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Abstract. In this work we propose a force-field scheme for the self-consistent particle-based simulation of elec-
trolytic solutions. Within this approach, the electrostatic interactions are modeled with a particle-particle-particle-
mesh (P3M) algorithm, where the long-range components of the force are resolved in real space with an iterative
multi-grid Poisson solver. Simulations are performed where the solute ions are treated as Brownian particles gov-
erned by the full Langevin equation, while the effects of the solvent are accounted for with the implicit solvent
model. The main motivation of this work is to efficiently extend the modeling capability of the standard particle-
based approaches to liquid systems characterized by a spatially inhomogeneous charge distribution and realistic,
non-periodic boundary conditions. Examples of such systems are large polymer chains, biological membranes, and
ion channels.
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1. Introduction

The work presented in this document was motivated
by the need of an improved force field scheme for the
particle-based simulation of ion channel systems. Ion
channels are proteins embedded in the lipid membrane
of biological cells, they interact in a complex way with
their environment and are responsible for finely regu-
lating the flux of ionic charge across the membrane. For
instance, the generation and transmission of potentials
in nerves and muscles, as well as the hormone release
from endocrine cells, are believed to be mechanisms
governed by the transport of ionic charge through these
protein “gates” [1].
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Since the first demonstration in 1976 [2] of a re-
liable experimental methodology for the detection of
currents flowing through individual ion channels, sev-
eral refinements of the experimental setup have been
successfully applied to a variety of membrane and cell
configurations, both in vivo and in vitro. The extraordi-
nary progress of the experimental techniques triggered
an increasing theoretical effort aimed at the understand-
ing of the role of ion channels in the physiology of
complex biological systems, and, more generally, their
influence on the electrical equilibrium between the cells
and their environment. Besides the purely theoretical
aspect, the enormous pharmacological advances ex-
pected from the knowledge of the operation mecha-
nisms in ion channels has been one of the strongest
arguments in favor of their research [3]. Furthermore,
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from an engineering viewpoint, ion channels are being
envisioned as a key component of a new generation
of bio-sensors that integrate the selectivity and the ex-
treme sensitivity of ion channels with the processing
capabilities of modern microelectronics [4].

A quite peculiar aspect of the research on ion chan-
nels is that it frequently involves researchers work-
ing in traditionally different disciplines. The solid-state
electronics community, for example, is well aware of
the fact that traditional scaling—i.e. the reduction of
the feature-size of transistors in order to increase the
performance of integrated circuits [5]—will soon be
inadequate to satisfy the requirements of emerging
technologies [6]. A natural solution is to increase the
complexity rather than the speed of the basic com-
ponents, and much can be learned from ion chan-
nels, which are extremely specialized and miniatur-
ized low power devices. Transistors are definitely faster
than ion channels, but the advantage due to their op-
erational speed is compensated by the complexity of
the operations performed by ion channels. The full
understanding of ion channels properties will allow
for either the modification of their design for novel
applications, or for manufacturing analogous struc-
tures capable of emulating their functionality. It is
safe to say that the capability of explaining the func-
tions of ion channels in relation to their microscopic
structure would make possible the realization of man-
made devices, such as nanotubes, that are based on
the same principles that regulate their natural counter-
parts, and perform operations with the same level of
complexity.

A hierarchy of simulative approaches has been ap-
plied to the study of ion channels during the last
two decades. Continuum models, such as the Poisson-
Boltzmann [7] and the Poisson-Nernst-Plank [8], have
been used to define the electrostatic landscape of ion-
channel systems and to analyze ion electrodiffusion in
terms of continuous fluxes. Individual ionic trajecto-
ries have been studied using particle-based approaches
subjected to both Brownian [9] and Newtonian dynam-
ics [10]. This document focuses on the approach used
to compute the self-consistent field of forces used by
particle-based simulation algorithms. In this context,
the adjective self-consistent refers to the fact that the
forces due to the electrostatic interactions within the
components of the system strictly depend on the spa-
tial configuration of the components themselves, and
must be continuously updated as the dynamics of the
system evolves.

The most straightforward approach to compute the
force on a given charged particle is based on Coulomb’s
law, and consists of directly summing the pairwise con-
tributions from all the other particles in the system.
The performance of this Particle-Particle (PP) approach
scales quadratically with the particle population, mak-
ing its implementation impractical for the simulation of
large systems. Based on a screening hypothesis [11], a
finite cut-off radius can be used to improve the overall
performance of the PP method by reducing the number
of particles involved in the calculation. This technique
neglects long-range coulombic forces that can be de-
terminant [12,13], particularly when the charge is in-
homogeneously distributed within the computational
domain, or when the effects of the force field are inves-
tigated on large molecular structures. Furthermore, ac-
counting for inhomogeneous dielectric boundaries and
external bias is extremely difficult within the frame-
work of Coulomb’s equation. Indeed, a complicated
dynamic distribution of image charges [14] needs to be
added to the system in order to represent the effects of
realistic boundary conditions.

Alternatively, Particle-Mesh (PM) methods [15] are
used to compute the electrostatic forces due to the
charge distribution of the whole system, and naturally
allow for the inclusion of boundary conditions by set-
ting the potential or its derivative on the surfaces of
the computational domain. Within the PM framework,
the charge distribution is mapped onto a discrete set of
points (the mesh or grid points), and the corresponding
electrostatic potential is computed on the same points
with a standard numerical technique. Forces are then
interpolated from the grid to the arbitrary positions of
the charged particles in the system. An evident advan-
tage of the PM approach is that it scales linearly with
the number of charged particles and, in some cases [16],
with the number of grid points.

The PM method has been successfully used for the
simulation of semiconductor devices [15], and has the
advantage of efficiently modeling systems with dielec-
tric interfaces, highly complex geometries, and arbi-
trary boundary conditions. However, within the PM
approach the resolution of the charge distribution is
limited to the mesh size, therefore short-range effects
are not accounted for in the force field. This does not
constitute a problem for the simulation of electron de-
vices in the framework of the independent electron
approximation [17], or when short-range coulombic
interactions are treated statistically with perturbation
theory [18]. It is worthwhile to note that works have
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been published recently [19,20] where the short-range
interaction between charge carriers in semiconductor
devices is computed with the PP method and coupled
with the PM approach.

