. A point chargeq and a uniformly charged
sphere with the same overall charge, both centered ar1,
produce the same induced surface charges at diele
boundaries@provided the radius of the sphere is less th
dist (r1 ,]V1)].

Proof. We decompose each of the potentialsFa(r) and
F0(r) as the sum of the Coulombic part in a uniform diele
tric «1 and a correction term due to the different dielect
regions. That is,

Fa~r!5Wa~r!1Va~r!, ~12!

F0~r!5W0~r!1V0~r!,

where

W0~r!5
q

4p«0«1ur2r1u
.

HereWa is given by@8#

Wa~r!55
3q

8p«0«1a3 S a22
ur2r1u2

3 D , ur2r1u,a

q

4p«0«1

1

ur2r1u
, ur2r1u.a.

~13!

The potentialsW0(r) andWa(r) satisfy Eq.~1! with the cor-
responding charge distribution, but not the jump conditio
at dielectric boundaries]V i . Therefore, the potentialsV0(r)
and Va(r) satisfy homogeneous Poisson equations~Laplace
equations!:

DV0~r!5DVa~r!50, ~14!
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but with nonzero jump conditions at the dielectric boundar
]V i ,

@«“Va•n#u]V i
52@«“Wa•n#u]V i

,

@«“V0•n#u]V i
52@«“W0•n#u]V i

. ~15!

However, according to Eq.~13!, Wa(r)5W0(r) for ur2r1u
.a. Therefore, potentialsVa(r) andV0(r) satisfy the same
equation and the same boundary conditions. By the uniq
ness of the solution of Poisson’s equation, it follows th
Va(r)5V0(r) for all r. By combining this with Eqs.~13! and
~12!, we conclude that

Fa~r!5F0~r! for ur2r1u.a.

Therefore, by Eq.~3!, the induced surface charges created
these two charge distributions are the same.h

We can now prove the following theorem concerning t
size independence of the DBF.

Theorem. The dielectric boundary force on a uniforml
charged sphere of total chargeq is independent of the radiu
of the sphere@provided dist (r1 ,]V1).a, where r 1 is the
center of the sphere#. Moreover, this force can be compute
by the following simplified formula:

Fa~r1!52q“Fa~r!ur5r1
. ~16!

Proof. According to Eq.~4!, the DBF is given by the follow-
ing integral:

Fa5E
ur2r1u,a

2
q

4

3
pa3

“F ind~r!dr.

This integral includes all Coulombic interactions between
induced surface charges and the charged sphere. Howev
is well known @7#, the force on a charged sphere due
another point~or surface! charge is equal to the force on
point charge located at the center of the sphere. Thus,

Fa52“F ind~r!ur5r1
.

As shown in Lemma 2, the induced surface charge is in
pendent of the radius of the sphere. Thus, the DBF is in
pendent of the radius of the sphere. Moreover, using
decompositionF ind(r)5Fa(r)2Wa(r) and noting that by
definition ~13!, “Wa(r1)50, we obtain Eq.~16!, which fin-
ishes the proof of the theorem.h

Corollary. The force on a uniform sphere of chargeq,
denoted byFa(r1), is equal to the force on a point charge
same strength:

F0~r1!5Fa~r1!. ~17!

The theorem and its corollary have a simple applicat
for the numerical computation of the dielectric bounda
force. For example, for the case of charged ions near a
electric wall, or inside the pore of a protein channel emb
ded in a lipid membrane, it is possible to model the ions
5-4
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uniformly charged spheres instead of point charges, thus
moving the numerical difficulties associated with a singu
d function. Moreover, to compute the dielectric bounda
force, it is only necessary to compute with good accuracy
derivative at the center of the sphere and there is no nee
perform the volume integral~4!. For the case of a Langevi
simulation of many charged particles, in which the force
each of the simulated particles is recomputed at every t
step of the simulation, our analysis shows that by mode
the mobile particles as charged spheres, one needs to
pute only the total electrostatic potential~the solution of
Poisson’s equation! and then compute the total force on ea
particle by computing the gradient of the total electrosta
potential at the center of a particle’s sphere. Since th
forces are independent of the size of the particles, one
solve Poisson’s equation with spheres of larger radius tha
the physical particles, for better stability and convergence
the numerical scheme.

