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Computing induced charges in inhomogeneous dielectric media:
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The efficient calculation of induced charges in an inhomogeneous dielectric is important in simulations and
coarse-grained models in molecular biology, chemical physics, and electrochemistry. We pregehidbe
charge computatio{ICC) method for the calculation of the polarization charges based on the variational
formulation of Allenet al. [Phys. Chem. Chem. Phy8, 4177(2001]. We give a different solution for their
extremum condition that produces a matrix formulation. The induced charges are directly calculated by solving
the linear matrix equatioAh=c, whereh contains the discretized induced charge densitlgpends only on
the source charges—the ions moved in the simulation—and the ndattepends on the geometry of dielec-
trics, which is assumed to be unchanged during the simulation. Thus, the matrix need be inverted only once at
the beginning of the simulation. We verify the efficiency and accuracy of the method by means of Monte Carlo
simulations for two special cases. In the simplest case, a single sharp planar dielectric boundary is present,
which allows comparison with exact results calculated using the method of electrostatic images. The other
special case is a particularly simple case where the matiix not diagonal: a slab with two parallel flat
boundaries. Our results for electrolyte solutions in these special cases show that the ICC method is both
accurate and efficient.
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I. INTRODUCTION son, the effects of boundary conditions and spatial variation

Th tnuing i . " d and st of the dielectric coefficient are sometimes ignored.
€ continuing INCrease in computer speed and storage IS, g paper we include an inhomogeneous dielectric co-

making particle simulations more practical, but the strengtfygicient in particle simulations by focusing on the polariza-
and range of electrostatic interactions continue to pose fokion charges induced by the source charges in the system and
midable computational probleni$—4]. While it is possible ot on the electrostatic potential. In this way, we deal with
to simulate more and more particles in atomic detail, regiongyo sets of charges, the source charges and the induced
of many systems are still modeled at low resolution. Suchcharges, whictfonce calculatedcan be treated in the calcu-
regions may be too large for detailed simulations or theinations in much the same way as source charges. For ex-
properties may not be known in atomic detail. One type ofample, in a Monte Carl@MC) simulation of ions, the energy
coarse graining uses a spatially varying dielectric coefficientincluding electrostatic energwf the system is computed to
to describe the fast electronic, atomic, and molecular moedetermine the probability that a particle move is accepted. If
tions in polarizable materials. Dielectrics have often beerinduced charges are included in this calculation, the energy
used this way to model electrochemical interfa¢és-7]  of the dielectric system can be determined with the same
semiconductor junctiong8], the solvation of macromol- code used for the source charges.
ecules such as DNA and proteifi8,10], cell membranes We compute the induced charge using a method based on
[11,12), and ion channelgl3-2§. t_he work of Allen, Hansen, and Melchionia9] who de-
Even in idealized dielectric materials, determining thefived an elegant variational approach to the problem and then
electrostatic potentiad(r) is nontrivial when the dielectric aPplied their formulation in molecular dynamidéD) simu-
coefficients(r) is spatially inhomogeneous. The general SO_Iatlons of water permeation through nanopores in a polariz-

lution to the problem is to solve the Poisson equation able membrang30-32. The functional chosen by Allen
et al.is not the only formalism that can be used, however. In

the pioneering work of Marcug33], a polarization free en-
—&oV-[e(n)Vy(r)]=p(r), (1) ergy functional was introduced and used later by Felderhof
[34]. Free energy functionals are readily applicable in dy-
. . o namical problems, such as macromolecule conformational
and boundary (;ondlt|ons, whetg is the pe.rmltt|V|ty of free changes and solvatid85—38, because they treat the polar-
space ang(r) is the source charge density. However, for aj,4ii0n fields as virtual dynamic variables of the system
t'hree—dlmensmn'al system,' solvmg. thls equatlon' is com'puta[~35’3ﬂ in conjunction with Car-Parrinello techniquéag].
tionally expensive, technically difficult, and, in particle Recently, Attard40] has given the thermodynamic potential
simulations, generally a rate-limiting st¢p]. For this rea-  for charges in dielectric media with constrained polarization
using the variational formulation of Marc(i33] and showed
that during the approach to equilibrium its derivative yields
*Corresponding author. Email address: dirk_gillespie@rush.eduthe thermodynamic force acting on the constrained induced
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surface charges. In these studies, the dielectric boundaries 1

are allowed to move, so these approaches are different from V2y(r)=— - Lp(D+ppalr)], 5
ours where the geometry is assumed to be unchanged during 0

the simulation.

In this paper, we present a minimization of the functional
of Allen et al. for dielectric boundaries that yields a matrix 1
equationAh=c whereh is the vector of induced charges. I[4]= —f le'Vzpdr—f W
This induced charge computatioiCC) method is general 2)p D
and can be applied to dielectric interfaces that are not sharp.

