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ABSTRACT

In this work, the ionic motion in an aqueous elec-
trolyte solution is studied within the framework of a
fully self-consistent Langevin-Poisson solver in order to
verify the accuracy of the approach. The primitive model
is used to describe the individual ions as charged spheres
moving in a continuum solvent. The P3M method is
used to self-consistently resolve the electrostatic behav-
ior of both the long-range forces of the collective plasma
and the boundary conditions, and the short-range inter-
particle interactions resulting from the Coulombic force
between close ions.

A small test volume representing a portion of the
large aqueous electrolyte solution is simulated to cali-
brate the simulation tool under nonequilibrium condi-
tions. Results of the conductivity of NaCl and KCI so-
lutions are presented for several concentrations and the
radial distribution functions in these liquids is discussed.

Keywords: Electrolyte solutions, Brownian dynamics,
‘nonequilibrium. :

1 INTRODUCTION

Ion channels are an important class of proteins re-
sponsible for controlling the ion flux into and out of
cells. These channels are also interesting for their pos-
sible application in bio-electronics, more specifically for
a new class of bio-sensors. It is therefore important to
develop realistic modeling techniques to accurately de-
scribe the permeation of charge carriers through these
pores. The first step toward a reliable simulation model
is to properly represent the ionic solution surrounding
the channel.

The goal of this work is to further develop the self-
consistent particle-based simulation tool described in [1],
and verify the accuracy of the approach by modeling
nonequilibrium transport in bulk electrolyte solutions.

In the following sections the self-consistent solver will

be presented, including the coupling of the Brownian dy- .

namics with electrostatic interactions. Computational
aspects related to boundary conditions and ion injection
are also discussed. Finally, the results are presented for
a small test volume of dissociate NaCl and KCl solutions
at different molar concentrations. '
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2 SELF-CONSISTENT
LANGEVIN-POISSON SOLVER.

Particle-based methods are a powerful class of simu-
lation techniques which have long been used to success-
fully model complex charge transport characteristics in
semiconductors [2] [3] and aqueous ionic solutions [2] [4].
These approaches are based on a stochastic representa-
tion of the particle motion through phase space gov-
erned by interactions with their environment. Particle-
based methods are particularly useful for investigating
the mesoscopic characteristics of systems because all the
spatial and temporal carrier data is stored and easily
accessible. Bulk properties are calculated by averaging
over the ensemble of individual particles. _

An important aspect of these methods is the self-
consistent coupling of the particle dynamics with the
electrostatic forces. These forces result from external
boundary conditions as well as internal particle-particle
interactions. The self-consistency is realized by allowing
the dynamic properties to evolve with time governed by
the electrostatic forces, and periodically updating the
forces using the spatial distribution of charge. This al-
ternating approach in calculating the force and charge
distribution allows the accurate simulation of transient
highly nonequilibrium charge transport [3]. '

2.1 Brownian Dynamics

The simulation tool in this work is based on the re-
peated solution of the Langevin equation [6] coupled
self-consistently to the Poisson equation. The primi-
tive model [7] is used to describe the ionic transport.
Each ion is treated as a Brownian particle in a con-
tinuum dielectric and is tracked through phase space
governed by the Langevin dynamics. The ions interact
with the solvent through the macroscopic properties of
water which include the dielectric constant and friction
constant 8] [7].

The full Langevin equation is discretized with the
first order Euler scheme,

T(t+4t) = v(t)—dt [ﬁ(t)—g— 27kBT

m

N(O,m], W

where 7 is the ion velocity, F is the total force on the
ion, &t is the time step, v is the friction constant divided
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by the ion mass, m is the ion mass, kg is Boltzmann'’s
constant, T is the absolute temperature and N(0, §t)
is a random variable, with zero mean and variance §t,
-that represents the fluctuating force due to bombard-
ment from water molecules.

2.2 Electrostatics

The electrostatics interactions within the ionic solu-
tion are accounted for ‘using the P3M method (2] [9).
Within this approach, the inter-particle force is divided
into a smoothly varying long-range component and a
short-range part that is only defined for a finite radius.

The long range force is defined on a mesh which in-
cludes the external boundary conditions and is calcu-
lated from the solution of Poisson’s equation. The it-
erative multigrid method is chosen to resolve the mesh
force since the time between consecutive solutions is very
short and the change in solution is small. This method
is one of the fastest available [10] and is based on a hier-
archy of grids with different mesh sizes that are used to
simultaneously reduce different error components [11].
The nearest-grid point method is used for the charge
assignment and field interpolation schemes.

The short range force due to the Coulombic interac-
tion and the finite-size effect of the ions is calculated us-

ing an inverse power equation described in detail in [2] [1].

This expression is dependent on the jonic radius and on
the strength of the repulsion between ions. Since neither
of these parameters are easily defined, various quantities
exist in literature [12] [2] [13]. Simulations using differ-
ent values will be discussed and compared in the next
section. ‘

3 RESULTS

The simulation regime consists of a 20x20x20 ten-
sor product grid discretized with a homogeneous mesh
in 3D with side length 0.5 nm, where the grid size is cho-
sen to be smaller than the Debye length. The number of
Brownian particles used in the simulation is determined
by the molar concentration being simulated, and is in
the range 100-1000. The input parameters are the ion
diameter, the hardness (the strength of the short range
repulsive force due to the electron cloud overlap), and
the friction constant in the Langevin equation. The fric-
tion constant is calculated with the Einstein relation {7,

kgT
mD'

Y= (2)
where D is the diffusion coefficient. The parameters used
in this work are given in Table 1, where the hardness
parameter is equal to 8. Two value are given for Cl
lons since the diffusion constant is different in the two
electrolyte solutions. ’

3.1 Ion Injection

A crucial component of this modeling approach is
the ion injection applied at the boundaries. Simulation
results are sensitive to the velocity distribution of the
ions as well as the time evolution of the particle flux
across the boundaries. In this work, electrostatic con-
tacts with Dirichlet conditions are located on opposite
planes of the 3D volume boundary, while Neumann con-
ditions are imposed on the other four planes. Ions are
allowed to pass freely through the Dirichlet contacts and
are perfectly reflected from the Neumann boundaries.

