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Computing induced charges in inhomogeneous dielectric media:
Application in a Monte Carlo simulation of complex ionic systems
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The efficient calculation of induced charges in an inhomogeneous dielectric is important in simulations and
coarse-grained models in molecular biology, chemical physics, and electrochemistry. We present theinduced
charge computation~ICC! method for the calculation of the polarization charges based on the variational
formulation of Allenet al. @Phys. Chem. Chem. Phys.3, 4177~2001!#. We give a different solution for their
extremum condition that produces a matrix formulation. The induced charges are directly calculated by solving
the linear matrix equationAh5c, whereh contains the discretized induced charge density,c depends only on
the source charges—the ions moved in the simulation—and the matrixA depends on the geometry of dielec-
trics, which is assumed to be unchanged during the simulation. Thus, the matrix need be inverted only once at
the beginning of the simulation. We verify the efficiency and accuracy of the method by means of Monte Carlo
simulations for two special cases. In the simplest case, a single sharp planar dielectric boundary is present,
which allows comparison with exact results calculated using the method of electrostatic images. The other
special case is a particularly simple case where the matrixA is not diagonal: a slab with two parallel flat
boundaries. Our results for electrolyte solutions in these special cases show that the ICC method is both
accurate and efficient.

DOI: 10.1103/PhysRevE.69.046702 PACS number~s!: 02.70.Ns, 05.10.Ln
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I. INTRODUCTION

The continuing increase in computer speed and storag
making particle simulations more practical, but the stren
and range of electrostatic interactions continue to pose
midable computational problems@1–4#. While it is possible
to simulate more and more particles in atomic detail, regi
of many systems are still modeled at low resolution. Su
regions may be too large for detailed simulations or th
properties may not be known in atomic detail. One type
coarse graining uses a spatially varying dielectric coeffici
to describe the fast electronic, atomic, and molecular m
tions in polarizable materials. Dielectrics have often be
used this way to model electrochemical interfaces@5–7#
semiconductor junctions@8#, the solvation of macromol-
ecules such as DNA and proteins@9,10#, cell membranes
@11,12#, and ion channels@13–28#.

Even in idealized dielectric materials, determining t
electrostatic potentialc(r ) is nontrivial when the dielectric
coefficient«(r ) is spatially inhomogeneous. The general s
lution to the problem is to solve the Poisson equation

2«0“•@«~r !“c~r !#5r~r !, ~1!

and boundary conditions, where«0 is the permittivity of free
space andr(r ) is the source charge density. However, fo
three-dimensional system, solving this equation is comp
tionally expensive, technically difficult, and, in partic
simulations, generally a rate-limiting step@8#. For this rea-
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son, the effects of boundary conditions and spatial variat
of the dielectric coefficient are sometimes ignored.

In this paper we include an inhomogeneous dielectric
efficient in particle simulations by focusing on the polariz
tion charges induced by the source charges in the system
not on the electrostatic potential. In this way, we deal w
two sets of charges, the source charges and the indu
charges, which~once calculated! can be treated in the calcu
lations in much the same way as source charges. For
ample, in a Monte Carlo~MC! simulation of ions, the energy
~including electrostatic energy! of the system is computed t
determine the probability that a particle move is accepted
induced charges are included in this calculation, the ene
of the dielectric system can be determined with the sa
code used for the source charges.

We compute the induced charge using a method base
the work of Allen, Hansen, and Melchionna@29# who de-
rived an elegant variational approach to the problem and t
applied their formulation in molecular dynamics~MD! simu-
lations of water permeation through nanopores in a pola
able membrane@30–32#. The functional chosen by Allen
et al. is not the only formalism that can be used, however.
the pioneering work of Marcus@33#, a polarization free en-
ergy functional was introduced and used later by Felder
@34#. Free energy functionals are readily applicable in d
namical problems, such as macromolecule conformatio
changes and solvation@35–38#, because they treat the pola
ization fields as virtual dynamic variables of the syste
@35,37# in conjunction with Car-Parrinello techniques@39#.
Recently, Attard@40# has given the thermodynamic potenti
for charges in dielectric media with constrained polarizat
using the variational formulation of Marcus@33# and showed
that during the approach to equilibrium its derivative yiel
the thermodynamic force acting on the constrained indu
©2004 The American Physical Society02-1
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surface charges. In these studies, the dielectric bound
are allowed to move, so these approaches are different f
ours where the geometry is assumed to be unchanged d
the simulation.

