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ABSTRACT

Flux between regions of different concentration occurs in nearly every device involving diffusion, whether an
electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane. Diffusion theory has
calculated that flux since the time of Fick (1855), and the flux has been known to arise from the stochastic
behavior of Brownian trajectories since the time of Einstein (1905), yet the mathematical description of the be-
havior of trajectories corresponding to different types of boundaries is not complete. We consider the trajectories
of non-interacting particles diffusing in a finite region connecting two baths of fixed concentrations. Inside the
region, the trajectories of diffusing particles are governed by the Langevin equation. At the interface between the
region and the baths, trajectories are set by a control mechanism that modifies dynamics so the concentration
of particles remains (nearly) constant. We analyze different models of controllers and derive equations for the
time evolution and spatial distribution of particles inside the domain. Our analysis shows a distinct difference
between the time evolution and the steady state concentrations. While the time evolution of the density is
governed by an integral operator, the spatial distribution is governed by the familiar Fokker-Planck operator.
The boundary conditions for the time dependent density depend on the model of the controller; however, this
dependence disappears in the steady state, if the controller is of a renewal type. Renewal-type controllers, how-
ever, produce spurious boundary layers that can be catastrophic in simulations of charged particles, because even
a tiny net charge can have global effects. The design of a non-renewal controller that maintains concentrations
of non-interacting particles without creating spurious boundary layers at the interface requires the solution of
the time-dependent Fokker-Planck equation with absorption of outgoing trajectories and a source of ingoing
trajectories on the boundary (the so called albedo problem).

Keywords Non-equilibrium diffusion, ion channels, boundary conditions

1. INTRODUCTION

We consider particles that diffuse between two regions where average concentrations are maintained at constant
unequal values (see fig. 1). Flux between regions of different concentration occurs in nearly every device involving
diffusion, whether an electrochemical cell, a bipolar transistor, or a protein channel in a biological membrane.
Continuum theories of such diffusive systems describe the concentration field by the (time independent) Nernst-
Planck equation with fixed boundary concentrations.1–7

The microscopic theory underlying diffusion describes motion of particles by Langevin’s equations3, 5, 8–10

everywhere, except at the boundaries. The behavior of the Langevin trajectories at the boundaries depends
on the interaction between the particles and the boundaries. Thus, for example, outgoing trajectories can be
terminated (absorbed); reflected (or otherwise reinjected); delayed; and so on. None of this is described by the
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Figure 1. The concentration cell of experimental electrochemistry and molecular biophysics. The region Ω typically
consists of small parts of two large baths of effectively constant concentrations, separated by a permeable membrane in
experimental electrochemistry, or (in biophysics) an impermeable membrane containing one or more channels.

Langevin equations. Brownian dynamics cannot describe such boundary behavior, because Brownian particles
have no definite velocity, being functions of infinite variation. Particles with positive (e.g., incoming) velocities
can be distinguished from those with negative (e.g., outgoing) velocities, only if particles have a definite velocity.8

The Langevin equations are often directly integrated in simulations.11–21

In devices, the interaction between the trajectories and the boundaries must be specified because the inputs,
outputs, and power supplies of devices are at their boundaries; in physical systems, the boundaries are where
charge, matter, and energy are injected into a device; in biological systems boundaries represent reservoirs
maintained at a (nearly) fixed electrochemical potential by active processes of the cell.

The formulation of boundary conditions for the particle concentration is obvious in macroscopic models, but
formulation of boundary conditions for the underlying trajectories is not so clear cut, particularly because many
different physical or computational control mechanisms can maintain a constant average density at prescribed
locations, usually near the boundaries.11–15, 19, 22–28 Many boundary conditions used in Brownian and Langevin
simulations produce spurious boundary layers, that do not exist at those locations in the physical systems being
simulated. Spurious boundary layers are particularly damaging to simulations of charged particles. A boundary
layer leads to large fluctuations in the electrostatic field which spreads over the entire simulation region. This
was clearly demonstrated in Ref 16 for a problem with equal boundary concentrations in a simulation with a
buffer zone.