Neglecting the short-range structure of the force field
is unrealistic in the case of molecular liquid systems
because of the finite size of the various components.
In other words, the exponential van der Waals forces
arising from the overlapping electronic orbitals of adja-
cent molecules (or atoms) [21] play a crucial role in the
microscopic dynamics of ionic solutions. This is also
true for charge transport across ion channels, which use
atomic scale interactions to control the macroscopic
flow of ions driven by long-range forces. For this rea-
son, a realistic force field scheme must have a spatial
resolution adequate to model the van der Waals inter-
action, and therefore couple effectively and accurately
both the short- and long-range electrostatics of the sys-
tem [15].

Two mathematically similar [22] methods that com-
bine the PM and PP approaches in an unified field solver
are the the Ewald summation method [23] and the
particle-particle-particle-mesh (P3M) approach [15]. In
spite of their theoretical affinity, the implementation of
the two approaches shows substantial differences that
motivate our preference of the latter for the simula-
tion of inhomogeneous ionic solutions. Within both
models, the electrostatic force field is separated into
two smoothly varying functions representing the short-
range and long-range forces. The PP approach is used
to model the short-range component within a relatively
small cutoff region, while different methods are used
to compute the long-range interactions. In particular,
the Ewald method computes the short-range forces in
real space, while long-range interactions are rapidly ac-
counted for in the reciprocal space. A crucial effect of
this approach is the rather stringent requirement of spa-
tial periodicity for the charge distribution function [24].
This fact does not constitute a problem in the simu-
lation of bulk systems, provided that the periodicity
does not introduce artifacts (e.g., spurious numerical
heating of the system), and sufficient spatial resolu-
tion is maintained to describe large scale order relevant
for atomic scale behavior, but limits its applicability in
systems with complex boundaries. On the other hand,
within the P3M method, the long-range interactions are
computed in real space with a PM approach [15], mak-
ing it the optimal choice for modeling inhomogeneous
systems with external bias values. In both the Ewald
and the P3M method a geometric overlap exists be-

tween the long-range and short-range computational
domains, i.e. the short-range domain is fully contained
by the long-range one. Consequently, both schemes in-
clude a correction that accounts for the fact that charges
within the short-range domain are also used for the
long-range calculation.

The approach we propose in this work extends and
validates the original P3M method of Hockney [15]
by including a highly efficient real-space 3D Poisson
solver based on the iterative multi-grid method [16,25].
The use of a Poisson solver in determining the long
range electrostatic forces for a molecular liquid system
is not a new approach, but its use has been limited in
the past due a claim that obtaining its numerical solu-
tion is computationally prohibitive [26–28]. We assert
that the numerical solution of the Poisson equation can
be implemented in a computationally efficient manner
for systems of arbitrary geometry and boundary condi-
tions.

To validate the proposed force field scheme, the
Poisson-based P3M algorithm is coupled with a Brow-
nian dynamics (BD) [29,30] kernel. The BD approach
is an efficient particle-based method for simulating
large ionic liquid systems for relatively long times.
The BD method has been applied to a wide range of
many-body problems, such as the simulation of bulk
ionic solutions [29–31], the permeation of ions through
membrane channels [9,28,32–37], and the steady-state
properties of electron transport in semiconductor de-
vices [38]. Within the BD framework, the trajectories
of the individual ions are tracked through phase-space,
while the surrounding solvent medium is modeled as
a continuum dielectric according to the implicit sol-
vent model. The ions and the solvent are then cou-
pled through electrostatic, hydrodynamic and stochas-
tic forces. Observable properties of the system are cal-
culated by averaging over a sufficiently large number
of ion trajectories. The computational burden is greatly
reduced by including the effects of solvent molecules
implicitly, so allowing for long simulation times. This
fact motivated our choice of a BD kernel for the val-
idation of the proposed force-field scheme. However,
the proposed approach is fully applicable to molecular
dynamics (MD) [39] simulations. It is worthwhile to
note that many variants of the BD simulation kernel
are possible, including the ones based on the Smolu-
chowski equations of motion [40] and the Langevin
equation [11]. Memory effects can be included in
the model [41], as well as hydrodynamic interactions
[42–44].
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This paper is organized as follows. In the proceed-
ing section the dynamics simulation kernel used to val-
idate the force-field scheme is briefly presented. The
approach used to resolve the electrostatic interaction is
then discussed in the following section. Details about
the implementation of the proposed force-field scheme
will be supplied. Finally, the results of the simulation of
different electrolytic solutions are discussed, and com-
parisons with other models and with experimental data
are offered.

2. Brownian Dynamics

Within the chosen BD framework, the solvent (water)
is treated as a continuum dielectric, while each ion is
explicitly modeled as a Brownian particle with its dy-
namics being tracked through the 6-dimensional phase
space. The field distribution is periodically updated on
the 3D computational domain, where the ion-solvent
interactions are accounted for by including macro-
scopic water properties in the model. In other words,
the dynamics of the ions is explicitly determined by
the electrostatics of the system through Newtonian me-
chanics, while their interaction with water molecules
is implicitly modeled with the Langevin equation. The
observable properties of the system are then extracted
from the microscopic representation of the ions by av-
eraging over the ionic ensemble and over time after the
steady state is reached [45]. It should be noted that the
further inclusion of complex molecules such as lipid
conglomerates or proteins can be achieved both in a
macroscopic fashion by adding dielectric discontinu-
ities to the computational domain, and microscopically,
by building collections of van der Waals particles sub-
jected to an appropriate constrained dynamics. The lat-
ter approach allows for the study of effects related to
the time evolution of the structural properties of the
molecules in the system.

The next sections will be devoted to the brief dis-
cussion of the dynamics equations used by the imple-
mented BD kernel and the methodology used to inte-
grate them.