In this paper, we present a minimization of the function
of Allen et al. for dielectric boundaries that yields a matr
equationAh5c where h is the vector of induced charge
This induced charge computation~ICC! method is genera
and can be applied to dielectric interfaces that are not sh
For the particular case when the interface is sharp, the
method reduces to theboundary element method~BEM!
used in apparent surface charge~ASC! calculations of solva-
tion @41–43#. The practical importance of this matrix formu
lation is that the matrixA depends only on the geometry o
the dielectric medium, so that it must be inverted only on
at the beginning of the simulation if the geometry and diel
trics are fixed. Only the vectorc depends on the sourc
charges in the system and therefore the induced charges
be obtained from a simple matrix/vector multiplication.

We apply this method to MC simulations of hard-sphe
ions near dielectric boundaries. The results show that
ICC method is both efficient for particle simulations a
accurate when compared to MC simulations computed w
analytic electrostatic formulas.

II. THEORY

A. Variational formulation

The procedure presented in this paper is based on
variational formulation given by Allenet al. @29#. In this
subsection we introduce the problem and outline their
proach~keeping their notations!. A clear and detailed presen
tation can be found in the original paper.

Consider a discrete or continuous charge distributionr(r )
confined to a domainD of volume V with a boundaryS.
With the boundary condition thatc(r ) is specified onS, the
potential satisfies the Poisson equation in vacuum

¹2c~r !52
r~r !

«0
~2!

everywhere inD, where«0 is the permittivity of the vacuum
The solution of the Poisson equation corresponds to
minimum of the functional@44#

I @c#5
1

2ED
“c•“cdr2E

D
g~r !c~r !dr , ~3!

where g(r )5r(r )/«0. The minimal value2«0I @c# is the
electrostatic energyW of the charge distribution.

When the domainD is a dielectric material with a loca
dielectric susceptibilityx(r ), the polarization charge densit
induced by the source~or external! charge distributionr(r )
is associated with the potential through

rpol~r !52“•P~r !5«0“•@x~r !“c~r !#, ~4!

whereP(r )52«0x(r )¹c(r ) is the local polarization. The
corresponding Poisson equation satisfied by the potentia
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¹2c~r !52
1

«0
@r~r !1rpol~r !#, ~5!

and the corresponding functional is

I @c#5
1

2ED
“c•“cdr2E

D
cFg1

1

2
“•~x“c!Gdr . ~6!

In order to expressI @c# as a functional of the induced~po-
larization! charge density

h~r !5
rpol~r !

«0
, ~7!

the potential is split into the ‘‘external’’ and the ‘‘induced
parts

c~r !5ce~r !1c i~r !

5E
D

G~r2r 8!g~r 8!dr 81E
D

G~r2r 8!h~r 8!dr 8.

~8!

G(r ) is the Green’s function that satisfies

¹2G~r2r 8!52d~r2r 8!, ~9!

where d(r2r 8) is the Dirac delta function. The task is t
determine the induced charge densityh(r ) for a given exter-
nal charge densityg(r )5r(r )/«0 that satisfies Eq.~5!, or,
equivalently, minimizes Eq.~6!. After substituting Eq.~8!
into Eq. ~6!, Allen et al. @29# show that determiningh(r ) is
equivalent to minimizing the functional

I 2@h#5
1

2ED
E

D
h~r !h~r 8!G~r2r 8!dr 8dr

2
1

2ED
E

D
h~r 8!G~r2r 8!“•~x“ce!dr 8dr

2
1

2ED
E

D
h~r 8!ce~r !“•@x“G~r2r 8!#dr 8dr

2
1

2ED
E

D
E

D
h~r 8!h~r 9!G~r2r 8!

3“•@x“G~r2r 9!#dr 9dr 8dr . ~10!

Allen et al. show that the extremum condition

dI 2@h#

dh~r !
50 ~11!

leads back to the constitutive relationP(r )5
2«0x(r )“c(r ). They also show that the extremum is
minimum and that the value ofI @h# at the minimum reduces
to minus the electrostatic energy.
2-2
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Allen et al. solved the variational problem~after discreti-
zation! with a steepest descent method. In the following s
tion, we use a different method that produces a matrix eq
tion that we apply to molecular simulations.

B. Solution of the extremum condition

After some manipulations@29#, the functional derivative
in Eq. ~11! simplifies to

dI 2

dh~r !
5E

D
h~r 8!G~r2r 8!dr 82E

D
G~r2r 8!

3“ r8•@x~r 8!“ r8ce~r 8!#dr 82E
D
E

D
h~r 9!