In this paper we provide a general description of the concentration and flux of non-interacting particles
diffusing between constant concentrations near the boundaries. We study renewal-type controllers that maintain
fixed concentrations near the boundaries, determining the time course both of concentration (in phase space)
and current. We show that the concentration is a weighted sum of “left” and “right” concentrations, each of
which satisfies a different integro-partial-differential equation and different boundary conditions. In the steady
state the phase space concentration is the weighted sum of the solutions of two stationary solutions of the so
called albedo problem.29–34 The albedo problem was first posed by Wang and Uhlenbeck35 in 1945 and its
analytic solution was first found by Marshall and Watson.36 Further progress was made by Hagan, Doering, and
Levermore,37, 38 who used complex analysis to solve the half range expansion problem. The solution employed
here was found by KÃlosek.39 The weights in the sum of “left” and “right” concentrations are the rates at which
the controllers inject trajectories into the system.
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Different control mechanisms that maintain the same concentrations near the boundaries produce differ-
ent time operators that govern the evolution of the “left” and “right” concentrations. Each evolution is non-
Markovian. The removal and injection—or re-injection—of particles into the system by renewal-type boundary
controllers are described by renewal-type integral operators that govern the time evolutions of these concentra-
tions, in contrast to the Fokker-Planck or Nernst-Planck equations that are commonly used.5, 40, 41

The description of this simplified model of diffusion of non-interacting particles is apparently new: we include
a detailed description of the physical mechanism that maintains the non-equilibrium state of the system. Similar
descriptions are needed when particles interact.

An alternative approach (see Section 4) is to assume that trajectories are reflected at boundaries, so that
reflecting boundary conditions are imposed on the solution of the Fokker-Planck or Nernst-Planck equations.
The (quasi) steady state is achieved when all transient modes have decayed except the first one. This method
was used in Refs 42, 43 for non-interacting particles, and we think it can also be used to describe systems of
interacting particles.

2. FORMULATION

We consider a system composed of two finite macroscopic volumes containing electrolyte solutions of different
ionic species, connected by a macroscopic or microscopic channel. A control mechanism keeps different average
concentrations in the two volumes, so that a steady current flows through the system (see fig. 1), thus keeping
it out of equilibrium. As seen in the figure, the control mechanism is located only on parts of the boundaries
of the system, at macroscopic distances away from the connecting channel. The control mechanism re-injects
exiting trajectories at one or the other boundaries in a way that maintains average fixed concentrations near the
boundaries at all times. We have in mind, for example, a typical setup used to measure the diffusion of ions
through a protein channel of a biological cell membrane that separates two solutions of different fixed concen-
trations.1 Alternatively, all trajectories are reflected at the boundary so that the system reaches equilibrium
after a long time, but the long lasting transient regime is the non-equilibrium regime in which an almost steady
current flows between the baths. This time behavior occurs when the number of particles that flow through the
channel during the period of measurement is much smaller than the total number of ions in either bath.

The problem at hand is to describe the steady diffusion current flowing between the two baths, in terms
of the molecular properties of the diffusing ions, such as their radii and interaction forces, as a function of the
experimentally controlled variables, such as the concentrations in the two baths and the external potential, and
as a function of the system geometry, e.g., the geometry and charge distribution of the channel.

The particles diffuse in a domain Ω that consists of the two macroscopic volumes and the connecting channel.
We assume that there are Nh ions of species h (h = Ca++, Na+, Cl−, . . .) in Ω, which are numbered at time
t = 0,

∑
h Nh = N , and we follow their trajectories, xh

j (t) = (xh
j (t), yh

j (t), zh
j (t)) at all times t > 0 (xh

j (t) is the
location of the j-th ion of species h at time t).

For future use, the coordinate and velocity vectors of all ions in the 3N -dimensional configuration space, are
denoted by x̃ =

(
xh1

1 , . . . , xh1
Nh1

, xh2
1 , . . . , xh2

Nh2
, . . .

)
and ˙̃x or ṽ.