2.1. Langevin Equation

The dynamics simulation engine used to validate the
proposed force field scheme models ion trajectories
within the Langevin formalism [29,30]. In particular,
the strict or full Langevin equation is used, which as-

sumes Markovian random forces and neglects correla-
tions (both spatially and temporally) of the ionic mo-
tion:

mi
d�vi (t)

dt
= −miγ �vi (t) + �Fi (�ri (t)) + �Bi (t), (1)

where mi is the reduced mass of the i th ion, �vi (t) is its
velocity at time t , and γ is the friction coefficient (i.e.,
the inverse of the velocity relaxation time). The defini-
tion of the friction coefficient in the Langevin equation
varies in literature [11,45,46], the notation used here
is the same as in the work of Gunsteren and Berend-
sen [46]. The force on particle i due to all other particles
in the system and boundary conditions (including inter-
nal dielectric discontinuities) is �Fi , while �Bi is a fluc-
tuating force that mimics the molecular bombardment
of water on the ions, and is modeled with a Markovian
random variable.

The Langevin equation is discretized temporally by a
set of equally spaced time intervals, and spatially onto a
tensor-product Cartesian grid. At predetermined times
the ion dynamics is frozen, and the spatial distribution
of the force is calculated from the vector sum of all its
components, including both the long- and short-range
contributions. The components of the force are then
kept constant while the dynamics resumes under the
effect of the updated field distribution. Self-consistency
between the force field and the ionic motion in the
phase-space is obtained by iterating this procedure for
a desired amount of simulation time. The choice of
the spatial and temporal discretization schemes plays
a crucial role in terms of computational performance
and model accuracy.

The integration scheme for Eq. (1) is chosen based on
two requirements: ensuring energy stability and allow-
ing for long time-steps [47]. The latter requirement is
related to the need for investigating the properties of the
system over the typically long biological and/or chem-
ical time scales, which can extend up to milliseconds.
The use of long time-steps reduces the number of op-
erations for each unit of simulated time, consequently
increasing the performance of the simulation code. On
the other hand, the time-step must be small compared
with the mean time between particle collisions. An ex-
cessively coarse time discretization would not account
for rapid variations of the short-range force, and fails
to correctly account for the coulombic singularity. This
typically results in a spurious heating of the particle en-
semble that becomes energetically unstable [15,48].
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Two integration schemes have been implemented:
the standard first-order Euler scheme and the Verlet-
like method by Gunsteren and Berendsen [46], which
is a third order model that reduces to the Verlet algo-
rithm [49] when the friction coefficient in the Langevin
equation is zero. This approach allows for a larger time-
step as compared to the Euler method. Both schemes
are discussed in the following sections, and compar-
isons are made.

2.2. Euler Integration

The first order Euler integration scheme reduces the
Langevin equation to the following expression:

�vi (t + �t) = �vi (t) − �t

[
γ �vi (t) −

�Fi

m i

−
√

2γ kB T

mi�t
�N (0, 1)

]
, (2)

where �t is the integration time-step and �N (0, 1) is
a three dimensional Gaussian random variable with
zero mean and variance 1. The spatial trajectories are
calculated with Newtonian mechanics. A crucial as-
pect of the Euler scheme is that in order to represent
the fluctuating force as a stationary Markovian Gaus-
sian process, the time-step �t duration must be much
smaller than the reciprocal of the friction coefficient γ

in the Langevin equation (Eq. (1)) [46]. This results in
a fine (and computationally expensive) time discretiza-
tion when ionic solutions are simulated.

2.3. Verlet-Like Integration

The short time-steps limitation of the Euler integration
scheme is addressed within the Gunsteren and Berend-
sen approach [46] by accounting for the evolution of
the fluctuating force during the integration time-step.
In this method, the force on the i th particle at time tn+1

is first expanded in a power series about the previous
time tn:

Fi (tn+1) ∼ Fi (tn) + Ḟi (tn)(tn+1 − tn), (3)

where Ḟ denotes the time derivative. The power series
expansion is substituted into Eq. (1), and the resulting

solution of the Langevin equation is given by

vi (tn+1) = vi (tn)e−γ�t + (miγ )−1 Fi (tn)(1 − e−γ�t )

+ (miγ
2)−1 Ḟi (tn)(γ�t − (1 − e−γ�t ))

+ (mi )
−1e−γ�t

∫ t

tn

e−γ (t ′−tn ) Bi (t
′)dt ′, (4)

where �t = tn+1 − tn is the integration time-step. Note
that the fluctuating force Bi (t) is left inside the integral.
The ionic position is calculated with the following ex-
pression:

xi (tn+1) = 2xi (tn) − xi (tn−1)e−γ�t

+
∫ tn+�t

tn

vi (t
′)dt ′ + e−γ�t

∫ tn

tn−�t
vi (t

′)dt ′,

(5)

and, finally, the updated particle position is written as

xi (tn+1) = xi (tn)[1 + e−γ�t ] − xi (tn−1)e−γ�t

+ (miγ )−1 Fi (tn)(�t)[1 − e−γ�t ]

+ (miγ
2)−1 Ḟi (tn)(�t)[0.5γ�t(1 + e−γ�t )]

− [1 − e−γ�t ] + Xn
i (0, �t)

+ e−γ�t ]Xn
i (0, −�t). (6)

where

Xn
i (0, �t) = (miγ )−1

∫ tn+�t

tn

[
1 − e−γ (tn+�t−t ′)]

× Bi (t
′)dt ′ (7)

is also a Markovian stochastic process with zero mean
and variance�t . The function Xn

i (0, −�t) is correlated
with Xn−1

i (0, �t) through a bivariate Gaussian distri-
bution. In the limit that the friction coefficient goes to
zero this set of equations corresponds to the trajectories
obtained with the Verlet MD algorithm [46,50].