3G~r2r 8!“ r8•@x~r 8!“ r8G~r 82r 9!#dr 8dr 9.

~12!

Using the definition of the Green’s function@Eq. ~9!#, the
Poisson equation of the source charges@¹2ce(r )5
2r(r )/«0#, and the relation

“•~ f“g!5“ f •“g1 f“2g, ~13!

we derive the following equation at the functional minimum

E
D

h~r 8!F«~r 8!G~r2r 8!2E
D

G~r2r 9!

3“ r9«~r 9!•“ r9G~r 92r 8!dr 9Gdr 8

5E
D

G~r2r 8!“ r8«~r 8!•“ r8ce~r 8!dr 8

2
1

«0
E

D
@«~r 8!21#r~r 8!G~r2r 8!dr 8, ~14!

where

«~r !511x~r !. ~15!

This equation may be further simplified by consideri
F@h(r 8);r #, which is both afunctionof r and afunctionalof
h(r 8) as described by Eq.~14!,

F@h~r 8!;r #5E
D

h~r 8!u~r ,r 8!dr 82v~r !, ~16!

where u(r ,r 8) is the expression in square brackets in t
integral on the LHS of Eq.~14!, while v(r ) is the RHS of
Eq. ~14!. It is h(r 8) that we need to determine under th
constraintF(r )50 for all r . SinceF(r ) is identically 0, it
follows that, as a function ofr , ¹2F(r )50 for all r . Thus,
we have the relation

E
D

h~r 8!“ r
2u~r ,r 8!dr 85“ r

2v~r !. ~17!
04670
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Applying this identity and Eq.~9! to Eq. ~14! gives

h~r !«~r !2E
D

h~r 8!“ r«~r !•“ rG~r2r 8!dr 8

5“ r«~r !•“ rce~r !2
1

«0
@«~r !21#r~r !. ~18!

We determine the induced charge profile numerically
discretizing Eq.~18! of the ICC method and solving fo
h(r ). We focus on the case of sharp dielectric boundar
although the equation and method are valid for any«(r ). To
our knowledge, Eq.~18! has not been previously derived fo
this general case.

C. Point charges

When the source charges~SC! are point charges at dis
crete locations, the source charge density is given by

r~r !5(
k

zked~r2r k!, ~19!

where source chargek with valencezk is located atr k ande
is the elementary charge. Because they are point charges
induced charge around each chargek has a density@44#

2zke
«~r k!21

«~r k!
d~r2r k!, ~20!

if the dielectric is locally uniform around the source charg
Therefore, the contribution toh from the induced charge
around the source charges is

hSC~r !52(
k

zke
«~r k!21

«~r k!«0
d~r2r k!. ~21!

Substituting this into Eq.~18! gives

h~r !«~r !2E
D

h~r 8!“ r«~r !•“ rG~r2r 8!dr 8

5“ r«~r !•“ rce~r !, ~22!

where

¹2ce~r !52
e

«0
(

k

zk

«~r k!
d~r2r k! ~23!

and h refers solely to the induced chargesother than those
around the source charges. Equation~23! gives the electro-
static potential resulting from the source charges at poinr ,
namely

ce~r !5
e

4p«0
(

k

zk

«~r k!ur2r ku
. ~24!

It is important to note that if the source charge were
ion represented, for example, as a point charge at the ce
of a hard dielectric sphere with a dielectric coefficient diffe
ent from that of the surrounding medium, then the induc
2-3
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charge on the ion surface must also be determined@41,42#;
this induced charge would give another contribution toh(r )
on the LHS of Eq.~14!. Since, in a computer simulation, th
source charges are moving, the geometry of the dielec
pattern would constantly change, increasing computa
time substantially. For this reason, we assign the interio
the ion the same dielectric coefficient as the surrounding
dium.

D. Sharp dielectric boundaries

Next, we turn to the special case of sharp dielec
boundaries in which the dielectric coefficient jumps fro
one value to another across the boundary surface. Then
induced charge is a surface charge on the dielectric interf
~if the induced charge around the source charges is not
sidered!, and the integrals in Eq.~18! become surface inte
grals over the dielectric interfaceB @29#:

h~s!«~s!2D«~s!E
B
h~s8!“sG~s2s8!•n~s!ds8

5D«~s!“ce~s!•n~s!. ~25!

The dielectric coefficient on the boundary«(s) is defined to
be the arithmetic mean of the two dielectric coefficients
each side of the boundary, and the dielectric jumpD«(s) is
the difference of the two dielectric coefficients@in the direc-
tion of the local unit normal of the surfacen(s)].