We note that recently Allenet al. have proposed a differ
ent approach for the numerical computation of both the
duced polarization charges and their effective forces, ba
on a variational approach@9#. In their method, a numerica
computation of the DBC is performed on a two-dimensio
grid at different dielectric boundaries, which should be mo
computationally efficient than solving a three-dimensio
Poisson equation.

III. THE DIELECTRIC BOUNDARY FORCE IN TWO
SIMPLE GEOMETRIES

We now present explicit computations of the dielect
boundary force for two simple generic geometries. The fi
is the standard and well-known problem of a charge nea
infinite planar dielectric wall, where a closed analytical e
pression is known, and the other is the dielectric bound
force on the axis of a narrow gramicidin-like channel geo
etry. In general, closed form analytical solutions are poss
only for very few cases, see, e.g., Refs.@7,9–11#, so for most
practical problems it is necessary to resort to numerical c
putations.

A. A point charge near a planar dielectric wall

Consider an infinite planar wall located on the (yz) plane,
separating two regions with dielectric coefficients«1 for x
.0 and«2 for x,0. Consider a point charge located at
point (d,0,0) (d.0) in cartesian coordinates. In this cas
by the method of images, we can solve explicitly for t
electric potentialF. In Cartesian coordinates,x5(x,y,z), it
is given by

F~x!55
1

4p«0«1
S q

ux2~d,0,0!u
1

q8

ux2~2d,0,0!u D , x.0

1

4p«0«2

q9

ux2~d,0,0!u
, x,0,

~18!

where the image chargesq8 andq9 are given by
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q85
«12«2

«11«2
q, q95

2«2

«11«2
q. ~19!

Therefore, according to Eq.~11!, the force on the charge i
only in thex direction and is given by

Find,x5
1

16p«0«1

«12«2

«11«2

q2

d2
. ~20!

The top curve in Fig. 1 shows a plot of this force nea
dielectric wall with values«1580 and«252. As seen from
the figure, the dielectric boundary force is not exceedin
large even at microscopic distances from the wall. It a
does not change much as long as«1@«2, as can be seen bot
from the graph and from formula~20!.

However, as pointed out in Ref.@12#, the fact that a point
charge induces surface charges on the wall has additi
consequences apart from the DBF on the particle that
duced them. For example, in the study of a multiparti
system, the presence of induced surface charges leads t
ditional interaction forces between any two charged partic
near the dielectric wall, other than their standard Coulom
force. For example, consider two equal point charges
strengthq located atr15(d,0,0) and atr25(3d,0,0). In this
case the force on particle 2 due to particle 1 is only in thx
direction and is given by

F2,15
q2

4p«0«1
F2

1

~2d!2
1

«12«2

«11«2

1

~4d!2G .

This force should be compared to the standard Coulom
interaction between the two charges. For«1@«2, this force
is only about 75% of the original Coulombic force betwe
the two particles. Similarly, the force on particle 1 is i
creased by 25% relative to the free space Coulomb inte

FIG. 1. ~Color online! The dielectric boundary force on a sing
point charge of strengthe inside an aqueous solution with«1580
near a dielectric wall with«252 ~upper curve! and with «2510
~lower curve!.
5-5
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FIG. 2. ~Color online! The dielectric bound-
ary force ~left! and potential~right! on a point
charge of strengthe on the channel axis of grami
cidin.
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i.e.,
ut
tion. The presence of these induced surface charges m
thus have a significant effect on the structure of an elec
lyte solution near a dielectric wall. This simple examp
shows that dielectric boundary charges are important in
termining the forcebetween two~or more! charged particles
near a dielectric boundary, as they are important in determ
ing the force on asingleparticle near dielectric boundaries

In standard continuum theories, discrete charges are
placed by continuum averaged densities that obviously le
out the DBF. The above analysis shows that interactions
tween discrete pairs of particles are also incorrectly
scribed in such analysis. All in all, the correct treatment
polarization effects of discrete particles in continuu
Poisson-Boltzmann-type theories requires further invest
tion.