The set of trajectories resulting from the Verlet-like
integration scheme are not limited by the velocity relax-
ation time, and a longer time-step can be used as com-
pared to the Euler scheme. Figure 1 shows a plot of the
steady-state average ionic energy versus the time-step
length for a 150 mM KCl solution simulated for 1 ns
in the absence of an external electric field. The Euler
and Verlet-like algorithms give similar results for time-
steps below approximately 10 fs, but larger time-steps
result in a high energy drift for the Euler integration.
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Figure 1. Steady-state energy of an ensemble of anions and cations
in a 150 mM solution of KCl as a function of the time-step length,
for both the Euler and Verlet-like integration schemes.

3. Poisson P3M Force Field

Within the proposed approach, the force on an individ-
ual ion is divided into a smoothly varying long-range
component and a short-range part. Both components
are periodically updated in a fashion consistent with
the ionic dynamics, as explained in Section 2.1. The
long-range interaction accounts for the force due to the
collective ionic population and the boundary condi-
tions, while the short-range inter-particle interactions
result from the coulombic and van der Waals forces
between close ions. The total force acting on a particle
i is then written as follows:

�Fi = �F pm
i + �F pp

i . (8)

The long range particle-mesh force �F pm
i is obtained by

assigning the charge density to the grid points, solving
Poisson’s equation [14], and differentiating the poten-
tial:

�F pm(�rp) = −q �∇φ(�rp) (9)

where �F pm and φ(�rp) are the force and the electro-
static potential, respectively, at the grid point p located
at �rp. This component of the force also accounts for ex-
ternal boundary conditions, dielectric discontinuities,
and static charges. The force �F pm

i at the specific posi-
tion �ri of the ion i is then computed by an appropriate
interpolation scheme (see Section 3.1).

The particle-particle force is decomposed in three
parts:

�F pp
i = �FC

i + �F W
i + �Ri , (10)

where �FC
i is the coulombic force due to all the parti-

cles within a predefined short-range domain (see Sec-
tion 3.2), �F W

i represents the effects of the van der
Waals forces, and, finally, �Ri is a “reference force” [15]
that corrects the double counting of charges due to the
overlap between the short-range domain and the entire
computational region over which Poisson’s equation is
solved.

A detailed description of all the components of the
force �Fi (�ri ) is given in the following sections.

3.1. Long Range Interaction, Poisson’s Equation

In order to solve Poisson’s equation on a mesh, a charge
assignment scheme must be devised to build a charge
distribution from the ionic coordinates. Furthermore,
once the electrostatic field has been computed on the
grid from the solution of Poisson’s equation, the force
must be interpolated to each ion location in a way that is
consistent with the original charge assignment scheme.
In other words, a geometric shape is assigned to each
ion charge though a space-dependent weighting func-
tion W (�r ) [15], and the relation between the charge
shape and the discretization grid is accounted for in
all the transformations used to transfer quantities (i.e.
charge and force) to and from the discrete mesh cen-
tered at �rp.

The generalized algorithm follows the treatment of
Hockney [15]:

1. Assign charge:

ρ(�rp) = 1

Vp

Np∑
i

qi W (�ri − �rp); (11)

2. Solve Poisson’s equation:

�∇ · εr �∇φ(�rp) = −ρ(�rp)

ε0
; (12)

3. Calculate electric field:

�E(�rp) = −�∇φ(�rp); (13)

4. Interpolate force:

�F pm
i (�ri ) =

Np∑
p

qi W (�ri − �rp) �E(�rp); (14)
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where Vp and Np are the volume of the grid cell and
the number of particles in it, respectively, and �F pm

i is
the long-range component of the force acting on the
particle located at �ri (see Eq. (8)). It should be noted
that the same function W (�r ) must be used both for the
charge assignment and for the force interpolation, be-
cause the use of a mixed scheme would result in an
unphysical self-force of the particle upon itself. The
choice of the weighting function depends on the prop-
erties of the system. The three models implemented
and tested in this work treat the particle as a point
charge, an uniformly charged sphere, and a sphere with
a linearly decreasing density; the corresponding assign-
ment schemes are called the nearest-grid point (NGP),
the cloud-in-cell (CIC) and the triangular-shaped cloud
(TSC) schemes, respectively [15].

Once a charge shape has been chosen, the corre-
sponding weighting function is determined by the fol-
lowing integral,

W (�r − �rp) =
∫

Vp

S(�r ′ − �r ) d �r ′, (15)

where the function S(�r ) represents the shape of the
charge “cloud” associated with the particle. In one
dimension, the weighting functions computed from
Eq. (15) are given by the following relations for the
three charge shapes mentioned above:

WN G P (x) =
{

1
∣∣∣ x

H

∣∣∣ ≤ 1

2
0 otherwise

, (16)

WC I C (x) =
{

1 −
∣∣∣ x

H

∣∣∣ ∣∣∣ x

H

∣∣∣ ≤ 1

0 otherwise
, (17)

WT SC (x) =




3

4
−

∣∣∣ x

H

∣∣∣2 ∣∣∣ x

H

∣∣∣ ≤ 1

2
1

2

(
3

2
−

∣∣∣ x

H

∣∣∣)2 1

2
≤

∣∣∣ x

H

∣∣∣ ≤ 3

2
0 otherwise

, (18)

where H is the mesh size. In three dimensions the
weighting function is obtained as follows,

W (�r ) = W (x)W (y)W (z). (19)

In agreement with the considerations of Hockney [15],
the TSC weighting function is the optimal compromise
between accuracy and computational performance for
the systems studied in this work.

The use of a Poisson solver for the solution of the
long-range interaction results in two main advantages:
(1) the possibility of imposing boundary conditions
through externally applied potentials and (2) the ability
to simulate systems with arbitrary ionic concentrations
at the boundaries. While the simulation of bulk homo-
geneous systems do not exploit these capabilities and
can (should) be performed with periodic boundary con-
ditions, the use of a Poisson solver allows for a higher
degree of realism in reproducing the electrostatic con-
figuration of inhomogeneous systems.

3.1.1. Multi-Grid Poisson Solver. The need for self-
consistency between the spatial charge distribution and
the field of forces directly implies a frequent solution of
Poisson’s equation. For this reason, the implementation
of an efficient and robust Poisson solver plays a crucial
part in the proposed P3M scheme. Indeed, for three
dimensional systems the time spent for the repeated
solution of Poisson’s equation becomes a significant
part of the total CPU time, and the efficiency of the
solver becomes an issue.