To solve Eq.~25! numerically, the surfaceB must be dis-
cretized; specifically, each discrete surface elementb of B is
characterized by its center of masssb , areaab , unit normal
nb , value of the mean dielectric coefficient«b , and value of
the dielectric jumpD«b . Both the potentialce @Eq. ~24!#
and the Green’s function~of R3) G are known functions. The
integrals in Eq.~25! are then discretized as sums over t
surface elementsb,

(
b

hbS dab«b2D«a

]Gab

]na
abD5D«a

]ca

]na
~26!

for a givena, wheredab is the Kroneckerd,

]Ggb

]ng
5H“sg

G~sg2sb!•ng for bÞg

0 for b5g
~27!

and

]cb

]nb
5“ce~sb!•nb . ~28!

This can be rewritten in matrix form as

Ah5c, ~29!

where each element of the matrixA is given by

Aab5dab«b2D«a

]Gab

]na
ab . ~30!
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Each element of the column vectorh is given byhb and each
element of the column vectorc is given by

ca5D«a

]ca

]na
. ~31!

This is the same matrix formulation introduced by Hos
et al. @41#, although our derivation and resulting formulas a
more general. The discretization of the more general Eq.~18!
is similar and also produces a linear matrix equation.

In simulations of point charges, the source charges c
tribute only the RHS of Eq.~29!; the matrixA is given only
by dielectric profile and the Green’s function. Thus, the
verse ofA ~or any factorization ofA) need only be computed
once for a given geometry and dielectric profile. The com
putational burden is then reduced to approximatelyN2 op-
erations compared to theN3 that would be needed if the
matrix had to be inverted at each simulation step~whereN is
the number of surface elements!. Another useful method is
GMRES@45,46# which solves the matrix equation forh once
with O(N2) operations. While GMRES is significantl
slower than backsubstitution after LU factorization~which
we use here!, it is useful in cases when the dielectric boun
aries move between MC steps~such as when the charge
surrounded by a dielectric sphere that moves along with
charge!; in such a situation, LU factorization would requir
N3 operations for every MC step. In the context of AS
solvation methods, Pomelli and Tomasi@42,43# have also
developed a fast iterative algorithm.

III. SIMULATIONS

This paper presents the ICC method and tests its use
ness in MC simulations. The algorithm is equally applicab
to Brownian dynamics~BD! and MD simulations. In this
paper, we use the canonical ensemble; thus, the volum
the system, the numbers of particles of the various spec
and the temperatureT are the fixed and independent param
eters of the ensemble. The MC techniques we use are s
dard and the reader is referred to Refs.@1–3# for further
details. In this section, we describe the calculation of
electrostatic energy of a system and various tools to acce
ate this calculation.

A. Calculation of the energy

In a MC simulation, the change in the energy of the s
tem determines acceptance or rejection of a MC step.
probability of accepting a trial move in the canonical e
semble is min@1,exp(2DW/kT)#, wherek is Boltzmann’s con-
stant andDW is the energy change of the move, the quant
we need to calculate.

The electrostatic potential at any pointr in the system is
given by

c~r !5
e

4p«0
(

i

zi

« i ur2r i u
1

1

4p (
a

haaa

ur2sau
, ~32!

where the indicesi anda range over the source point charg
and the dielectric surface elements, respectively, and« i is the
2-4
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COMPUTING INDUCED CHARGES IN INHOMOGENEOUS . . . PHYSICAL REVIEW E 69, 046702 ~2004!
dielectric coefficient of the region where thei th charge re-
sides. The electrostatic energy of the system is determ
from the potential energy of the source charges:

W5
e

2 (
j

zjc~r j !. ~33!

The termsi 5 j should be omitted from the double sum th
Eqs.~32! and ~33! form together.

In MC simulations that involve pairwise additive interm
lecular potentials, the energy change of the system is equ
the energy change of the one moved particle, making
computational burden of calculatingDW of order of the
number of particles. In a system with dielectric boundari
moving one charged particle changes the charge induce
all dielectric boundaries, which, in turn, changes the elec
static potential forall charged particles. In this kind of sys
tem, moving one particle requires recomputing the inter
tion energies of the moved particle with all the oth
particles, as in a simulation without dielectric boundaries.
addition, a particle move also requires recomputing the in
action energies between all the induced charges and
charged particles. For this calculation, the linearity of t
matrix, Eq.~29!, produces significant computational saving
Every elementca of the vectorc is a sum of the norma
components of the electric fields produced by the sou
charges. Since most of the charges do not move in a
step, their contribution toca does not have to be compute
If Dc is the change ofc that contains only the contribution
from the moved charge, then the change in the indu
charges is

Dh5A21Dc, ~34!

whereA21 is the inverse of matrixA. The induced charge
after a simulation step~denoted by superscriptnew) is cal-
culated from the induced charge before the simulation s
~denoted by superscriptold) ashnew5hold1Dh. The energy
change due to the polarization charges induced by the
placement of thei th charge is

DWind5
zie

8p (
a

aaS ha
new

ur i
new2sau

2
ha

old

ur i
old2sau D

1
e

8p (
j Þ i

(
a

zj

aaDha

ur j2sau
. ~35!