B. Dielectric boundary force in gramicidin

We now consider the dielectric boundary force inside
gramicidin-type channel geometry embedded in a membr
Gramicidin is a small polypeptide~nearly a protein!, widely
used as a model of more complex natural channels@6#. A
dielectric boundary force in such a narrow channel w
present in the three-dimensional treatment of electrostatic
Barcilon et al. @13,14#, but the leading~one-dimensional!
term of their perturbation expansion provided only a po
approximation to the DBF acting on ions in narrow channe
Dieckmannet al. @15# were amongst the first to realize th
importance of the correct calculation and inclusion of t
DBF into Nernst-Planck-type equations for ionic permeat
through narrow channels. Contemporaneously, Corryet al.
@16,17# as well as Grafet al. @18# also realized the impor
tance of this term in the context of Brownian dynamics a
Monte Carlo simulations, respectively. The need for the
clusion of this force in a continuum description, deriv
from an underlying molecular model has been shown i
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mathematically rigorous manner by Schusset al. @5#. Re-
cently, both Corryet al. @19#, and Mamonovet al. @20# have
studied the effects of the inclusion of this force term in mo
fied Poisson-Boltzmann and Poisson-Nernst-Planck eq
tions applied to gramicidin-like and other channel-like geo
etries. Both groups report that explicit inclusion of th
dielectric boundary force in a continuum formulation yiel
better results than the standard theories that omit this fo
term.

For the sake of our analysis, we assume that gramicidi
embedded in a lipid membrane with a uniform low dielect
constant of value«52, while the pore of the channel and th
surrounding aquatic baths have dielectric constant«580.
Since gramicidin is a long and narrow channel, the mo
ment of mobile ions inside it is almost one dimension
along the channel axis. Thus, we consider only the dielec
boundary force along its axis, denoted thez axis. All numeri-
cal computations presented in this section were perform
with the ‘‘gramicidin’’ model described by Elberet al. @21#,
with ions represented as Gaussian spheres with effective
dii of 0.8 Å. As predicted by the analysis of Sec. II, an
verified numerically, changing this value~while keeping the
whole ion inside the channel pore! does not change the com
puted values for the dielectric boundary force.

~A forthcoming paper of Allenet al., @22# proposes and
analyzes a significantly different structure for gramicid
The proposed structure will modify estimates of energet
however they are made.!

In the left part of Fig. 2, the dielectric boundary force
plotted as a function of position along the channel axis, wh
in the right part the corresponding potential is plotted.
seen from the figure, the dielectric boundary force create
high potential barrier of more than 12kT. Therefore, a simple
hole with the same geometry as the gramicidin channel,
length of about 25 Å and diameter of about 4 Å, b
th

nd
s

e
.

FIG. 3. ~Color online! The DBF and corre-
sponding potential on a point charge of streng
1e on the channel axis of gramicidin~dashed red
line!, compared to the corresponding force a
potential due to the gramicidin fixed charge
~solid blue!. The thin green line is the sum of th
two potentials and represents the net potential
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FIG. 4. ~Color online! The DBF and corre-
sponding potential on a negative ion on the cha
nel axis of gramicidin, compared to the corre
sponding FCF and potential due to the gramicid
fixed charges.
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with no protein with fixed charges in it, would be imperm
able to passage of single positive ions. Since the dielec
boundary force is proportional toq2 ~see Sec. II!, the dielec-
tric boundary force on a negative ion is the same as o
positive ion, while the force on a doubly charged ion~such as
Ca21) is four times as large. Therefore, a noncharged p
opening in the membrane would be impermeable not onl
a positive ion but also to a negative ion or a double char
ion. Note that this analysis applies only to the movemen
a single ion, and not to the coupled motion of a pair of s
anion cation. This analysis also neglects the possible sh
ing of this force by mobile ions in the surrounding electr
lytic solutions. While the Brownian dynamics simulation r
sults of Corryet al. @16# show that for a long and narrow
channel, this shielding is negligible~see, for example, thei
Fig. 4 of Ref.@16# on page 2355!, in general these two issue
require further investigation.

