
Journal of Computational Electronics 3: 25–31, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Electrodiffusion Model Simulation of Ionic Channels: 1D Simulations
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Abstract. The drift-diffusion (Poisson-Nernst-Planck) model is applied to ionic channels in biological membranes
plus surrounding solution baths. Simulations of the K channel in KCl solutions using the TRBDF2 method are
presented which show significant boundary layers at the ends of the channel. The computed current-voltage curve
for the K channel shows excellent agreement with experimental measurements.
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1. Introduction

Biological cells exchange chemicals and elec-
tric charge with their environments through ionic
channels—protein tunnels filled with ions and water—
in the cell membrane walls (see Ref. [1] for a com-
prehensive introduction). Signaling in the nervous sys-
tem, coordination of muscle contraction including the
pumping action of the heart, and ion transport in every
cell and organ are carried out through ionic channels.

We consider a flow of positive and negative ions
(cations and anions) in water in a channel (or pore) plus
surrounding baths in an electric field E(x, t) against a
background of charged atoms on the channel protein.
The discrete distribution of charges is described by con-
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tinuum [2–4] particle densities ni (x, t) for the mobile
ions (i = K+, Cl−, Na+, Ca++, . . . ) and N (x) for the
charged atoms (“doping” in the language of semicon-
ductor device physics) of the protein. The permanent
fixed charge density N may include both positive and
negative charges, but the protein is predominantly neg-
atively charged. Note that N vanishes by definition in
the baths.

In the experimental setup, a voltage bias V is applied
across the channel plus baths by means of a voltage
clamp. The channel transit time for an ion is on the
order of 10 ns, while experimentally the finest temporal
resolution of currents is on the order of 10–50 µs, so
experimental measurements are averaging over 1000–
5000 ions.

Although in this investigation we focus on the
steady-state flow of ions, we solve the time-dependent
drift-diffusion equations because we are ultimately in-
terested in the dynamics of ion transport (especially in
gating) as well, and because the computational time
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for simulating the time-dependent equations to steady
state is comparable to or faster than that of steady-state
solvers, which must employ a linearization scheme like
Newton’s method.

2. Time-Dependent Drift-Diffusion Model

Mathematically the flow of ions can be approximated
by the drift-diffusion or Poisson-Nernst-Planck (PNP)
model, that is, by partial differential equations for con-
servation of each ion species and Poisson’s equation
for the electrostatic potential φ(x, t):

∂ni

∂t
+ ∇ · ji = 0 (1)

ji = ziµi ni E − Di∇ni (2)

∇ · (ε∇φ) = eN −
∑

i

qi ni , E = −∇φ (3)

where e is the proton charge, ε is the dielectric coeffi-
cient, and where for each ion species i , ji is the number
current density (particle flux), qi is the ionic charge (for
example, qCa = +2e), zi = qi/e, µi is the mobility
coefficient, and Di is the diffusion coefficient. The total
electric current density (charge flux) is

jelec =
∑

i

qi ji . (4)

The physical parameters ε, µi , and Di are functions of
x.

The drift-diffusion equations form a parabolic/
elliptic system of PDEs: the transport equation (1)
(with ji specified by Eq. (2)) is parabolic and Poisson’s
equation (3) is elliptic. Thus the boundary conditions
for both ni and φ are Dirichlet and/or Neumann.

As an example of a physiologically important chan-
nel, we will focus our attention here on the K channel il-
lustrated in Fig. 1 (the KcsA channel structure shown is
derived from X-ray crystallography). K channels play
a central role in electrical signaling in the nervous sys-
tem. A typical nerve cell has hundreds of thousands of
K channels.

The K channel is selective; i.e., it allows K+ ions to
flow freely between the interior and exterior of the cell,
but not (for example) Na+ or Ca++ ions. (Cl− ions are
prevented from flowing through the K channel by the
electrostatic field in the channel.) We will model the
channel plus regions of the bath illustrated in Fig. 2
out to a distance where the ion densities and the elec-
trostatic potential take on their asymptotic values in

Figure 1. K channel, membrane, and interior and exterior baths.

the baths: ni = Nbi , φ = 0 at the left boundary, and
ni = Nbi , φ = V at the right boundary (see Figs. 4
and 5). The overall region is electrically neutral. The
diffusion and mobility coefficients of the mobile ions
are typically much smaller in the channel than in the
baths (see Table 1).