Only the distancesur i
new2sau need to be calculated in a MC

step; all other distances have been previously calculated
can be stored in an array. This precalculation greatly redu
computation time because a rate-limiting step in the M
simulation is the computation of the square root when ca
lating vector lengths.

The energy calculations we discuss are valid only
movements of a chargewithin a dielectric. If a charge move
across a dielectric boundary, the interaction energy betw
the charge and its surrounding dielectric must be include
the energy calculation.
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B. Periodic boundary conditions

In this paper, we test the ICC method in two speci
geometries. In the first geometry, two dielectric media w
dielectric coefficients«1 and«2 are separated by an impen
etrable, planar surface. Here an analytic solution exists~de-
rived via the electrostatic image charge method@44#! that is
efficiently incorporated into computer simulations@5,47#.
The other case~Fig. 1! has three dielectrics separated by tw
parallel, impenetrable, planar dielectric interfaces. Both s
tems are homogeneous in thex andy directions, but inhomo-
geneous in thez direction.

The finite ~computational! system is expanded in thex
and y directions by applying periodic boundary condition
~PBCs! with periodic replicas of the simulation cell in th
given direction. Both the source charges and the indu
charges have periodic replicas. When a particle is moved
of the central simulation cell, its corresponding periodic re
lica enters from the opposite side@1–3#. To determine a dis-
tance between two charges~or between a charge and th
center of a surface element!, we choose the closest replica
the given charge. This implementation of PBCs follows t
‘‘minimum image convention’’@1–3#. ~Note the distinction
between the use of the word image here and in the elec
static image charge method.!

C. Simulation method and the model

The simulation cell is shown in Fig. 1. The cell dimensio
is L in both thex and y directions andH11H2 in the z
direction. These values must be large enough to avoid
merical artifacts resulting from the periodicity, cutoff pote
tials, and finite size of the simulation cell. Beyond the ha
walls confining the ions in thez direction, the dielectric con-
tinues without any change in«, but this region is not acces
sible to the ions. The simulation cell is overall electroneutr

FIG. 1. The geometry of the simulation cell with two plan
boundaries. Periodic boundary conditions are applied in thex andy
directions. The simulation cell is closed by hard walls atz52H1

andz5H2. These walls are not dielectric boundaries; the dielec
remains uniform going through these walls:«5«1 and «5«3 for
z,2H1 and z.H2, respectively. The ions are restricted to the
host dielectric domain by making the dielectric boundaries atz5
2D/2 andz5D/2 hard walls. The simulation cell for the simple
case has only one dielectric boundary atz50 with dielectric do-
mains«1 and«2.
2-5
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TABLE I. Some details of the ICC simulations.N is the number of surface elements.N1
left , N2

left , N1
right , andN2

right are the number of
positive and negative ions on the left or right sides.NMC is the number of MC steps. An attempt to move up toNions is made in one MC step
whereNions is the total number of ions in the simulation cell. The ‘‘speed’’ is measured inNMC /(min CPU), the number of MC step
performed in 1 min on 1 processor~in real time, using 2.4 GHz Pentium Xenon processors of a Linux cluster!. For comparison, the spee
is about 2800NMC /(min CPU) for an image charge simulation.NCPU is the number of processors used. ‘‘Fig.’’ denotes the figure in wh
results are shown for the given simulation. Results for simulations~2! and~5! are not shown in the figures because they are indistinguish
from the results of simulations~1! and ~4!, respectively.L and H2 are the dimensions of the simulation cell inx-y and z directions,
respectively. In simulations~8!–~15!, H15H2.

No. Geometry L/d H2 /d Dx/d N N1
left N2

left N1
right N2

right NMC/103 Speed NCPU Fig.

1 2u80 20 31.22 1/2 1600 100 100 6400 37.5 40 4~c!