For the particular case when the interface is sharp, the ICd order to expres$[ /] as a functional of the inducegbo-
method reduces to thboundary element methotBEM)  larization charge density

used in apparent surface chafgesC) calculations of solva-

tion [41—43. The practical importance of this matrix formu- h(r)= Ppol(T) @
lation is that the matriXA depends only on the geometry of gg

the dielectric medium, so that it must be inverted only once

at the beginning of the simulation if the geometry and dielecthe potential is split into the “external” and the “induced”
trics are fixed. Only the vectoc depends on the source parts

charges in the system and therefore the induced charges can

be obtained from a simple matrix/vector multiplication. P(r)=e(r)+ (1)

We apply this method to MC simulations of hard-sphere
ions near dielectric boundaries. The results show that the
ICC method is both efficient for particle simulations and
accurate when compared to MC simulations computed with

and the corresponding functional is

1
9+§V'(XV¢)}dr- (®)

=f G(r—r’)g(r’)dr’+f G(r—r")h(r")dr’.
D D

analytic electrostatic formulas. 8
G(r) is the Green’s function that satisfies
Il. THEORY
A. Variational formulation VZG(r—r")=—=5(r-r’), 9

The procedure presented in this paper is based on ﬂ\ﬁhere 8(r—r') is the Dirac delta function. The task is to

variational formulation given by Alleret al. [29]. In this : , . . :
subsection we introduce the problem and outline their apgetermme the induced charge densify) for a given exter

; : ) . nal charge densitg(r)=p(r)/eq that satisfies Eq(5), or,
roach(keeping their notationsA clear and detailed presen- . oL -~
Fation (fan t‘))é f%undl in thelo?iginal paper. nedp equivalently, minimizes Eq(6). After substituting Eq.(8)

Consider a discrete or continuous charge distribugifm into Eq. (6), Allen et al. [29] show that determining(r) is

confined to a domairD of volume V with a boundarys. equivalent to minimizing the functional
With the boundary condition thak(r) is specified onS, the

. g . SR 1
potential satisfies the Poisson equation in vacuum I,[h]= Ef f h(r)h(r")G(r—r")dr'dr
DJD
(r)
vop(n=—"— @ 1
€0 ——ffh(r’)G(r—r’)V~(XVz,//e)dr’dr
2)plp
everywhere irD, wheree is the permittivity of the vacuum. 1
The solution of the Poisson equation corresponds to the __f f h(r’ NV-TvVG(r—r")ldr'dr
minimum of the functionaf44] 2)plp (M) 4NV - XV G )]

1 1 ! n !
|[¢]=Efpvlp-vlpdr—fpg(r)lp(r)dr, (3) —ELJJDh(r )h(r")G(r—r")

whereg(r)=p(r)/eq. The minimal value—eggl[ ¢] is the XV [XVG(r=r")]dr"dr'dr. (19

electrostatic energWV of the charge distribution.
When the domairD is a dielectric material with a local
dielectric susceptibilityy(r), the polarization charge density

Allen et al. show that the extremum condition

induced by the sourcér external charge distributiorp(r) A,[h] — (12)
is associated with the potential through oh(r)
Ppoi(N) ==V -P(r)=eoV-[x(r)Vi(r)], (4) leads back to the constitutive relationP(r)=

—eox(N)Vy(r). They also show that the extremum is a
whereP(r)=—eqx(r)Vi(r) is the local polarization. The minimum and that the value ¢fh] at the minimum reduces
corresponding Poisson equation satisfied by the potential igo minus the electrostatic energy.
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Allen et al. solved the variational probleifafter discreti-  Applying this identity and Eq(9) to Eq. (14) gives
zation with a steepest descent method. In the following sec-
tion, we use a different method that produces a matrix equa- _ J' / ) AR
tion that we apply to molecular simulations. h(ne(r) ph(r Ve () V,Gr=rjdr

. - 1
B. SolutlcTn of tl-ﬂe extremum condl.tlon o =V,&e(r) V,o(r)— 8_0[8(r)_ 1]p(r). (18
After some manipulationg29], the functional derivative
in Eq. (11) simplifies to We determine the induced charge profile numerically by
sl discretizing Eq.(18) of the ICC method and solving for
2 :f h(r’)G(r—r’)dr’—f G(r—r') h(r). We focus on the case of sharp die_lectric boundaries
oh(r) D D although the equation and method are valid for afw). To

our knowledge, Eq(18) has not been previously derived for
XVr"[X(f')Vrriﬁe(r')]dr’—J J h(r") this general case.
DJD