Boundary conditions should not be applied at the
ends of the channel, due to the fact that boundary layers
in ionic charge density and in the electrostatic poten-
tial develop there, as illustrated in Figs. 4 and 5. The
ionic charge densities and the electrostatic potential
reach their equilibrium far-field values approximately
two Debye lengths into the baths (the Debye lengths
for K+ and Cl− are on the order of 1 nm in the baths).
In the one-dimensional approximation to the K chan-
nel problem with the channel 3.5 nm long, the baths
are represented by conical funnels (Fig. 3) extending 5
nm into the baths and opening at 45◦ angles on either
side of the z axis (the opening angle has only a weak
effect on the computed solution and total current). The
funnels should be wide enough so that the impedance
of the baths to the ion flow is very small compared to
the impedance of the channel.

The drift-diffusion equations (1)–(3) can be written
in the form

∂ni

∂t
+ ∇ · (ziµi Eni ) = ∇ · (Di∇ni ) (5)

jelec =
∑

i

qi (ziµi ni E − Di∇ni ) (6)

∇ · (ε∇φ) = eN −
∑

i

qi ni , E = −∇φ. (7)
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Figure 2. Diagram of computational region for channel, membrane, and baths. Boundary condition types are labeled in italics for the 3D
problem.

Figure 3. Diagram of 1D computational region for channel and bath funnels.

The boundary condition (BC) types in Fig. 2 are
defined by

ni = Nbi , φ = 0 (interior bath far-field BC)

ni = Nbi , φ = V (exterior bath far-field BC)

ni = Nbi ,
∂φ

∂r
= 0 (ambient bath BC)

n̂ · ∇ni = 0, n̂ · ∇φ = 0 (no-flux BC)

where n̂ is a unit normal vector to the boundary.
The channel problem illustrated in Fig. 1 has an ap-

proximate cylindrical symmetry; in other words, the
solution ni , φ depends to an excellent approximation
only on r and z, where cylindrical coordinates are de-
noted by (r, θ, z), with the z axis along the length of the
channel. (With cylindrical symmetry, no-flux boundary
conditions are imposed along the z axis as well.) If we
neglect the dependence of ni and φ on r in the channel
and the near bath regions, which is a good approxima-
tion if the cross sectional area A(z) varies slowly with
z (this is the standard approximation used in the anal-

ysis and simulation of nozzle flow in gas dynamics),
then we obtain a one-dimensional approximation to the
channel problem.

In our first model, we will treat just a one-
dimensional approximation of the channel plus fun-
nels opening into the baths on either side. Future sim-
ulations will extend the simulations to two and three
dimensions.

To write down the 1D equations, recall that the def-
inition of the divergence of a vector field u is

∇ · u = lim
V→0

1

V

∫
∂V

u · n̂ da (8)

where V is a volume centered around x with bound-
ing surface ∂V . For u(x) = u(z)êz and V = A(z)�z,
Eq. (8) reduces to

∇ · u = lim
�z→0

1

A�z
[u(z + �z)A(z + �z) − u(z)A(z)]

= 1

A

∂

∂z
(Au) (9)
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by Taylor expanding in �z. (Note that the gradient is
unchanged: ∇φ = ∂φ/∂z for φ(x) = φ(z).)

The drift-diffusion equations thus become in the 1D
approximation

∂ni

∂t
+ 1

A

∂

∂z
(Aziµi Eni ) = 1

A

∂

∂z

(
ADi

∂ni

∂z

)
,

ni (0, t) = Nbi = ni (L , t) (10)

jelec =
∑

i

qi

(
ziµi ni E − Di

∂ni

∂z

)
(11)

1

A

∂

∂z

(
ε A

∂φ

∂z

)
= eN −

∑
i

qi ni , E = −∂φ

∂z
,

φ(0) = 0, φ(L) = V (12)

where the simulation region which includes the chan-
nel plus baths runs from 0 to L = lc + 2lb and
ni (x, t) = ni (z, t), φ(x, t) = φ(z, t). For both the ellip-
tic Poisson’s equation (12) and the parabolic transport
equation (10), Dirichlet boundary conditions on φ and
ni are imposed at the left and right boundaries.