2 2u80 20 31.22 5/6 576 100 100 6000 104.7 30
3 2u80 21 31.22 7/6 289 100 100 3200 210.5 16 4~c!

4 80u40 20 31.13 1/2 1600 100 100 2000 36.9 10 5~b!

5 80u40 20 31.13 5/6 576 100 100 2000 89.1 10
6 80u40 21 31.13 7/6 289 100 100 2000 163.5 10 5~b!

7 80u40 21 31.13 3/2 169 100 100 3000 555.1 10 5~b!

8 80u40 20 19.87 1/2 1600 60 60 60 60 1925 27.1 10 6~a!

9 80u40 20 19.87 1/2 1600 60 61 61 60 1935 27.7 10 6~b!

10 80u20u80 20 21.18 2/3 1800 60 60 60 60 663 1.8 50 7~a!

11 80u20u80 20 21.18 1 800 60 60 60 60 1297 9.6 40 7~a!

12 80u20u80 20 21.18 4/3 450 60 60 60 60 4990 30.3 40 7~a!

13 40u80u40 20 21.18 2/3 1800 60 60 60 60 1023 1.8 50 7~b!

14 40u80u40 20 21.18 1 800 60 60 60 60 2200 10.4 30 7~b!

15 40u80u40 20 21.18 4/3 450 60 60 60 60 3152 31.2 20 7~b!
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In some cases we choose the number of cations and anio
be different in the various dielectric domains, resulting
electrical double layers at the dielectric boundaries.

The ions are represented as charged, hard spheres@5#.
Nevertheless, because the ions are in different dielectric
is necessary to be more precise. The ions are represent
point charges embedded at the center of hard, dielec
spheres of diameterd with the same dielectric coefficient a
that of the medium surrounding them. The ions cannot le
their host dielectric because the dielectric boundaries ac
hard walls. The charge of the cations and the anions is1e
and2e, respectively, and all ion species are given the sa
diameter.

The targeted bulk cation and anion concentration isr0
50.5 mole/dm3. This concentration corresponds to a r
duced densityr ions* 5Nionsd

3/V50.0163, whereNions is the
total number of ions, in the particular case ofd53 Å. This is
a low density system because the water is modeled as a
tinuum dielectric. The density profiles computed in our sim
lations depend only onz and are given normalized to th
bulk density: r(z)/r0. Acceptable statistical variations o
density profilesr(z) in such low-density systems require
long simulations or, alternately, many simulations with d
ferent random initial configurations run simultaneously
separate processors and then averaged. Table I lists co
tational details of the ICC simulations.

The strength of the ionic interactions can be described
the dimensionless coupling tensor

qi j* 5
zizje

2

4p««0kTd
, ~36!
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where k is Boltzmann’s constant. If the ions had differe
diameters, these would be incorporated into the definition
qi j* . Each element in the tensor corresponds to the inte
tion energy between two ions in contact, measured inkT.
For a symmetric electrolyte the coupling is described by
scalar. This coupling constant shows how a given interac
strength can be achieved by different dielectric coefficien
temperatures, and ion sizes.

In our simulations,q* 52.321 andq* 54.642, corre-
sponding to monovalent ions withd53 Å at T5300 K in
dielectric media with«580 and«540, respectively. How-
ever, our conclusions are not tied to any particular value od
and coupling constant. Using the coupling constant make
more general treatment of other parameters possible. Sca
lengths and distances byd while keeping the coupling con
stant unchanged means that the same values ofDx andL, in
units of d, can be used. Note that because the dielectric
efficient has a strong spatial variation in some systems, io
coupling might change with location. One must construct
grid and choose the cell dimensions in such geometries w
extra care.

IV. RESULTS AND DISCUSSION

A. One dielectric boundary plane

We first present MC results for one sharp planar bound
with ions present on only one side~on the right, subscripted
by 2!. We use this somewhat overstudied system for the sa
reason it is overstudied: a simple, analytical solution is av
able with the electrostatic image charge method@44#. Apply-
ing this method in a MC simulation is straightforward@47#
2-6
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and results in a relatively fast code with which we can qu
tify errors introduced by the ICC method. Analytic solutio
are available for other geometries~for example, a dielectric
sphere@44#!, but these are generally series of special fu
tions that require many terms to calculate accurately for i
near the interface. This would result in relatively slow M
simulations compared to the one-plane case computed
image charges.

For the case of a single dielectric boundary we rep
two simulations:~a! «152 and«2580 and~b! «1580 and
«2540. Case~a! represents a large dielectric jump th
is encountered in biological applications. Because«1,«2,
the ions are repelled by the induced charge. Case~b! is
the opposite and so ions are attracted to the boundary.
choose«2540 because significantly smaller values are
physically realistic; ions cannot be dissolved in low
dielectric solvents.