2.1. Equations of motion

As in Ref 5, we assume that the motion of an ion in the solution is overdamped diffusion in a field of force. The
source of the noise and friction is the thermal motion of the solvent (e.g., water) and both are interrelated by
Einstein’s fluctuation-dissipation principle.3 More specifically, our starting point is a memoryless system of N
coupled Langevin equations for the dynamics of all particles of the different species h = Ca++, Na+, Cl−, . . .,

ẍh
j + γh

(
xh

j

)
ẋh

j =
fh

j (x̃)
Mh

+

√
2γh

(
xh

j

)
kBT

Mh
ẇh

j , (j = 1, 2, . . . , Nh), (1)

where a dot on top of a variable means differentiation with respect to time, γh(xh) is the location dependent
friction coefficient per unit mass and Mh is the effective mass of an ion of species h. The force fh

j (x̃) on the j-th
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ion of species h includes all ion-ion interactions and thus depends on the locations of all ions. The functions ẇh
j

are, by assumption, independent standard Gaussian white noises. The parameter kB is Boltzmann’s constant
and T is absolute temperature. As seen in fig. 1, some parts of the boundary ∂Ω are reflecting, while other parts
contain the control mechanism. At the boundary ∂Ω, the random trajectories of the Langevin equations (1) are
either reflected or are redirected by the external control mechanism.

3. RENEWAL CONTROLS

The solution of (1) depends on the specific choice of control mechanism. We first analyze controls for one-
dimensional non-interacting systems because the treatment of three-dimensional interacting particle systems is
more complicated. In this section we show that renewal controls (to be defined in subsection 3.3) reproduce
correct macroscopic properties such as total net flux and concentration profile, but also produce non-physical
boundary layers for non-interacting diffusive particle systems.

Consider particles diffusing in the interval Ω = [0, d]. The control mechanism maintains average concen-
trations CL and CR at 0 ¿ xL < xR ¿ d, respectively, away from the boundaries, where concentrations are
actually measured. Each particle satisfies a Langevin equation

ẍ + γẋ + U ′(x) =
√

2γε ẇ. (2)

In order to complete the description of the dynamics we have to describe the motion of particles at the boundaries,
i.e., to describe the action of the control mechanism.

3.1. Probabilistic Control

A possible control mechanism operates as follows: when a particle reaches either one of the boundaries, it tosses
a Bernoulli coin with probabilities (L,R), L + R = 1, L, R ≥ 0. The control mechanism decides to re-enter
the particle at the left boundary x = 0 with probability L, and to re-inject the particle to the bath at the
right boundary x = d with probability R. The re-injections occur at random times; a particle that reached the
boundary at time t, is delayed in the boundary a random time T and re-injected at time t + T . The random
time T is a non-negative random variable with pdf

q(s) ds = Pr{s ≤ T < s + ds}. (3)

The velocity of injection is distributed according to pre-determined distributions sL(v) and sR(v) of the left and
right sources, respectively. For example, if both sources are Maxwellian, then

sL(v) =
2√
2πε

e−v2/2ε = sR(−v), v > 0 (4)

As shown below, the precise velocity distribution of the sources is unimportant for measurement of concentrations
away from the boundaries.

The dynamics (1) and the boundary behavior provide a complete description of the trajectories, and therefore
determine the probability distribution of the random particle trajectories in the system at any time. Assuming,
as we may, that the precise velocity distributions is unimportant, there are only two parameters to be determined,
namely the fixed number of particles in the system N and the re-injection probability R. These two parameters
determine uniquely the two measured concentrations CL and CR.

Let pi(x, v, t) be the probability of finding the i− th particle at location x and velocity v at time t, given that
it was injected to the bath at time t = 0, from either the left or right boundary with probabilities R and L, and
the corresponding velocity distributions sL and sR. Since the particles are independent and interchangeable, we
find that p1 = p2 = . . . = pN , and set p(x, v, t) = p1(x, v, t). Let p(x, v) be the steady state density of a single
particle, i.e., p(x, v) = limt→∞ p(x, v, t). The steady state concentration at location x is given by

C(x) = N

∫ ∞

−∞
p(x, v) dv. (5)
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We use renewal theory44 to calculate p(x, v). Suppose the device was turned on at time t = 0. Let t0 be the
first time that the particle was injected into the system. Then the probability of finding the particle in location
(x, v) of the phase space at time t is given by

p(x, v, t) =
∫ t

0

p(x, v, t|t0 = s)q(s) ds. (6)