Because of the frequent solution of Poisson’s
equation within the self-consistent scheme, iterative
solvers [51,52] are the most natural option, due to the
availability of the previously computed solution as the
initial guess for the solver [53]. Therefore, the method
of choice in this work is a finite-difference Poisson
solver based on the iterative version of the multi-grid
algorithm [16,25].

Within the multi-grid approach, the matrix equation
resulting from the discretization of Poisson’s equa-
tion [54,55] is solved simultaneously on a set of grids
with varying coarseness. The hierarchy of grids al-
lows for the simultaneous reduction of different Fourier
components of the error associated with each itera-
tion of the solver [56]. This results in a much faster
convergence rate as compared to other standard iter-
ative methods such as the successive-over-relaxation
(SOR) method [15,57]. A comparison of the total CPU
time spent solving Poisson’s equation for one self-
consistent iteration as a function of the convergence
error is shown in Fig. 2 for the multi-grid method and
an optimized SOR algorithm [16]. The computational
domain consists of a 100 mM KCl solution represented
on a 65 × 65 × 65 homogeneous grid with a mesh size
of 0.5 nm in all three dimensions. The slope of the er-
ror indicates the performance behavior of the solver.
As can be seen, the convergence rate of the multi-grid
method is much better than the SOR, particularly at
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Figure 2. Comparison of the CPU time required to solve Poisson’s
equation by the multi-grid and SOR methods. The computational
domain consists of a 65 × 65 × 65 homogeneous mesh.

small values of the relative error. Convergence thresh-
olds are typically chosen within the range [10−4–10−5],
and result in CPU times of 8–10 seconds for the solu-
tion using the multi-grid approach, and 20–30 seconds
for the SOR.

Algorithmic details on the implementation of the
multi-grid method can be found in the excellent works
of Hackbusch [16] and Brandt [25,58]. It should be
noted that the multi-grid approach can be easily applied
to adaptive non-tensor-product grids [25,58], allowing
for a variable resolution in regions of the computational
domain where the charge concentration is high. Being
focused on bulk properties, the simulations of this work
are performed using a relatively simple tensor-product
discretization grid. A discretization scheme based on
adaptive grids can result in a further increase of the
performance when simulating highly inhomogeneous
systems such as biological membranes or complex pro-
teins.

The choice of using the SOR solver in the P3M
proposed by Beckers [59] is not advocated here be-
cause of its slower convergence compared to the multi-
grid approach, and because of its inefficiency for large
problems. It is recognized, however, that the extreme
simplicity of the SOR algorithm makes it an attrac-
tive choice. A typical SOR solver can be implemented
with a few tens of lines of code, while our 3D multi-grid
solver is several thousands lines long. Furthermore, the
multi-grid choice for the Poisson solver is certainly not
unique, other efficient algorithmic choices are avail-
able, such as the strongly implicit schemes [60] and the
many flavors of the conjugate gradient technique [61].
Mixed schemes based either on heterogeneous precon-
ditioning or smoothing are also possible [62]. In this

work, we have chosen to use the multi-grid approach
because of its efficiency, robustness, and scalability.

As a final remark, we like to briefly discuss the issue
of computational performance. Clearly, the force field
calculation is an important component in the budget of
CPU resources used in particle-based simulation of liq-
uids. The computational burden due to the algorithms
used for long- and short-range interactions depends on
the nature of the system and its size. Within the frame-
work of ion channel simulation, one normally expects
a relatively large in-homogeneous Poisson grid with at
least 104 cells, and a larger number of particles (in-
cluding the protein “fixed” charges). In this case, even
though most of the burden is due to the computation of
the short-range interaction, the time spent for the long-
range calculation would be a significant portion of the
time devoted to the full force-field algorithm. For this
reason, both performance and robustness are crucial re-
quirements when modeling the long-range interaction
for ion channel systems.

3.1.2. Electric Field. The electric field used to calcu-
late the long-range PM force is computed at each grid
point as the gradient of the potential obtained from
the Poisson solver. The differentiation of the potential
takes into account dielectric discontinuities, possible
interfacial charges and boundary conditions. The force
�F pm

i at the specific particle location is then interpo-
lated with the same weighting function used for charge
assignment (see Eq. (14)).

3.2. Short-Range Interaction

As stated by Eq. (10), the particle-particle force is com-
prised of three parts: the Coulomb force �FC

i , the van
der Waals force �F W

i , and the reference force �Ri :

�FC
i =

�i∑
j �=i

qi q j

4πεrε0|�ri − �r j |2 ˆri j , (20)

�F W
i =




�i∑
j �=i

24εi j

|�ri − �r j |
[
2

(
σi j

|�ri − �r j |
)12

−
(

σi j

|�ri − �r j |
)6]

ˆri j

Lennard-Jones,

�i∑
j �=i

βi j

∣∣qi q j

∣∣
4πε|�ri − �r j |(p + 1)

(
si + s j

|�ri − �r j |
)p

ˆri j

inverse power,

(21)
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�Ri = −
�i∑
j �=i

qi q j

4πεrε0

∫ ∫
S(�r1)S(�r2 − �ri j )

× (�r1 − �r2)

|�r1 − �r2|3 d�r1d�r2, (22)

where �i is the domain of the short-range interaction
(see below), εr is the relative dielectric constant, ε0 is
the permittivity of vacuum, q is the charge, and �ri j is
the distance between the ions.

The van der Waals force �F W
i is often modeled with

the Lennard-Jones function or by an inverse power re-
lation [63]. The former has been used in this work,
and is based on the two fitting parameters σi j and εi j ,
representing respectively the maximum attraction dis-
tance and the strength of the interaction [64]. For ions
of different species, the Lennard-Jones parameters are
calculated by combining the values of the individual
species [64],

σi j = 1

2
(σi + σ j ), and, εi j = √

εiε j . (23)

In the expression of the inverse power law, βi j is
an adjustable parameter, si is the radius of the i th par-
ticle, and p is a hardness parameter that also repre-
sents the strength of the interaction. A comparison of
the inter-ionic potential profile is shown in Fig. 3 for
the two different pair potential schemes in an aque-
ous KCl solution. The parameters used for the short
range potentials are taken from [28] for the Lennard-
Jones function and from [15] for the inverse power
relation.