The ICC method uses several geometric parameter
inputs, specificallyH1 , H2 , L, andDx given in terms of our
length scaled, the ion diameter. Previous MC simulation
show thatH1 /d5H2 /d*20 is sufficiently large for the ion
reservoirs@48–51#. Figure 2 shows the density profiles fo
the«1580u«2540 case with various cell widthsL calculated
using image charges. For the values of the coupling cons
and density we use, aboveL/d'20 the profiles are indistin
guishable. In all subsequent simulations we use this valu

Unlike the system dimensionsH1 , H2, andL, the param-
eter Dx directly influences the accuracy of the comput
ion/dielectric interface interaction. BecauseDx represents
the discretization of the actually continuous surface cha
distribution, the proper choice ofDx depends on the system
being studied. In addition, curved interfaces require so
curvature correction on each surface element@41,52#. In the
ICC method, these corrections change only the fill time
the matrixA, and not the size of the matrix. Since the mat

FIG. 2. The normalized density profiles calculated with the i
age charge method of an electrolyte in an«2540 dielectric near a
boundary with an«1580 dielectric. The various curves refer t
various cell widthsL/d540/3, 60/3, 80/3, and 100/3. For all sub
sequent MC simulations,L'20d is chosen so thatL/Dx is an in-
teger.
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is computed only once for a particle simulation, increased
time has little effect on simulation time.

For the planar dielectric interface, we explore the effect
Dx by considering the energy of a single point chargee in
the vicinity of the dielectric boundary. This is the energy d
to the polarization of the boundary by the point charge, c
responding to the interaction energy between the po
charge atr i and the induced charges, namely

Wpol
i 5

e

8p (
a

haaa

ur i2sau
. ~37!

Figure 3 defines thex-y coordinates of four charges locate
above a dielectric surface element atr1 , r2 , r3, and r4. In
the discretization of the dielectric interface, the induced s
face charge is a point charge in the center of the surf
element. Position 3 is above the discretized induced cha
while position 1 is above a corner~farthest from the induced
charge!. With a source charge at one of these locationsr i at
a distancez from the interface, the polarization energyWpol

i

is computed as a function ofz. Figure 4~a! compares the ICC
result for each source charge position to the analytic re
for the ideal dielectric boundary separating«152 and «2
580. Results forz/d,1/2 are not shown, because the ce
ters and charges of hard-sphere ions are excluded from
region. The width of the surface element isDx/d55/6. The
ideally infinite dielectric planar interface used for the ima
charge calculation is given a finite length ofL/d520, the
same cell width used in all MC simulations. PBCs are n
used in these ICC calculations; they are used only in the
simulations.

The polarization energy is sensitive to position when
test charge is close to the discretized boundary in the si
lation. The deviations from the exact result are relative
large when the test charge is in position 3~closest to the
discretized induced charge! and when it is in position 1~far-
thest from the discretized induced charge! with opposite
signs. This is because the induced surface charge that is
ally spread on the surface element is represented as a

-
FIG. 3. The figure locates four points on one dielectric surfa

element of the computational grid. To analyze errors due to
discretization of the dielectric interface, a test charge is loca
above one of these four locations~out of the plane! at a distancez
from the plane.
2-7
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charge in the center of the square. Thus, the interaction
the induced charge is overestimated when the test charg
close to the center.

Since the polarization energy~37! is an important compo-
nent of the system energy~35!, the errors shown in Fig. 4~a!
~for a givenDx) must be so small that they do not affect t

FIG. 4. ~a! The polarization energy of a point charge of mag
tudee as a function of distancez from a flat dielectric boundary for
«152 and«2580. The test charge is in one of the four positio
above the grid as shown in Fig. 3. The width of a surface elem
square isDx/d55/6. ~b! The errorE(z) defined in Eq.~38! for all
four charge positions forDx/d51/2, 5/6, 7/6, and 3/2. Note tha
E(z)→0 as Dx/d→0 and that, for numerical purposes,Dx/d
51/2 gives sufficiently small errors.~c! Normalized density profiles
from ICC-MC simulations withDx/d51/2 and 7/6 compared with
MC simulations using image charges. The profiles computed u
Dx/d55/6 were indistinguishable from the profiles computed us
Dx/d51/2.
04670
th
is

density profiles. To show that these errors can be contro
by choosingDx small enough, we consider the error inde