Let τ1 be the first passage time of the particle to the boundary. Conditioning on τ1 yields

p(x, v, t) =
∫ t

0

q(s) ds

∫ ∞

0

p(x, v, t|t0 = s, τ1 = r)p(τ1 = r|t0 = s) dr, (7)

where p(τ1 = r|t0 = s) = p(τ = r − s) = 0 for r < s. We separate the integral into two parts

p(x, v, t) =
∫ t

0

q(s) ds

∫ t

0

p(x, v, t|t0 = s, τ1 = r)p(τ = r − s) dr

+
∫ t

0

q(s) ds

∫ ∞

t

p(x, v, t|t0 = s, τ1 = r)p(τ = r − s) dr

=
∫ t

0

q(s) ds

∫ t

0

p(x, v, t− r)p(τ = r − s) dr + f(x, v, t), (8)

where

f(x, v, t) =
∫ t

0

q(s) ds

∫ ∞

t

p(x, v, t|t0 = s, τ1 = r)p(τ = r − s) dr. (9)

Changing the order of integration in (8) we obtain

p(x, v, t) =
∫ t

0

p(x, v, t− r) dr

∫ t

0

q(s)p(τ = r − s) ds + f(x, v, t)

=
∫ t

0

p(x, v, t− r)(pτ ∗ q)(r) dr + f(x, v, t) = (p ∗ pτ ∗ q)(t) + f(x, v, t), (10)

where ∗ denotes convolution. Taking the Laplace transform of the equation gives

p̂(x, v, θ) =
f̂(x, v, θ)

1− p̂τ (θ)q̂(θ)
. (11)

The steady state distribution is given by

p(x, v) = lim
t→∞

p(x, v, t) = lim
θ→0

θp̂(x, v, θ) = lim
θ→0

θf̂(x, v, θ)
1− p̂τ (θ)q̂(θ)

. (12)

Both numerator and denominator of the right hand side vanish as θ tends to 0. Expanding the denominator in
Taylor series, we find that

p(x, v) =
f̂(x, v, θ = 0)

Eτ + ET
, (13)

where Eτ is the mean first passage time (MFPT), and ET is the mean delay time before re-injection.

To evaluate f̂(x, v, θ = 0), we consider a Langevin particle in the interval [0, d] which is injected at time t = 0
at x = 0 with velocity distribution sL(v). When the particle reaches one of the boundaries, it is absorbed, and
its trajectory is terminated at once. Let p̃L(x, v, t) be the probability density function of the particle (p should
not to be confused with p̃L; the subscript L stands for left.) The density p̃L satisfies the Fokker-Planck equation

∂p̃L

∂t
= Lx,v p̃L = −v

∂p̃L

∂x
+

∂

∂v
[(γv + U ′(x)) p̃L] + εγ

∂2p̃L

∂v2
, (14)
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with the initial condition

p̃L(x, v, t = 0) = δ(x− 0+)sL(v), (15)

and the absorbing boundary conditions

p̃L(x = 0−, v, t) = 0, v > 0, (16)

p̃L(x = d, v, t) = 0, v < 0. (17)

Equations (14)-(17) define the time dependent albedo problem. In the limit of high friction a new time scale is
often used10

t̂ = t/γ, (18)

so eq.(14) is rewritten as

1
γ

∂p̃L

∂t̂
= Lx,vp̃L. (19)

We define the function

PL(x, v) =
∫ ∞

0

p̃L(x, v, t̂) dt̂ =
1
γ

∫ ∞

0

p̃L(x, v, t) dt. (20)

The function γPL(x, v) is the average time that a particle spends at location (x, v) prior to its absorption, given
that it was injected from the left electrode at time t = 0. It follows from equations (14)-(17) that PL, the solution
of the steady state albedo problem, satisfies

Lx,vPL = − 1
γ

δ(x− 0+)sL(v), (21)

with the absorbing boundary conditions

PL(x = 0−, v) = 0, v > 0,

(22)
PL(x = d, v) = 0, v < 0.