At each timestep the correct ion fux needs to be im-
posed at the contacts. Since the simulated volume rep-
resents a portion of a larger electrolyte bath the contact.
cells are assumed to maintain a constant ion concentra-.
tion. Therefore the particle flux is determined by the’
integral of the charge density along the plane perpen-

. dicular to the direction of current flow. The velocity of

the injected ions is calculated with a Maxwellian distri-
bution. In the direction normal to the contact cells the
distribution is a half-Maxwellian directed into the vol-
ume and in the other two directions the distribution is
a full Maxwellian. This injection technique results in .a

stable ionic concentration within the simulation volume.

3.2 Current-Voltage Characteristics

To properly calibrate the simulation tool, the con-
ductivity of several dissociated electrolyte solutions are
calculated using the current-voltage characteristics. The

- equivalent conductivity is calculated with the equation [14],

A=, (3)

zcjy -

where j, is the current density in the direction of the

electric field, E,. The molar concentration is given by

c and the charge number, z, is unity for the electrolyte
solutions in this work.

Simulations were run at a temeprature of 298 K and

an applied bias of 1 V across the structure. The results

of the calculated equivalent conductivity for NaCl for a

. concentration of 0.1 M is 107.3 Scm® mol™?!, which is

in excellent. agreement with published data which is 106
Scm? mol~? [15]. This value is very sensitive to the dif-
fusion coefficient and the same simulations with the dif-
fusion constant equal to 2x107% ¢cm?/s (compared with
1.48x107° cm?/s) results in an equivalent conductivity
40 percent higher.

The equivalent conductivity calculated for aqueous
solutions of KCl are approximately 20 percent higher
than published values for a range of concetrations from
0.1 M to 1 M. The diffusion coefficient used in these sim-
ulations are 2x10~° cm?/s which is only slightly higher
than experimental values [15] and may be partially re-
sponsible for the high conductivity.

444 Nanotech 2003, Vol. 3, www.nsti.org, ISBN 0-9728422-2-5



Table 1: Ion parameters used in simulations for 298 K.

-lon mass [amu] diameter [Angstroms] friction constant [s~7T]

Cl 35.4527 3.10 3.73x10™% (KC1) 4.71x10% (NaC1)
Na 22.9898 1.54 7.278x 103

‘K 39.0983 2.26 3.383x10*3

3.3 Radial Distribution Function

Another important test of the simulation method is
the calculation of the radial distribution function (RDF),
which relates the probability of finding a pair of ions a
specific distance apart, relative to the probability in a
homogeneous distribution at the same density [16],

o) = ;%@Z«s(r‘—ra)), ()

i g

where g(r) is the RDF for an inter-particle distance r, p
is the ion density, and N is the number of ions.

This function provides important insight into the lig-
uid structure and can be used to calculate the ensemble
average of any pair function, including the free energy,
pressure and chemical potential [16]. The knowledge of
these three quantities then allows for the calculation of
all other thermodynamic functions, resulting in a com-
plete description of the liquid state [7].

The simulated RDF for NaCl and KCl is shown in
Fig. 1 and is calculated for a molar concentration of 0.5
M at 300 K. The total simulation time is 10 ns and the
RDF is averaged over the last 2 ns with the timestep
is equal to 2x107'* s. Since the simulation approach
/in this work does not include the structure of the wa-
ter molecules the RDF decays smoothly to unity after
approximately 1.5 nm, in this limit the particles are ho-
mogeneously distributed. The peak value is higher and

sharper for the Na-Cl versus K-Cl because of the smaller.

radius of the Na ions (see Table 1) so that the particles
are able to pack more tightly together. The function
goes to zero when the inter-ionic distance is less than
the sum of the individual ionic radii. The slope at which
the function goes to zero is determined by the hardness
parameter which controls the strength of the repulsive
force. In these simulations the hardness parameter is
equal to 8 [2]. The behavior of like ions is different in
that there is no peak in the RDF because there is no
attractive interaction.

The volume of the simulation regime is 10 nm cubed
and corresponds to approximately 300 anions and 300

cations. The total CPU time for each of these simula-

tions is approximately 20 hours.

4 CONCLUSION

The self-consistent Langevin-Poisson solver has been
shown to be applicable for modeling nonequilibrium charge
transport behavior in aqueous electrolyte solutions. This
test is an important first step toward the development
of a simulation tool for modeling ion flow through mem-
brane channels. )

The simulations reproduce satisfactory values for the
equivalent conductivity for NaCl, but more work needs’
to be done to determine the correct parameters used in
the KCl ) o

The RDF demonstrates the appropriate behavior for’
the continuum water model used in this work. The RDF
does not show the oscillatory behavior that is associated
with ion hydration shells and the discrete structure of
the water molecules. The implementation of an effec-
tive potential (from molecular dynamics or experimen-
tal measurements) to correct for this structure would be
one approach to reproduce more physical bulk-behavior.

" Since the primary goal for this simulation tool is to
© model .channels, it may be more useful to interface the

Langevin component with an explicit model for the wa-
ter molecules in a small region around the mouth of the

channel [17].
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Figure 1: Radial distribution function in NaCl and KCl
aqueous solutions at 300K.
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