E~z!5
1

4 (
i 51

4

uWpol
i ~z!2WIC~z!u, ~38!

whereWIC(z) is the analytic polarization energy calculate
from the image charge method@44# and the four charge po
sitions r i ~with varying z) are those shown in Fig. 3. Figur
4~b! shows thatE(z)→0 asDx→0. For numerical purposes
we find thatDx/d51/2 sufficiently reduces the error. Figur
4~c! shows that computed ion density profiles for the«1
52u«2580 case with variousDx agree well with MC simu-
lations using the image charge method rather than the
method. We find that even forDx’s whereE(z) is not 0, the
ICC-MC density profiles are indistinguishable and agr
with MC simulations using the image charge method.

We examine the«1580u«2540 case in a similar way
Figure 5~a! showsE(z) for variousDx and Fig. 5~b! shows
the results of several MC simulations, each using a differ
Dx. The conclusions about errors are similar to those of
«152u«2580 case.

nt

g
g

FIG. 5. ~a! The errorE(z) defined in Eq.~38! for a flat dielectric
boundary with«1580 and«2540 for the four charge positions
shown in Fig. 3 withDx/d51/2, 5/6, 7/6, and 3/2. As in Fig. 4
E(z)→0 as Dx/d→0. ~b! Normalized density profiles from
ICC-MC simulations withDx/d51/2, 7/6, and 3/2 compared with
MC simulations using image charges. The profiles computed u
Dx/d55/6 were indistinguishable from the profiles computed us
Dx/d51/2.
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Next, we consider a case in which ions are present
both sides of«1580u«2540 interface. Figure 6~a! shows the
density profiles with an electroneutral electrolyte on ea
side of the interface. In this and the other simulations p
sented so far, the cation profiles coincide with the anion p
files ~apart from statistical noise!. In Fig. 6~b!, we show den-
sity profiles calculated when the number of cations a
anions is not equal on each side~Table I!. The extra charges
are attracted to the regions near the dielectric interface
form electrical double layers there. The agreement betw
image charge and the ICC results~with Dx/d51/2) is good
for both anion and cation densities.

B. Two dielectric boundary planes

Next we consider a dielectric slab with dielectric coef
cient «2 embedded between two semiinfinite dielectrics

FIG. 6. The normalized density profiles of electrolytes in a s
tem of two dielectrics with coefficients«1580 and«2540 sepa-
rated by a flat boundary atz50. ICC-MC results are compare
with MC results using image charges. The number of cations
anions on the two sides of the dielectric boundary is~a! equal and
~b! different. In case~b!, double layers are formed near the interfa
and separate profiles for the cations and anions are shown. In
~a!, cation and anion profiles are the same~apart from statistical
noise!. The width of a dielectric surface element isDx/d51/2.
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dielectric coefficients«1 and«3 ~Fig. 1!. We use«15«3. In
Fig. 7, ICC-MC results are shown using differentDx for a
slab of widthD/d510/3 with~a! «1580u«2520u«3580 and
~b! «1540u«2580u«3540. In each case, the computed de
sity profiles converge asDx decreases. The profiles are ve
similar to those obtained for the single boundary case
corresponds to a semiinfinite slab geometry. Apparently
density profiles are governed by the interaction of the io
with the closest dielectric boundary.

This two-interface geometry provides an additional test
the ICC method because the matrixA is not diagonal; with
two interfaces, induced charges on one plane induce~further!
charges on the other plane and therefore]Gab /]naÞ0 for
all a and b in Eq. ~26!. The number of operations in th
matrix multiplicationA21c is now of orderN2 instead ofN.
The simulations are slower, but still practical. Simulatio
~1!–~7! ~Table I! show that the speed of computation
roughly proportional to the inverse number of surface e
mentsN in systems with one interface. If the matrixA is not
diagonal@simulations~10!–~15!# this relation is nonlinear; it
is proportional to 1/N2. Nevertheless, using a cluster of com
puters, as described earlier, makes such calculations feas

-

d

ase

FIG. 7. The normalized density profiles of electrolytes outsid
dielectric slab of widthD/d510/3 calculated from the ICC method
The dielectric coefficient of the slab and the outside regions are~a!
«2520 and«15«3580, respectively, and~b! «2580 and«15«3

540, respectively. The widths of a surface element areDx/d
52/3, 1, or 4/3.
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V. CONCLUSION

We report a different solution of the extremum conditi
of the functional introduced by Allenet al. @29#. After dis-
cretization, this solution produces a matrix equation con
nient for molecular simulations.
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