The MFPT to the boundary EτL of a particle that was injected from the left electrode is given by

EτL =
∫ d

0

∫ ∞

−∞
γPL(x, v) dx dv. (23)

Similarly, we define γPR
as the mean time spent by a trajectory at the point (x, v) prior to its absorbtion, given

that it was injected to the bath from the right electrode at x = d at time t = 0. The function PR satisfies similar
equations, and its integral is the MFPT EτL .

Using the definition of f(x, v, t), equation (9), and changing the order of integration, we find that

f̂(x, v, θ = 0) =
∫ ∞

0

f(x, v, t) dt =
∫ ∞

0

dt

∫ t

0

q(s) ds

∫ ∞

t

p(x, v, t|t0 = s, τ1 = r)p(τ = r − s) dr

=
∫ ∞

0

q(s) ds

∫ ∞

s

p(τ = r − s) dr

∫ r

s

p(x, v, t|t0 = s, τ1 = r) dt (24)

We identify the inner two integrals as the mean total time that a particle had spent in the (x, v) location of

phase space prior to its first absorbtion. Since
∫ ∞

0

q(s) ds = 1, we find that

f̂(x, v, θ = 0) = LγPL(x, v) + RγPR(x, v), (25)
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and

p(x, v) =
LγPL(x, v) + RγPR(x, v)

LEτL + REτR + ET
, (26)

from which the concentration in phase space is given by

C(x, v) = Np(x, v) = N
LγPL(x, v) + RγPR(x, v)

LEτL + REτR + ET
. (27)

Equation (27) relates the probabilistic control mechanism to its resulting phase space steady state concentration,
that satisfies the steady state Fokker-Planck equation with flux boundary conditions (21).

3.2. Rate Control
Another possible renewal control consists of two sources, placed at the left and right boundaries, which inject
particles into the system. When a particle reaches the right or left boundary, its trajectory is terminated at
once. The sources inject particles at identical independent distributed (i.i.d) inter-arrival random times TL and
TR, whose probability density functions are fL(t) and fR(t), respectively. The rates of injection are defined as

λL =
1

ETL
, λR =

1
ETR

. (28)

Note that the number of particles in the system does not remain fixed for this rate control mechanism. For any
rectangle A ⊂ [0, d]×R, we denote by NL

A(t) the number of particles in A at time t, that were originated at the
left source. Then NL

A(t) satisfies a set of renewal equations44

Pr{NL
A(t) = 0} = Pr{(x(t), v(t)) /∈ A} ·

[∫ t

0

fL(s) Pr{NL
A(t− s) = 0} ds +

∫ ∞

t

fL(s) ds

]
. (29)

Pr{NL
A(t) = 1} = Pr{(x(t), v(t)) ∈ A} ·

[∫ t

0

fL(s) Pr{NL
A(t− s) = 0} ds +

∫ ∞

t

fL(s) ds

]

+Pr{(x(t), v(t)) /∈ A} ·
∫ t

0

fL(s) Pr{NL
A(t− s) = 1} ds. (30)

Pr{NL
A(t) = n} = Pr{(x(t), v(t)) ∈ A} ·

∫ t

0

fL(s) Pr{NL
A(t− s) = n− 1} ds

+Pr{(x(t), v(t)) /∈ A} ·
∫ t

0

fL(s) Pr{NL
A(t− s) = n} ds, n > 1. (31)

Thus, the expected value of NL
A(t) is given by

ENL
A(t) =

∞∑
n=1

n Pr{NL
A(t) = n}

= Pr{(x(t), v(t)) ∈ A} ·
[∫ t

0

fL(s)ENL
A(t− s) ds +

∫ ∞

0

fL(s) ds

]

+Pr{(x(t), v(t)) /∈ A} ·
∫ t

0

fL(s)ENL
A(t− s) ds

= Pr{(x(t), v(t)) ∈ A}+
∫ t

0

fL(s)ENL
A(t− s) ds. (32)

Dividing by the area |A| of A and taking the limit |A| → 0, we obtain the number of particles per unit length
and per unit velocity, which we call the phase space density CL(x, v, t). It satisfies the renewal equation