Note that in this 1D approximation, the current den-
sity (and thus the ion velocity) and the electric field
will lie in the z direction. To simplify the mathematical
analysis of the 1D model (10)–(12), the cross sectional
area A(z) may be set to a constant in the channel itself,
but not in the baths.

The drift-diffusion model for a spherically symmet-
ric problem ni (x, t) = ni (r, t), φ(x, t) = φ(r, t), where
spherical coordinates are denoted by (r, θ, ϕ), takes ex-
actly the same form as Eqs. (10)–(12) with z replaced
by r . Since the equipotential surfaces and the level set
curves of ni are normal to the cell membrane walls
(since there is no ion flow through the walls and since to
a good approximation there is no electrical flux through
the walls), the solution in the baths near the channel
openings may be modeled as approximately spheri-
cally symmetric [5] for a moderate radial distance into
the baths. Then, as long as the flow and electric field
lines remain approximately radial in the baths near the
channel openings, Eqs. (10)–(12) with z replaced by r
may be used with the cross sectional area A(r ) now the
surface area of spherical shells starting and ending at
a cell membrane wall. The 1D cylindrically symmetric
solution in the channel is “patched” onto the spheri-
cally symmetric solution in the channel opening and
the bath. Both the assumption of spherical symmetry
and the patching together of solutions introduce errors.
The validity of this approximation will be tested against
2D cylindrically symmetric simulations.

3. Steady-State Drift-Diffusion Model

Although we will solve the time-dependent drift-
diffusion equations below, for completeness we also
give the steady-state equations and associated bound-
ary conditions.

For the flow of cations and anions in steady state, the
drift-diffusion equations (1)–(3) take the form ∇ · ji =
0, or in other words

∇ · (ziµi Eni − Di∇ni ) = 0 (13)

jelec =
∑

i

qi (ziµi ni E − Di∇ni ) (14)

∇ · (ε∇φ) = eN −
∑

i

qi ni , E = −∇φ. (15)

In 1D, the steady-state drift-diffusion equations are

∂

∂z

(
A

(
ziµi Eni − Di

∂ni

∂z

))
= 0,

ni (0) = Nbi = ni (L) (16)

jelec =
∑

i

qi

(
ziµi ni E − Di

∂ni

∂z

)
(17)

1

A

∂

∂z

(
ε A

∂φ

∂z

)
= eN −

∑
i

qi ni , E = −∂φ

∂z
,

φ(0) = 0, φ(L) = V . (18)

4. Numerical Methods for Electrodiffusion

Variables ni and φ are defined at gridpoints
0, 1, . . . , N , while j and E are defined at midpoints of
grid cells −1/2, 1/2, 3/2, . . . , N + 1/2. Given nn

i and
En at timelevel n, a timestep consists of two parts. (i)
First we solve the transport equation (10) for nn+1

i with
E = En . (ii) Then we solve Poisson’s equation (12)
for En+1 using nn+1

i on the right-hand side.
We use the implicit, L-stable TRBDF2 [6,7] (trape-

zoidal rule/second-order backward difference formula)
method for the time-dependent drift-diffusion trans-
port equation, which allows simulations to use large
timesteps. TRBDF2 is a one-step second-order ac-
curate method; the timestep is adjusted dynamically
by a divided difference formula estimate of the local
error.

After discretizing in space, the transport equa-
tion (10) may be written as a system of ordinary differ-
ential equations du/dt = f (u). The TRBDF2 method
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then takes the form—(1) TR step of γ�t :

un+γ − γ
�tn

2
f n+γ = un + γ

�tn
2

f n

and (2) BDF2 step of �t :

un+1 − 1 − γ

2 − γ
�tn f n+1

= 1

γ (2 − γ )
un+γ − (1 − γ )2

γ (2 − γ )
un.

With the electric field frozen while updating the trans-
port equation, f (u) is linear. We take the usual value
γ = 2 − √

2 which minimizes the magnitude of the
local error.