The gramicidin channel, however, differs from an ide
ized noncharged pore. Although the gramicidin protein
overall neutral, there are nonvanishing partial charges al
its atom groups that create a nonvanishing electrostatic
tential. In Fig. 3~left!, the FCF, on an ion due to the gram
cidin fixed charges, is compared to the dielectric bound
force. As seen from this figure, the two forces are nea
opposite, yielding a much smaller net force on a positive i
with a corresponding potential barrier of about 5kT, see Fig.
3 ~right!.

For a negative ion, however, the situation is quite diff
ent. While the dielectric boundary force remains the sa
the force due to the Gramicidin channel is inverted with
spect to the case of a positive ion because it is proportio
to q. Therefore, as shown in Fig. 4, now the two forces
not cancel each other, but rather add up to produce a
insurmountable barrier of more than 20kT.

Finally, consider the case of a double charged ion suc
Ca21. Since the FCF is proportional toq while the DBF is
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proportional toq2, the first is multiplied by two while the
latter by four, in comparison to the case of a positive io
Therefore, as shown in Fig. 5, the dielectric boundary fo
dominates, and the DBF is not canceled by the interac
with the gramicidin fixed charges. This leads to a poten
barrier more than 30kT high.

Therefore, the cation selectivity of gramicidin can be e
plained by a simple continuum-type analysis of the bala
between the different forces acting on an ion inside a ri
channel. Recently, similar results have been independe
obtained by Edwardset al. @23#, who also state that such
simplistic approach is not valid for quantitative results su
as computation of the net current through the channel.
stress that indeed the development of a quantitative the
requires the computation of diffusion, friction, and dielect
coefficients inside and near the channel, using more refi
theories or molecular dynamics simulations that can give
dependence of these parameters on location, time, and
perimental conditions. In addition, the assumption that
channel is rigid needs to be reconsidered as well. For a s
of the effective potential profile inside a nonrigid gramicid
channel, see, for example, the recent paper by Mamo
et al. @20#. Finally, in the broader context of permeatio
through protein channels, while the effects of single fili
and finite size of ions are easily modeled in simulatio
@16,17,24,25#, their inclusion into macroscopic theories is
formidable theoretical challenge@26–31#.

It is instructive to have another look at the striking ne
cancellation between the dielectric boundary force and
electrostatic interactions with the gramicidin fixed charg
for a positive ion~Fig. 3!. It is our claim that the fact tha
these two forces nearly cancel each other cannot be pu
coincidental. While the dielectric boundary force is a pro
erty of the geometry and dielectric coefficients of the pro
lem, independent of the fixed charges of the protein, the e
trostatic potential of the protein depends directly on its fix
he
FIG. 5. ~Color online! The dielectric bound-
ary force and potential on a Ca21 on the channel
axis of gramicidin~dashed red line!, compared to
the corresponding force and potential due to t
gramicidin fixed charges~solid blue line!. The
thin green line is the net effective potential.
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charge distribution. The fact that the dielectric bounda
force and the gramicidin force due to its fixed charges h
extremal points~maxima and minima! at almost the same
locations with almost the same heights~see Fig. 4! is char-
acteristic of adevice, not a manmade one in our case, b
rather a natural biological device, designed or evolved
‘‘have a purpose,’’ i.e., to have a simple reasonably rob
input/output relation. It seems that the fixed charges
gramicidin have been optimized, by the course of evoluti
to almost cancel out the dielectric boundary force, and t
allow the permeation of monovalent positive ions throu
the channel.