XG(r_r,)Vrr '[)((r/)vrrG(r,_r”)]dr,dr”. C. Point charges
12) When the source chargéSC) are point charges at dis-

crete locations, the source charge density is given by
Using the definition of the Green’s functidiEqg. (9)], the

Poisson equation of the source chargfS2y,(r)= p(N=2, ze8(r—ry), (19
—p(r)/eq], and the relation k

V.(fVg)=Vf.Vg+fVZg, (13) where source chardewith valencez, is located ar, ande
is the elementary charge. Because they are point charges, the

we derive the following equation at the functional minimum: induced charge around each chakgeas a density44]

f h(r,) S(r,)G(r_r,)_f G(r_r//) _ZkeTrk)g(r_rk): (20)
D D
if the dielectric is locally uniform around the source charge.
xV,//s(r”)~Vr”G(r”—r')dr"}dr’ Therefore, the contribution td from the induced charge
around the source charges is
— -y , . , ' ' S(rk)_l
fDG(r r')V,ee(r')-Voge(r)dr hsc(r):_; Zkes(l’—m(s(r_rk)' (21)

— ;J' [e(r')—1]p(r")G(r—r")dr’, (14) Substituting this into Eq(18) gives
oJp
where h(r)s(r)—th(r’)Vrs(r)-V,G(r—r’)dr’

e(r)=1+x(r). (15 =Va(r)- Vige(r), (22

This equation may be further simplified by consideringWhere
F[h(r");r], which is both dgunctionof r and afunctionalof
h(r’) as described by Eq14), V2y(r)=— £ > %
g0 ¥ &(ry

S(r—ry) (23

F[h(f');f]=f h(r")u(r,r’)dr’—o(r), (16)  andh refers solely to the induced chargether than those
b around the source charges. Equati{@8) gives the electro-
static potential resulting from the source charges at pgint

where u(r,r’) is the expression in square brackets in thenamely

integral on the LHS of Eq(14), while v(r) is the RHS of

Eqg. (14). It is h(r") that we need to determine under the e Z
constraintF(r)=0 for all r. SinceF(r) is identically 0, it Ye(r) =7 Tl =1 (24
follows that, as a function of, V2F(r)=0 for all r. Thus, Teo Kk #lk k
we have the relation It is important to note that if the source charge were an
ion represented, for example, as a point charge at the center
f h(r’)Vfu(r,r’)dr’=Vr2v(r). (17) of a hard dielectric sphere with a dielectric coefficient differ-
D ent from that of the surrounding medium, then the induced
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charge on the ion surface must also be determ[ddg42]; Each element of the column vectois given byh; and each
this induced charge would give another contributiorh{o) element of the column vectaris given by
on the LHS of Eq(14). Since, in a computer simulation, the
source charges are moving, the geometry of the dielectric _ Iy

. . . c,=Ag, . (31
pattern would constantly change, increasing computation an,
time substantially. For this reason, we assign the interior of

the ion the same dielectric coefficient as the surrounding melhis is the same matrix formulation introduced by Hoshi
dium. et al.[41], although our derivation and resulting formulas are

more general. The discretization of the more general Eg).
is similar and also produces a linear matrix equation.

In simulations of point charges, the source charges con-
Next, we turn to the special case of sharp dielectriciripute only the RHS of Eq(29); the matrixA is given only
boundaries in which the dielectric coefficient jumps from py dielectric profile and the Green’s function. Thus, the in-
one value to another across the boundary surface. Then thgrse ofA (or any factorization oA) need only be computed
induced charge is a surface charge on the dielectric interfacgscefor a given geometry and dielectric profile. The com-

(if the induced charge around the source charges is not CoRyutational burden is then reduced to approximaftefyop-
sidered, and the integrals in Eq18) become surface inte- grations compared to thi3 that would be needed if the

D. Sharp dielectric boundaries

grals over the dielectric interfadg [29]: matrix had to be inverted at each simulation stepereN is
the number of surface elementé&nother useful method is

h(s)g(s)_Ag(s)f h(s')VG(s—s')-n(s)ds’ GMRES[45,46] which solves the matrix equation faronce
B with O(N?) operations. While GMRES is significantly

slower than backsubstitution after LU factorizatiomhich
we use herg it is useful in cases when the dielectric bound-
aries move between MC stefsuch as when the charge is