The final component �Ri of the particle-particle force
is the reference force, which depends on the shape S

Figure 3. Comparison of short range Lennard-Jones and inverse
power potential schemes for K+ and Cl− in an aqueous solution.

of the ionic charge. As previously stated, the particle-
particle portion of the force is calculated for ions within
the relatively small spherical region �i . The role of the
reference force is to correct for the overlap between �i

and the entire system over which the mesh force �F pm
i

is calculated. In other words, the sources of electro-
static force acting on a given charged particle are clas-
sified as “far sources” (including boundary conditions)
that are accounted for efficiently by the Poisson solver,
and “close sources” generating forces that are not re-
solved by the Poisson solver and must be computed
by the expensive O(N 2) particle-particle scheme. The
domain �i defines the fine resolution region around a
given ion. For obvious reasons, the solution of Pois-
son’s equation can not be obtained by subtracting the
charges within �i —this would indeed require a full
solution for each particle at each iteration—so the ef-
fect of those sources is subtracted from the poten-
tial distribution after the solution has been obtained.
This correction is accomplished by the reference
force.

Clearly, the size of the �i region should be cho-
sen as small as possible based on performance con-
siderations. The key aspect that limits the minimum
size of �i is the size of the ionic charge used for the
charge assignment scheme (see Section 3.1). As stated
above, the charge distribution is computed by assigning
a “cloud” of charge to each individual ion. The cloud
has a specific geometric shape and a predefined charge
density. When calculating the total force on a given ion
i , all the charged particles j �= i whose charge cloud
is overlapping with the one of i must be considered
“close sources” of the electrostatic force, and must be
included in the domain �i .

As stated in Section 3.1, the ionic electrostatic shape
S chosen for this work is a sphere with an uniformly
decreasing charge density, corresponding to the TSC
weighting scheme [15]:

S(r ) =



3

πrc
(rc − r ) rc ≤ r

0 otherwise
, (24)

where rc is the radius of the spherical charge “cloud”.
Therefore, the natural choice for the minimum cutoff
radius that defines the short-range region �i is twice
rc.

The reference force is then found analyti-
cally by substituting the shape function S(r ) into
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Figure 4. Components of the force between two ions of opposite
charge in a 500 mM solution of KCl with no external bias.

Eq. (22):

R(r ) = qi q j

4πεrε0

×




4

35r2
c

(224ζ − 224ζ 3 + 70ζ 4 + 48ζ 5 − 21ζ 6)

0 ≤ ζ ≤ 1

4

35r2
c

(12/ζ 2 − 224 + 896ζ − 840ζ 2 + 224ζ 3

+ 70ζ 4 − 48ζ 5 − 7ζ 6) 1 ≤ ζ ≤ 2

1
r2 otherwise

(25)

where ζ = r/rc. To reduce the computational burden,
the reference force is precomputed and tabulated as
a function of the distance between ion pairs as sug-
gested by Hockney [15] and, successively, by Wordel-
man [31].

The components of the force between an anion and
a cation inside the short-range domain (2rc=2 nm) are
shown in Fig. 4 as a function of the inter-ionic separa-
tion. The two ions are placed in a 500 mM KCl solution,
with no external bias. As expected, the reference force
and mesh force have the same amplitude, and therefore
will cancel within the short-range domain.

3.3. Time Discretization Scheme

The issue of time discretization is particularly relevant
for the performance of the simulation code. As dis-
cussed in Section 2.1, the duration of the time-step must
be carefully chosen to ensure self-consistency while
minimizing the use of computational resources.

It should be noticed that, even if self-consistency
requires a periodic update of the force fields, dif-
ferent components of the force evolve on different
time scales, therefore allowing for different time-steps
for the calculation of the mesh force, �F pm

i , and the
short-range particle-particle force, �F pp

i . Such differen-
tiation is used to optimize the use of computational
resources.

The time-step used for updating the PP force is dic-
tated by the time integration scheme of the ionic dy-
namics, as discussed in Section 2.1. In this case, the use
of the Verlet-like scheme allows for relatively longer
time-steps (20 fs) as compared with the standard Euler
integration (5 fs).

Concerning the PM part of the force field, one ob-
serves that the evolution of the charge density over the
grid can be correctly modeled with a less frequent up-
date of the potential distribution [47,50,65]. Therefore,
the Poisson time-step can be longer than the update
time of the short-range force. As an estimator of the
minimum characteristic time required to resolve the
fluctuations in the long-range force we use the inverse
of the plasma frequency [15],

ω =
√

c|q|2
εrε0m

, (26)

where c is the ionic charge concentration, m is the ion
mass and |q| is the magnitude of the ion charge. The
plasma frequency represents the electrostatic response
of the system to a perturbation in the charge density.
Therefore, the Poisson solver cannot properly accom-
modate electrostatic changes in the system if the PM
time-step is larger than the inverse of this quantity. For
an aqueous solution of KCl at 100 mM the inverse of
the plasma frequency is approximately 5 ps which is
several orders of magnitude longer than the time-step
required to update the PP force.

Although in this work we use Eq. (26) to estimate
the maximum tolerable duration of the Poisson time-
step, it should be noted that the over-damped systems
studied here are not rigorously described by plasma
theory [15,66], and that an energetically stable ionic
population can be modeled with less stringent limits
for the Poisson time-step.

4. Computational Domain

A small cubic test volume representing a portion of
a larger aqueous electrolytic solution is simulated
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to validate the simulation tool. Dirichlet boundary
conditions are set on opposite planes of the 3D sim-
ulation volume, while Neumann conditions [15] are
imposed on the other four boundaries. In this way, an
external electrostatic potential can be applied across the
computational domain, and is included in the solution
of Poisson’s equation.