IV. SUMMARY AND DISCUSSION

In an inhomogeneous system, chargesalways interact
with ~induced! dielectric boundary charges and with fixe
charges if these are present near the boundary~as is usually
the case!. Then, the forces between charged particles dep
as much on their distance to the boundary, and the shape
dielectric properties~and fixed charge! of the boundary, as on
the distance between them.

In this paper, we took a step in the analysis of such pr
lems by considering the dielectric boundary force on a sin
particle and its crucial role in the determination of the p
meation through a long and narrow protein channel such
gramicidin. We confined our analysis to the computation
the net force on a single mobile charge, due only to
dielectric boundary force and to the fixed charges of the p
tein, neglecting the effects of other mobile charges eit
inside the channel or in the surrounding electrolyte solutio

Even though approximate and limited by our simplifyin
assumptions, our results show a striking cancellation
tween the dielectric boundary force and the force due to
fixed charges of the gramicidin channel. This kind of canc
lation is characteristic of adevice, in which the free param-
eters, e.g., the fixed charges of the protein in our case, h
been optimized to perform a certain function. The role of
dielectric boundary force, and cancellation of forces, ne
to be investigated in other channels, and proteins as w
before conclusions can be reached about its general im
tance.

Obviously, in multiparticle systems, one has to consi
the overall effect of all other mobile charges. It is a w
known and central result of equilibrium statistical mechan
that in a homogeneous system composed of an infinite n
ber of charged particles, the shielding is perfect@32,33#. For
inhomogeneous systems, either at equilibrium or at none
librium, similar analytical results are unknown. Indee
shielding cannot be the whole story in inhomogeneous s
tems. Ionic solutions within~nearly! insulating cylinders
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conduct dc potentials at macroscopic distances, thereby
ducing the well-known cable properties~i.e., transmission
line behavior! of nerve fibers. Only recently has the simp
case of an electrolyte solution near an infinite dielectric w
been analyzed theoretically by Aqua and Cornu@34#. Their
results show that due to the shielding of the electrolyte so
tion, the dielectric boundary force decreases exponenti
instead of the long range inverse distance squared decay
culated for a single charge. Thus, the dielectric bound
force might not play a crucial role in the study of the pro
erties of planar membranes. The DBF might well be imp
tant, however, in the study of binding sites of enzymes, d
to its dependence on the geometry of the binding site. Al
all, the role of the dielectric boundary force may be sign
cant in the binding of molecules~and macromolecules! to
active sites of proteins.

For more complex systems, such as narrow pores
highly charged binding sites of enzymes, the theoreti
analysis of the interplay between the dielectric bound
force and electrostatic shielding still awaits investigatio
The papers of Corryet al. @16,17# reporting Brownian dy-
namics simulation studies, clearly show that shielding effe
are important as the radii of the pores become wider.
discussed in the Introduction, continuum theories such as
or PNP replace discrete charges with continuum distributi
composed of infinitely small charges, and thus discard
discrete polarization surface charges, and replace them
the effective polarization due to the continuum charge. T
means that the dielectric boundary force is immediately l
in this description@5#. In addition, the non-Coulombic part o
interactions between two discrete ions, which are n
negligible near dielectric interfaces~see Sec. III as well as
Ref. @12#!, are also lost and thus may lead to incorrect
sults. As shown in a mathematically rigorous manner in R
@5#, a Brownian~Langevin! model for the motion of the mo-
bile ions is equivalent to a hierarchy of Poisson-Nern
Planck-type equations containing conditional and uncon
tional densities, which explicitly contain the dielectr
boundary force. The derivation is similar to that of equili
rium statistical mechanics, where Monte Carlo simulatio
sampling according to the Boltzmann distribution are equi
lent to the infinite Bogolyubov-Born-Green-Kirkwood-Yvo
equations containing continuum averaged densities@2#. Thus,
to pursue further the analysis of shielding and the role of
dielectric boundary force from a theoretical approach, c
sure relations and/or other approximations that are valid n
dielectric interfaces need to be developed and chec
against simulations. This presents new challenges in
study of microscopic equilibrium and nonequilibrium sy
tems, most common in molecular biology.
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