The dielectric coefficient on the boundagys) is defined to ; . .
be the arithmetic mean of the two dielectric coefficients onsurrounded by a dielectric sphere that moves along with the

each side of the boundary, and the dielectric jutg(s) is charge; in such a situation, LU factorization would require
1 3 .
the difference of the two dielectric coefficierjta the direc- N opera'uons for every M.C step. In the context of ASC
tion of the local unit normal of the surfacgs)]. solvation method;, Po_melll anq Tomgsi2,43 have also
To solve Eq.(25) numerically, the surfac8 must be dis- developed a fast iterative algorithm.
cretized; specifically, each discrete surface elenteot 5 is
characterized by its center of mags areaag, unit normal IIl. SIMULATIONS

ng, value of the mean dielectric coefficiestt, and value of This paper presents the ICC method and tests its useful-

the dielectric jumpAe,. BOtsh the potentiakle [Eq. (24]  ness in MC simulations. The algorithm is equally applicable
and the Green'’s functiofof i) G are known functions. The {5 Brownian dynamicgBD) and MD simulations. In this

integrals in Eq.(25) are then discretized as sums over thepaper, we use the canonical ensemble; thus, the volume of

=Ae(s)Vipu(9)-Nn(9). (25)

surface elementg, the system, the numbers of particles of the various species,
and the temperatur€ are the fixed and independent param-
> hﬁ( Supep—Ae @aﬁ —As 9a (26)  eters of the ensemble. The MC techniques we use are stan-
B ¢ ¢ an, “an, dard and the reader is referred to Ref$-3] for further

details. In this section, we describe the calculation of the
for a givena, whered, g is the Kronecker, electrostatic energy of a system and various tools to acceler-
ate this calculation.
G, {VsyG(Sv_sﬁ)'ny for g#vy

an,, 0 for =7y @7 A. Calculation of the energy

In a MC simulation, the change in the energy of the sys-

and tem determines acceptance or rejection of a MC step. The
probability of accepting a trial move in the canonical en-
a—dfﬁzwp (S5)-N (28) semble is mifil,exp(-AWIKT)], wherek is Boltzmann’s con-
dng SRR stant andAW is the energy change of the move, the quantity
. . . . we need to calculate.
This can be rewritten in matrix form as The electrostatic potential at any pointn the system is
given by
Ah=c, (29
Z; 1 h.a,
where each element of the matuxis given by P(r)= Ameg Z ol =T ta- ; s’ (32
A= 5aﬁ8ﬁ_A8a%aﬁ- (300  Wwhere the indicesand« range over the source point charges
@ and the dielectric surface elements, respectively,sans the
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dielectric coefficient of the region where thth charge re-
sides. The electrostatic energy of the system is determineq € | € | €
from the potential energy of the source charges: ! 2 >

Dielectric boundaries
Hard wall Hard walls Hard wall

W=o > zur)) (33
B J 1 ] l

The termsi =j should be omitted from the double sum that | @
Egs.(32) and(33) form together. L x
In MC simulations that involve pairwise additive intermo- ™
lecular potentials, the energy change of the system is equal t
the energy change of the one moved particle, making th
9y 9 P 9 -H, -D2 D2 H,

computational burden of calculatindW of order of the
number of particles. In a system with dielectric boundaries, ) . )
moving one charged particle changes the charge induced on FIG- 1. The geometry of the simulation cell with two planar
all dielectric boundaries, which, in turn, changes the electroPoundaries. Periodic boundary conditions are applied irxedy
static potential forall charged particles. In this kind of sys- directions. The simulation cell is closed by hard wallzat=H,
tem, moving one particle requires recomputing the interac-andz.:Hz' These ngls are not dielectric boundaries; the dielectric
tion energies of the moved particle with all the other €Mans uniform going through these walis=z, ande =5 for

articles, as in a simulation without dielectric boundaries Inz<_Hl andz>H,, respectively. The ions are restricted to their
P ’ " " host dielectric domain by making the dielectric boundarieg-=at

addition, a particle move also requires recomputing the inter-_ D/2 andz=D/2 hard walls. The simulation cell for the simpler

action energ?es between_ all the ir_1duced c_harg(_as and aé'ase has only one dielectric boundaryzat0 with dielectric do-
charged particles. For this calculation, the linearity of themainSsl ands..

matrix, Eq.(29), produces significant computational savings.
Every elementc, of the vectorc is a sum of the normal B. Periodic boundary conditions

components of the electric fields produced by the source |, ihis paper, we test the ICC method in two specific

charges. Since most of the charges do not move in @ MGeqometries. In the first geometry, two dielectric media with
step, their contribution ta,, does not have to be computed. gigjectric coefficients:; ande, are separated by an impen-
If Acis the change of that contains only the contributions etrable, planar surface. Here an analytic solution exs
from the moved charge, then the change in the induceeq yia the electrostatic image charge methad]) that is
charges is efficiently incorporated into computer simulatiofis,47].
The other caséFig. 1) has three dielectrics separated by two
parallel, impenetrable, planar dielectric interfaces. Both sys-
tems are homogeneous in tkandy directions, but inhomo-
geneous in the direction.