Ions are allowed to traverse the Dirichlet contact
cells, and are specularly reflected by the Neumann
boundaries. Since periodic boundary conditions are not
imposed, an injection mechanism must be devised at
the Dirichlet boundaries to maintain a given ion con-
centration in the computational domain without per-
turbing its energetic stability. In this work, since the
simulated volume is assumed to represent only a por-
tion of a larger electrolytic bath, the Dirichlet bound-
aries are kept at a constant concentration to mimic the
effect of two far “electrodes”. At each Poisson time-
step an appropriate ion flux is imposed at the “elec-
trodes”, where the velocity of the injected ions is cal-
culated with a Maxwellian distribution in the directions
parallel to the contact cells and a half-Maxwellian in
the normal direction. Within this injection scheme the
average velocity of the injected particles does not cor-
respond to the macroscopic flux, and the particles ve-
locities (and energies) must relax to the steady-state
values. This process is generally fast, and steady-state
behavior is obtained within 2-3 grid cells from the
Dirichlet boundary. To avoid artifacts introduced by
the injecting “electrodes”, several cells neighboring
the contacts are excluded in the calculations of the
bulk properties. Such an injection mechanism ensures
a constant ionic concentration over long simulation
times.

5. Simulation Results

In order to validate the proposed force-field scheme,
the thermodynamic properties of an electrolytic solu-
tion are calculated under equilibrium conditions as a
function of concentration, and are compared to values
obtained with analytic approximations and experimen-
tal results, where available.

Additional simulations are also performed by intro-
ducing a 2 nm dielectric slab in the center of the com-
putational domain, to mimic the presence of a lipid
membrane with an externally applied transmembrane
potential.

An important point of merit is that all the simulation
results presented in this document have been obtained

without any external dissipative mechanisms that en-
force energy stability. For this reason the analysis of
the stability of the ionic population plays a crucial role
in the algorithmic choice.

5.1. Thermodynamic Properties

As an initial test, the equilibrium thermodynamic prop-
erties of an ionic solution are determined. This in-
volves the calculation of the radial distribution function
(RDF) [11], which relates the probability of finding a
pair of ions at a specific separation to the probability in
a homogeneous distribution at the same density [39].
The RDF as a function of the inter-particle distance is

g(r ) = 1

ρN

〈 ∑
i

∑
j �=i

δ(�r − �ri j )

〉
, (27)

where �ri j is the particle separation, ρ is the ion den-
sity, and N is the time-averaged number of ions. The
RDF provides important structural information about
the system, and can be used to calculate the ensemble
average of any pair function, including the free energy,
pressure, and chemical potential [39]. The knowledge
of these three functions allows for the calculation of
all other observable thermodynamic quantities, and the
comparison with the experiment.

The RDF for KCl and NaCl electrolytic solutions are
shown in Fig. 5 and are compared with the numerical
solution of the Ornstein-Zernike equation [45] solved
using the hypernetted chain approximation (HNC) as
a closure relation [11,67]. As can be seen, the RDFs
obtained with the simulation approach proposed in this
work show excellent agreement with the HNC results
over a variety of concentrations and ionic species. The
results of the HNC solver have been validated through
comparisons with previously reported HNC simula-
tions [28]. Details of the HNC method used to calculate
the RDF are given in App. A.

Further comparisons have also been made of the os-
motic coefficient [11,45] as computed with the pro-
posed method, with the HNC, and with experimental
values. The osmotic coefficient for a multi-ion system
is calculated with the expression [45]:

ψ = 1 − 1

6ρkB T

∑
i, j

ρiρ j

×
rmax∑
rk

∂ui j (rk)

∂r
gi j (rk)4πr3

k �rk, (28)
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Figure 5. Radial distribution function as a function of distance for different concentrations of KCl and NaCl. Comparison with results from
the HNC, shown as solid lines, show excellent agreement for different concentrations.

where ρi is the density of the i th species, ui j is the
particle-particle interaction potential, and rmax is the
distance at which the contribution from spatial deriva-
tive of the potential ui j is negligible. The RDF is written
here as gi j to distinguish between the different species
i and j . A plot of the osmotic coefficient as a func-
tion of concentration is shown in Fig. 6 for KCl and
NaCl, and includes the experimental values as well
as the results of the HNC calculation. Although the
agreement between the HNC and the Brownian dy-
namics is very good, there is a deviation from the ex-
perimental values, particularly for NaCl. Several fac-
tors can explain the discrepancy. First, the equilibrium
pressure is a crucial component of the osmotic coef-
ficient, and the ambient pressure of the computational
representation differs with respect to the experimen-
tal system because of the implicit water model [45].
Also, the RDF is significantly dependent on the pa-
rameters used in the short-range interaction, and these
vary considerably in literature, particularly for NaCl
[68].

The computational domain used for these simula-
tions is a cube with 20 nm sides and is discretized with
a 20 × 20 × 20 homogeneous tensor-product grid. The
PM force is updated every 2 ps while the PP force is
calculated every 20 fs. The integration scheme used for
the simulations is the Verlet-like algorithm. The total
simulated time is 2 ns and the system properties are
determined by taking the ensemble average over the
final 1.5 ns.

Figure 6. Osmotic coefficient versus concentration for (a) KCl and
(b) NaCl. Results are compared with experimental values and with
results from the HNC. The osmotic coefficient in this work is in very
good agreement with the analytic model.

5.2. Transmembrane Potential

Another important validation of the force-field scheme
comes from the calculation of the transmembrane
potential. An impermeable dielectric slab represent-
ing a lipid membrane is embedded in the center of
an electrolytic solution, and a simulation is run to
determine the charge distribution at the water/lipid
interface.
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Figure 7. Average concentration of anions and cations in a 150 mM solution of KCl with a 2 nm dielectric membrane in the center.