CL(x, v, t) = p̃L(x, v, t) + (fL ∗ CL)(x, v, t), (33)
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Taking the Laplace transform with respect to t, we find that

ĈL(x, v, θ) =
ˆ̃pL(x, v, θ)

1− f̂L(θ)
, (34)

and the steady state density is given by

CL(x, v) = lim
t→∞

CL(x, v, t) = lim
θ→0

θˆ̃pL(x, v, θ)

1− f̂L(θ)
=

ˆ̃pL(x, v, 0)
ETL

= λL
ˆ̃pL(x, v, 0). (35)

We obtain from (20) that

ˆ̃pL(x, v, 0) =
∫ ∞

0

p̃L(x, v, t) dt = γPL(x, v). (36)

The linearity of the expectation implies that the steady state concentration is

C(x, v) = CL(x, v) + CR(x, v) = γλLPL(x, v) + γλRPR(x, v). (37)

3.3. The Renewal Control Theorem

Even though the two control models described above are different, and have different time evolution (e.g., the
number of particles inside the domain is bounded by N for the former, and unbounded for the latter), they have
identical steady state phase space concentrations. Indeed, choosing

λL =
NL

LEτL + REτR + ET
, λR =

NR

LEτL + REτR + ET
, (38)

we find that eqs. (27) and (37) are identical. This is no mere coincidence: both controls are special cases of
renewal controls.

Definition 3.1. A source that injects particles into the domain at random times
0 = T0 ≤ T1 ≤ T2 . . . ≤ Tn ≤ . . ., such that Yn = Tn − Tn−1 are i.i.d with EY1 < ∞ is called a renewal source.

Definition 3.2. A control made of renewal sources located at the absorbing boundary of the domain is called a
renewal control.

Theorem 3.3. The steady state phase space concentration of a renewal control is given by equation (37), where

λL =
1

EY L
1

, λR =
1

EY R
1

are the rates of the left and right renewal sources, respectively.

Proof. The proof is given in the previous subsection.

3.4. Calculation of PL and PR: the albedo problem

As seen above, all renewal control mechanisms require the knowledge of PL and PR, which are the solutions of
the steady state albedo problem. It was shown in Ref 39 that PL is given by

PL(x, v) =
1√
2πε

e−v2/2εe−U(x)/εQ(x, v), (39)

where Q = QL
BL + QR

BL + QOUT , with QL,R
BL the boundary layer solutions, which decay exponentially fast away

from the boundaries, and QOUT the outer solution, given by

QOUT (x, v) = C

[∫ x

0

eU(z)/ε dz − 1
γ

veU(x)/ε

]
+ D + O(γ−2), (40)
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with

C =
eU(0)/ε

γ
√

ε

ζ
(

1
2

)
+ BL

0∫ d

0
eU(z)/ε dz

+ O(γ−2),

D = −eU(0)/ε

γ
√

ε

[
ζ

(
1
2

)
+ BL

0

]
+ O(γ−2), (41)

where BL
0 is a constant that depends on the velocity distribution of the left source, and ζ denotes the Riemann

zeta function (ζ
(

1
2

)
= −1.46035 . . .). The outer solution QOUT approximates Q at distances O(γ−1) away from

the boundaries. Similar expressions can be written for PR.

3.5. Concentration Profile and Net Flux
Equation (27) gives the concentration at x, which is established by the probabilistic control mechanism, as

C(x) =
Nγ (LPL(x) + RPR(x))
LEτL + REτR + ET

. (42)

Therefore,
CL

CR
=

LPL(x1) + RPR(x1)
LPL(x2) + RPR(x2)

. (43)

We now solve equation (43) for the yet-undetermined parameter L that keeps constant concentrations CL and
CR. Since L = 1−R, the solution is given by

L =
CRPR(x1)− CLPR(x2)

CL [PL(x2)− PR(x2)]− CR [PL(x1)− PR(x1)]
. (44)