The finite (computationgl system is expanded in the

Ah=A"1Ac, (34)

where A1 is the inverse of matriA. The induced charge
after a simulation stefdenoted by superscriptew) is cal-
culated from the indL_Jced charge before the simulation stepg.q girections by applving periodic boundary conditions
(denoted by superscriptd) ash"®"=h®+ Ah. The energy ,(PBgs) with perioo)llic fepp)I/icags F())f the simulationycell in the
change due to the polarization charges induced by the digiyen girection. Both the source charges and the induced
placement of theth charge is charges have periodic replicas. When a particle is moved out

ew old of the central simulation cell, its corresponding periodic rep-
ze 2 he he lica enters from the opposite sifle—3]. To determine a dis-

AWind—g — aq |rrew_g | - |rp|d_ | tance between two chargder between a charge and the
! “ ' “ center of a surface elementve choose the closest replica to
e a,Ah, the given charge. This implementation of PBCs follows the

+ 8 le 20; Zj|rj——sa|' (39 “minimum image convention’[1-3]. (Note the distinction

between the use of the word image here and in the electro-

Only the distancef{®"—s,| need to be calculated in a MC static image charge method.

step; all other distances have been previously calculated and
can be stored in an array. This precalculation greatly reduces
computation time because a rate-limiting step in the MC The simulation cell is shown in Fig. 1. The cell dimension
simulation is the computation of the square root when calcuis L in both thex andy directions andH,+H, in the z
lating vector lengths. direction. These values must be large enough to avoid nu-
The energy calculations we discuss are valid only formerical artifacts resulting from the periodicity, cutoff poten-
movements of a chargeithin a dielectric. If a charge moves tials, and finite size of the simulation cell. Beyond the hard
across a dielectric boundary, the interaction energy betweewalls confining the ions in the direction, the dielectric con-
the charge and its surrounding dielectric must be included ininues without any change i, but this region is not acces-
the energy calculation. sible to the ions. The simulation cell is overall electroneutral.

C. Simulation method and the model
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TABLE |. Some details of the ICC simulationBl is the number of surface element®, N'®" N9 andN™" are the number of
positive and negative ions on the left or right siddgc is the number of MC steps. An attempt to move ufNig,s is made in one MC step,
where N, iS the total number of ions in the simulation cell. The “speed” is measureNja/(min CPU), the number of MC steps
performed in 1 min on 1 process@n real time, using 2.4 GHz Pentium Xenon processors of a Linux cluster comparison, the speed
is about 280N, /(min CPU) for an image charge simulatididep is the number of processors used. “Fig.” denotes the figure in which
results are shown for the given simulation. Results for simulatidhand(5) are not shown in the figures because they are indistinguishable
from the results of simulationg&l) and (4), respectively.L and H, are the dimensions of the simulation cell xay and z directions,
respectively. In simulation&)—(15), H;=H,.

No. Geometry L/d  H,/d  Ax/d N NleftoNfeft oot nrisht N /100 Speed  Ngpy  Fg.

1 280 20 3122 1/2 1600 100 100 6400 37.5 40 (04
2 280 20 3122 5/6 576 100 100 6000 104.7 30

3 280 21 31.22 716 289 100 100 3200 210.5 16 (c)4
4 80140 20  31.13 1/2 1600 100 100 2000 36.9 10 (b)5
5 80140 20  31.13 5/6 576 100 100 2000 89.1 10

6 80140 21 3113 716 289 100 100 2000 163.5 10 (b)5
7 8040 21 3113 312 169 100 100 3000 555.1 10 (b5
8 80140 20  19.87 1/2 1600 60 60 60 60 1925 27.1 10 (a6
9 80140 20  19.87 1/2 1600 60 61 61 60 1935 27.7 10 (b)6
10 8020/80 20 2118 213 1800 60 60 60 60 663 1.8 50 (a7
11 8012080 20 2118 1 800 60 60 60 60 1297 9.6 40 (@7
12 8012080 20 2118 4/3 450 60 60 60 60 4990 30.3 40 @7
13 408040 20 2118 213 1800 60 60 60 60 1023 1.8 50 (b)7
14 4018040 20 2118 1 800 60 60 60 60 2200 10.4 30 (b7
15 4480/40 20 2118 4/3 450 60 60 60 60 3152 31.2 20 (b7

In some cases we choose the number of cations and anionswiere k is Boltzmann’s constant. If the ions had different

be different in the various dielectric domains, resulting indiameters, these would be incorporated into the definition of

electrical double layers at the dielectric boundaries. ;i . Each element in the tensor corresponds to the interac-
The ions are represented as charged, hard splBies tion energy between two ions in contact, measuredn