For Poisson’s equation we use a tridiagonal direct
solver.

5. Simulation of the K Channel

We will consider here the flow of K+ ions (in water)
through a channel of diameter 1 nm and length 3.5 nm.

For various sections of the K channel and surround-
ing KCl baths, the lengths l, background permanent
charges Q on the protein which go into N , dielec-
tric constants ε, mobility coefficients µ, and diffusion
coefficients D are given in Table 1. The mobilities
and diffusion coefficients satisfy the Einstein relation
eD/µ = kB T0 ≈ 1/40 eV.

The bath concentrations for the positive and nega-
tive ions are 0.15 molar = 9 × 1019 cm−3. We also

Figure 4. Simulation of the K+ density nK (red, dark) and Cl− density nCl (cyan, light) for V = −100 millivolts. The protein permanent
charge density N is shown in blue (dashed). The vertical scale is log10 of density/(1021 cm−3).

Table 1. Lengths l in nm, background permanent charges Q
on the protein, dielectric constants ε, mobility coefficients µ in
10−5 cm2/(V s), and diffusion coefficients D in 10−5 cm2/s.

Region l Q ε µ D

Baths 5 0 80 60 1.5

−4e group 0.2 −4e 80 16 0.4

Nonpolar 1.1 0 4 16 0.4

Central cavity 1 −e/2 30 16 0.4

Filter 1.2 −3e/2 30 16 0.4

assume that there are equal concentrations of ions in-
side and outside the cell membrane, so that no cur-
rent flows when V = 0. The baths are modeled by
funnels which open from the channel cross sectional
area A = π (1 nm/2)2 at the channel opening out to
A = π (11 nm/2)2 at 5 nm into the baths. These pa-
rameters give a linear current-voltage curve with a cur-
rent of 22.5 picoamperes at a bias of −100 millivolts
(Fig. 6). Experimentally the current at −100 millivolts
is on the order of 20–30 picoamps for this type of
channel.

The computed ion densities and electrostatic poten-
tial are shown in Figs. 4 and 5: z is in nm, and the
channel lies between z = 0 and z = 3.5. The baths ex-
tend 5 nm on either side of the channel (only part of the
baths is shown in Fig. 4). The ion flow is from the inte-
rior (left) to the exterior (right) of the cell membrane.
The total charge on the channel is −6e; there are 4.3
K+ ions on average flowing in the channel, with about
two K+ ions on average in the neighborhood of the
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Figure 5. Simulation of electrostatic potential in millivolts for V = −100 millivolts.

Figure 6. Current in picoamperes vs. voltage in millivolts.

−4e charge group and about one K+ ion on average
in the filter. (The drift-diffusion model predicts about
1/15 Cl− ion on average flowing in the channel; this
is a reasonable continuum approximation to the actual
biological picture of discrete ions in which Cl− ions are
excluded by the electrostatic field from the K channel.)
The simulated region of channel plus baths is electri-
cally neutral overall.

At V = −100 millivolts, the current I+ carried by
the K+ ions is 22.2 picoamps, while the current I−
carried by the Cl− ions is 0.3 picoamps. Many exper-
imentalists believe that no current should be carried
by the Cl− ions; however measurements only restrict
I− < I/20.

6. Conclusion

The fact that the simulations of the K+ and Cl− ion
densities and the current-voltage curve agree well with
experimentally measured or derived properties of the
K channel gives credence to the continuum fluid ap-
proximation to the ion flow. For V = −100 millivolts,
the simulations predict about 4.5 K+ ions in the chan-
nel, which is consistent with the charge structure of the
protein known from X-ray crystallography. In addition,
the boundary layers in the ion densities and electrostatic
potential extend roughly two Debye lengths into the
baths, and the maximum magnitude of the electrostatic
potential is safely below the biologically dangerous
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value of 200 millivolts at which the lipid membrane
begins to break down from charge arcing and the chan-
nel protein itself is deformed by the electrostatic forces.

Future work will include simulations for the 2D
cylindrically symmetric approximation to the channel
plus baths, and a separate model for gating and gating
charge movement.
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