The relative dielectric constant of the membrane and
the surrounding bath is 2 and 80, respectively. Exter-
nal bias is applied at the electrodes. Due to the large
difference in dielectric constants, most of the potential
drop is across the membrane. The standard continuity
condition of the electric displacement across the di-
electric boundary [14] gives rise to an accumulation
or depletion of ions at the edge of the membrane. The
sign of the ionic charge and the external bias deter-
mines whether the ions are attracted to or repelled by
the membrane surface. A plot of the average concentra-
tion of anions and cations for different bias voltages is
shown in Fig. 7. The ion concentration is plotted along
the direction normal to the membrane interface, and
a spatial average is taken in the other two directions.
The membrane is 2 nm wide and is contained in an
electrolytic bath of 150 mM KCl. At low voltages, the
distribution of ions is approximately homogeneous on
both sides of the membrane (see Fig. 7(a)), but, with
increasing bias, the K+ ions accumulate on one side
and deplete on the other, while the Cl− ions assume
the opposite configuration, as a consequence of Gauss’
law. The concentration on the two sides of the domain
is maintained during the simulation by the injection
mechanism.

As opposed to other force field schemes, the pro-
posed approach allows for simulations with asymmet-
ric ionic concentrations. Figure 8 shows a plot of the
average ionic distribution and the potential profile in a

Figure 8. Average ionic concentration and potential distribution
in a KCl bath separated by a 2 nm dielectric membrane. The con-
centration on the left side is 300 mM, while the one on the right is
150 mM.

system with 300 mM KCl on the left side of the mem-
brane and 150 mM KCl on the right. According to the
behavior of the Boltzmann distribution [11], the net ac-
cumulation or depletion of ionic charge is equal on the
two sides of the membrane.

The transmembrane potential simulations are per-
formed on the same geometric configuration used for
the study of the thermodynamic properties, as de-
scribed in Section 5.1. The Euler integration scheme
is used, and the PP force is updated every 5 fs, while
the Poisson time-step is 2 ps. Simulations are run for
5 ns with averages taken over the last 4 ns.
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6. Conclusions

In this work, a force-field scheme based on a Poisson
P3M algorithm is proposed as an accurate and efficient
tool to simulate ionic charge transport in electrically in-
homogeneous systems. The force-field scheme is self-
consistently coupled with a dynamics simulation ker-
nel based on the Langevin equation. Calculations of
thermodynamic properties of different electrolytic so-
lutions are performed, and show excellent agreement
with other models. In addition, the spatial charge dis-
tribution profile in the presence of a double dielectric
interface is obtained. This work represents an initial
step toward the development of an efficient and robust
simulation tool for the particle-based modeling of com-
plex inhomogeneous biological systems, such as lipid
membranes and ion channels. The proposed approach
will be applied to MD simulations to further validate it
and investigate its advantages and limitations.

Appendix A: Hypernetted-Chain Method

The hypernetted-chain approximation (HNC) supplies
a closure relation for the Ornstein-Zernicke (OZ) equa-
tion, which is a non-linear integral equation for the ra-
dial distribution function in terms of the intermolecular
potential [45].

The OZ equation for a mixture of several species is
given by [11],

hss ′ (ri j ) = css ′ (ri j ) +
∑

l

ρl

∫
hsl(rik)cls ′ (r jk)dr3,

(29)

= gss ′ (ri j ) − 1, (30)

where css ′ (ri j ) and gss ′ (ri j ) are the direct correlation
function and pair correlation function (radial distri-
bution function), respectively between particle i of
species s and particle j of species s ′. The integral term
in Eq. (29) is an indirect component of the correla-
tion function, and represents the correlation of particle
i with particle j initially propagated through a third
particle (either directly or indirectly).

A closure relation for Eq. (29) is obtained by deter-
mining an expression for css ′ (ri j ) in terms of gss ′ (ri j ),
and substituting this new expression into Eq. (29).
Within the HNC formulation, the direct correlation
function is expressed as the difference between the
total correlation function and the indirect correlation

function, or,

css ′ (ri j ) = gss ′ (ri j ) − gind
ss ′ (ri j ), (31)

where gind
ss ′ (ri j ) is the radial distribution function corre-

sponding to a system without the direct (i.e., pairwise)
interaction, also called the indirect radial distribution
function:

gindirect
ss ′ (ri j ) = e−[wss′ (ri j )−uss′ (ri j )]/K B T , (32)

where w is the total interaction potential (potential of
mean force) and u is the pairwise particle-particle in-
teraction. By Taylor-expanding the indirect radial dis-
tribution function,

gindirect
ss ′ (ri j ) = 1

kB T
[wss ′ (ri j ) − uss ′ (ri j )] − 1, (33)

and substituting it into Eq. (31), one finally obtains the
HNC equation:

css ′ (ri j ) = gss ′ (ri j ) − 1 − nss ′ (ri j ), (34)

where

nss ′ (ri j ) = 1

kB T
[wss ′ (ri j ) − uss ′ (ri j )]. (35)

The radial distribution function is then calculated iter-
atively from the following set of coupled matrix equa-
tions [69]:

c(r) = g(r) − 1 − n(r) (36)

n̂(q) = ĉ(q)/(1 − ρĉ(q)) − ĉ(q) (37)

g(r) = exp[(n(r) − u(r))/kB T ], (38)

where ĉ(q) denotes the three dimensional Fourier trans-
form. The bold face notation is used to represent ma-
trix quantities. This set of equations is discretized on a
real-space grid with 0.1 Å uniform spacing. The max-
imum particle separation is set to 2 nm. The solution is
obtained when the following convergence criterion is
satisfied [69]:

εth ≥
[∫ ∞

0

∣∣ck(r ) − ck+1(r )
∣∣2

dr

]1/2

, (39)

where εth is the convergence threshold and k represents
the iteration step. According to published values [69],
the convergence threshold in this work is set to 10−14.
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Following the work of Ng [69] and Belloni [70], the
function

ul
ss ′ (ri j ) = 2qsq ′

s

8πε0εr ri j
erfc(αri j ), (40)

where α determines the spatial distance of the coulom-
bic potential, is subtracted from the pairwise interaction
to eliminate the divergence in the Fourier transform of
the potential.
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