Nevertheless, because the ions are in different dielectrics, For a symmetric electrolyte the coupling is described by a

is necessary to be more precise. The ions are representedstslar. This coupling constant shows how a given interaction

point charges embedded at the center of hard, dielectristrength can be achieved by different dielectric coefficients,

spheres of diametat with the same dielectric coefficient as temperatures, and ion sizes.

that of the medium surrounding them. The ions cannot leave In our simulations,q*=2.321 andq*=4.642, corre-

their host dielectric because the dielectric boundaries act asponding to monovalent ions witthi=3 A at T=300 K in

hard walls. The charge of the cations and the anionsés dielectric media withe =80 ande =40, respectively. How-

and —e, respectively, and all ion species are given the samever, our conclusions are not tied to any particular valug of

diameter. and coupling constant. Using the coupling constant makes a
The targeted bulk cation and anion concentratiorpds more general treatment of other parameters possible. Scaling

=0.5 mole/dnt. This concentration corresponds to a re-lengths and distances lywhile keeping the coupling con-

duced density’ = Niond®/V=0.0163, whereN;,,s is the  stant unchanged means that the same valuéscandL, in

total number of ions, in the particular casedsf 3 A. Thisis  units ofd, can be used. Note that because the dielectric co-

a low density system because the water is modeled as a coefficient has a strong spatial variation in some systems, ionic

tinuum dielectric. The density profiles computed in our simu-coupling might change with location. One must construct the

lations depend only oz and are given normalized to the grid and choose the cell dimensions in such geometries with

bulk density: p(z)/po. Acceptable statistical variations of extra care.

density profilesp(z) in such low-density systems requires

long simulations or, alternately, many simulations with dif- IV. RESULTS AND DISCUSSION

ferent random initial configurations run simultaneously on

separate processors and then averaged. Table | lists compu- A. One dielectric boundary plane

tational details of the ICC simulations. We first present MC results for one sharp planar boundary
The strength of the ionic interactions can be described byvith ions present on only one siden the right, subscripted
the dimensionless coupling tensor by 2). We use this somewhat overstudied system for the same

reason it is overstudied: a simple, analytical solution is avail-
able with the electrostatic image charge methddl. Apply-
ing this method in a MC simulation is straightforwadi7]

Z; Zj 82

qij:47rssode' (36)
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80|40
C T I T l T | T I T =
1.1 -- L/id=403 | - (1) (2)
e L/id=20 [} &/ N/
- o L/d=80/3 T :
_ 105k — L/d=100/3 @
Q
2 Ax |
) i : @
s y
0.95
- 1 | L | 1 | 1 | L =
0.5 1 1.5 2 25 3

z/d FIG. 3. The figure locates four points on one dielectric surface

FIG. 2. The normalized density profiles calculated with the im-element of the computational grid. To analyze errors due to the
age charge method of an electrolyte insa=40 dielectric near a  discretization of the dielectric interface, a test charge is located
boundary with ans;=80 dielectric. The various curves refer to above one of these four locatiofsut of the plangat a distance
various cell widthd_/d=40/3, 60/3, 80/3, and 100/3. For all sub- from the plane.

sequent MC simulationd,~20d is chosen so thdt/Ax is an in- | . . . . .
teger. is computed only once for a particle simulation, increased fill

time has little effect on simulation time.

) ) For the planar dielectric interface, we explore the effect of
and results in a relatively fast code with which we can quan- by considering the energy of a single point chaegie
tify errors introduced by the ICC method. Analytic solutions the vicinity of the dielectric boundary. This is the energy due
are available for other geometrié®r example, a dielectric  to the polarization of the boundary by the point charge, cor-
sphere[44]), but these are generally series of special funcresponding to the interaction energy between the point
tions that require many terms to calculate accurately for iongharge ar; and the induced charges, namely
near the interface. This would result in relatively slow MC
simulations compared to the one-plane case computed with W _& E h.a,
image charges. POl 8o 4 |ri—s,|”

For the case of a single dielectric boundary we report ] ]

two simulations:(@) ;=2 ande,=80 and(b) £;,=80 and  Figure 3 defines th&-y coordinates of four charges located

g,=40. Case(a) represents a large dielectric jump that abo‘é? a dielectric ?urr]fa(ag lelem_erjtr@tfrz, r?»*h ahd(jr4. '3
is encountered in biological applications. Becausecs,, (he discretization of the dielectric interface, the induced sur-

the ions are repelled by the induced charge. Céseis face charge is a point charge in the center of the surface

the opposite and so ions are attracted to the boundary. V\felement. Position 3 is above the discretized induced charge,

ianifi i ition 1 is above a cornéfarthest from the induced
choosee,=40 because significantly smaller values are notWhIIe pos éia

physically realistic; ions cannot be dissolved in low- chargg. With a source charge at one of these locatignat
dielectric solvents ' a distancez from the |nt.erface,.the polarization ener’@ﬂpo,

The ICC h ' q | i i is computed as a function af Figure 4a) compares the ICC
: N method uses several geometric parameters aaq i+ for each source charge position to the analytic result
inputs, specificallyH,, H,, L, andAx given in terms of our

. : . ) ) for the ideal dielectric boundary separatiag=2 ande,
length scaled, the ion diameter. Previous MC simulations

] o X =80. Results forz/d<1/2 are not shown, because the cen-
show thatH, /d=H,/d=20 is sufficiently large for the ion o5 and charges of hard-sphere ions are excluded from that

reservoirs[48—-51. Figure 2 shows the density profiles for region. The width of the surface elements/d=5/6. The
thee; =80/e,=40 case with various cell widthiscalculated  ideally infinite dielectric planar interface used for the image
using image charges. For the values of the coupling constagharge calculation is given a finite length bfd=20, the
and density we use, aboléd~20 the profiles are indistin- same cell width used in all MC simulations. PBCs are not
guishable. In all subsequent simulations we use this value.used in these ICC calculations; they are used only in the MC
Unlike the system dimensiont$;, H,, andL, the param-  simulations.
eter Ax directly influences the accuracy of the computed The polarization energy is sensitive to position when the
ion/dielectric interface interaction. Becaudex represents test charge is close to the discretized boundary in the simu-
the discretization of the actually continuous surface chargéation. The deviations from the exact result are relatively
distribution, the proper choice dx depends on the system large when the test charge is in position(@osest to the
being studied. In addition, curved interfaces require someliscretized induced chargand when it is in position Ifar-
curvature correction on each surface elenjdit52. In the  thest from the discretized induced chargeith opposite
ICC method, these corrections change only the fill time ofsigns. This is because the induced surface charge that is ide-
the matrixA, and not the size of the matrix. Since the matrix ally spread on the surface element is represented as a point

(37

046702-7



BODA et al.

PHYSICAL REVIEW E 69, 046702 (2004

2180 80140
‘ L I L] I L I L \ L] I L] I L] I L]
12 7 .
N @ * Analytic )y ® —aa=i2| |
\ == Position 1 (ICC) R - J
g .. \ ===+ Ax/d =5/6
[ Position 2 (ICC) 2 - _
£ e = BN Ax/d=7/6| _]
= 09| ~- Position 3 (ICC) 204 N = Ax/d=3/2
S L Position 4 (ICC) = BoA -
- =R IR
0.6 021~ \\ N 7
- ~ -~
--.'.. \\~ ~oe - -
0.3 A DR R R or
0.5 0.75 1 1.25 1.5 0.5 0.75 1 1.25 1.5
T I T T T | T B | ' | ' -
0.6f 1 () - L5k (b) -
! \ — Ax/d=1/2 = — Image charge |
) \'\ e Axid =5/g ] L1 e Axd=12(0CO| _|
S04\ Y AT - < Tt = Axd=7/6(0CO)| ]
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FIG. 5. (a) The errorE(z) defined in Eq(38) for a flat dielectric
boundary withe;=80 ande,=40 for the four charge positions
shown in Fig. 3 withAx/d=1/2, 5/6, 7/6, and 3/2. As in Fig. 4,
< E(z)—0 as Ax/d—0. (b) Normalized density profiles from
E\ ICC-MC simulations withAx/d=1/2, 7/6, and 3/2 compared with
z L — Image charge i MC simulations using image charges. The profiles computed using
e Ax/d=1/2(ICC) Ax/d=5/6 were indistinguishable from the profiles computed using
0.6 8 Ax/d=7/6 (ICC)| Ax/d=1/2.
| | | - density profiles. To show that these errors can be controlled

1 > 3 2 by choosingAx small enough, we consider the error index

z/d

FIG. 4. (a) The polarization energy of a point charge of magni- (39

tudee as a function of distancefrom a flat dielectric boundary for

£1=2 ande,=80. The test charge is in one of the four positions hereW,(z) is the analytic polarization energy calculated
above the grid as shown in Fig. 3. The width of a surface elementqm the image charge meth@d4] and the four charge po-
square isAx/d=5/6. (b) The errorE(z) defined in Eq(38) for all sitionsr; (with varyingz) are those shown in Fig. 3. Figure
four charge positions foAx/d=1/2, 5/6, 7/6, and 3/2. Note that 4(b) sholws thaE(z)— 0 asAx—0. For numerical purposes
E(2)—0 as Ax/d—0 and that, for numerical purposeaxid o "finy thatax/d=1/2 sufficiently reduces the error. Figure

=1/2 gives sufficiently small erroréc) Normalized density profiles . : .
from ICC-MC simulations withAx/d=1/2 and 7/6 compared with 4(c) shows that computed ion density profiles for the

MC simulations using image charges. The profiles computed usin:2|82:8(_) case With variouax agree well with MC simu-
Ax/d=5/6 were indistinguishable from the profiles computed using ations using _the image charge method rath_er than the 1CC
Ax/d=1/2. method. We find that even faxx’s whereE(z) is not O, the

ICC-MC density profiles are indistinguishable and agree
charge in the center of the square. Thus, the interaction witivith MC simulations using the image charge method.
the induced charge is overestimated when the test charge is We examine thes;=80e,=40 case in a similar way.
close to the center. Figure a) showsE(z) for variousAx and Fig. §b) shows
Since the polarization enerd@7) is an important compo- the results of several MC simulations, each using a different
nent of the system enerd®5), the errors shown in Fig.(d  Ax. The conclusions about errors are similar to those of the
(for a givenAx) must be so small that they do not affect the £,=2|e,=80 case.

13 .
E(2)=7 2 [Who(2)~Wie(2)],

046702-8
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80140 F— | T | LE
L] I L] I L] I .
1.2
1.1 e
(=N
S S 0.8 80120180
= o4
N =
o- -
0.7
— Image charge | - :
e 1CC [ @ o:
i Rl i T R N A P B
P IR sk V0 o b b
L I L I L ! L I L I L
- - anion (image charge)é 1.1 p ' -
1.2 || — cation (image charge) _ | 40180140 1

o anion (ICC)
® cation (ICC)

p(z) / py

-8 -4 0 4 8
- z/d
4 6
z/d FIG. 7. The normalized density profiles of electrolytes outside a

FIG. 6. Th lized densit fil f electrolvtes i dielectric slab of widtlD/d=10/3 calculated from the ICC method.
i f.tw. d_elnotrma Izgth ensflf_y_ pr?s' 6—88% € e; ro_y4¢(e)s N  SYS"The dielectric coefficient of the slab and the outside regiongare
em ot two dielectrics with coeflicients, =64 ande, =40 sepa- £,=20 ande,=e3=_80, respectively, anth) £,=80 andes;=¢3

ra_ted by a flat bou_nda_ry a=0. ICC-MC results are com_pared =40, respectively. The widths of a surface element Argd
with MC results using image charges. The number of cations and_ 213 1. or 4/3

anions on the two sides of the dielectric boundaryalsequal and
(b) different. In casdb), double layers are formed near the interface
and separate profiles for the cations and anions are shown. In cagéelectric coefficients; andes (Fig. 1). We uses;=¢3. In
(a), cation and anion profiles are the safapart from statistical Fig. 7, ICC-MC results are shown using differekx for a
noise. The width of a dielectric surface elementAs/d=1/2. slab of widthD/d= 10/3 with(a) £,=80/e,=20/e5=80 and
(b) e;,=40&,=805=40. In each case, the computed den-
Next, we consider a case in which ions are present osity profiles converge a&x decreases. The profiles are very
both sides o, =80e,=40 interface. Figure @ shows the similar to those obtained for the single boundary case that
density profiles with an electroneutral electrolyte on eacrrorresponds to a semiinfinite slab geometry. Apparently the
side of the interface. In this and the other simulations predensity profiles are governed by the interaction of the ions
sented so far, the cation profiles coincide with the anion prowith the closest dielectric boundary.
files (apart from statistical noigeln Fig. 6(b), we show den- This two-interface geometry provides an additional test of
sity profiles calculated when the number of cations andhe ICC method because the matAxis not diagonal; with
anions is not equal on each siflEable ). The extra charges two interfaces, induced charges on one plane indfuréhen
are attracted to the regions near the dielectric interface aneharges on the other plane and therefo@,;/on,#0 for
form electrical double layers there. The agreement betweeall « and B in Eq. (26). The number of operations in the
image charge and the ICC resultsith Ax/d=1/2) is good  matrix multiplicationA~1c is now of orderN? instead ofN.
for both anion and cation densities. The simulations are slower, but still practical. Simulations
(1)—(7) (Table ) show that the speed of computation is
roughly proportional to the inverse number of surface ele-
B. Two dielectric boundary planes mentsN in systems with one interface. If the matexis not
diagonal[simulations(10)—(15)] this relation is nonlinear; it
Next we consider a dielectric slab with dielectric coeffi- is proportional to IN?. Nevertheless, using a cluster of com-
cient e, embedded between two semiinfinite dielectrics ofputers, as described earlier, makes such calculations feasible.
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V. CONCLUSION

We report a different solution of the extremum condition

of the functional introduced by Alleet al. [29]. After dis-

PHYSICAL REVIEW E 69, 046702 (2004
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