Substituting in equation (42) we find that

Nγ

Eτ + ET
=

CL

LPL(x1) + RPR(x1)
, (45)

and the two parameters of the control mechanism, N and L, are uniquely determined. We assume that the
left and right sources have the same velocity density distribution, sL(v) = sR(−v), v > 0, which guarantees
BL

0 = BR
0 ≡ B0. The resulting concentration at x away from the boundary is given by

C(x) =
CLe(U(x1)−U(x))/ε

∫ x2

x

eU(z)/ε dz + CRe(U(x2)−U(x))/ε

∫ x

x1

eU(z)/ε dz

∫ x2

x1

eU(z)/ε dz

, (46)

which is the same as given in eq.(3.5) of Ref 8. Note that the constant factor ζ
(

1
2

)
+B0 cancels out and therefore

it cannot be seen in measuring concentrations. The total net flux is given by

J(x) = N

∫ ∞

−∞
vp(x, v) dv =

Nγ

Eτ + ET
·
∫ ∞

−∞
vP (x, v) dv, (47)

where P = LPL + RPR. The flux is constant to leading order (in γ−1) and is given by

J =
ε

γ

CLeU(x1)/ε − CReU(x2)/ε

∫ x2

x1

eU(z)/ε dz

. (48)

We see that the macroscopic net flux (48) is O(γ−1), and coincides with that given in eq.(3.7) of Ref 8 and in
Ref 1. Theorem 3.3 then implies that eqs.(46) and (48) describe the concentration and the flux for all renewal
control mechanisms.
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4. THE NEUMANN PROBLEM

The control mechanisms that were used in the previous sections are mathematical models of non equilibrium
systems in steady state. Although these reproduce the correct concentration profile away from the boundaries,
they also create spurious boundary layers. For particle systems with long range interactions, such as ions in
solution, these boundary layers can distort the electrostatic field everywhere in the solution.

In this section we consider the setup described in Section 2, but with all boundaries reflecting. In other
words, there are no control mechanisms involved. In the case of all reflecting boundary condition, no spurious
boundary layers appear in the solution of the Fokker-Planck equation. Moreover, the Smoluchowski overdamped
approximation is valid in the entire domain. In this model, time evolution is governed by the Nernst-Planck
equation and no renewal operators are needed. In this setup, which describes actual channel current measure-
ments if made with polarizing (e.g., Pt) electrodes,45, 46 there is no flux in the steady state. However, the long
transient is the quasi steady state that Hodgkin, Huxley, and Katz actually observed on the (biological) time
scale of 1− 10 msecs.

Separation of variables in the Smoluchowski equation5

∂pN (x̃, t)
∂t

= −
∑

h

Nh∑

j=1

∇xh
j
· Jxh

j
(x̃, t), (49)

where Jxh
j
(x̃, t) is the 3-dimensional probability flux vector of the j-th particle of species h, given by

Jxh
j
(x̃, t) =

fh
j (x̃)

Mhγh(xh
j )

pN (x̃, t)− kBT

Mhγh(xh
j )
∇xh

j
pN (x̃, t), (50)

results in

pN (x̃, t) =
∞∑

n=0

ane−λntφn(x̃), (51)

where λ0 < λ1 < . . . < λn < . . . are the eigenvalues of the linear elliptic operator

∑

h

Nh∑

j=1

∇xh
j
· Jn

xh
j
(x̃) = λnφn(x̃), (52)

with Neumann (no-flux) boundary conditions

Jn
xh

j
(x̃) · ν(x̃) = 0, x̃ ∈ ∂Ω, (53)

where

Jn
xh

j
(x̃) =

fh
j (x̃)

Mhγh(xh
j )

φn(x̃)− kBT

Mhγh(xh
j )
∇xh

j
φn(x̃). (54)

Clearly, the first eigenvalue is λ0 = 0, which corresponds to the equilibrium solution J0
xh

j
(x̃) = 0 for all x̃, j, h,

or equivalently, φ0(x̃) = e−U(x̃)/kBT is the equilibrium Boltzmann distribution. This means, that the system
equilibrates after sufficiently long time (t À 1/λ1). As mentioned above, the long transient (1/λ2 ¿ t ¿ 1/λ1)
describes measurements on the biological time scale. In this scale, a quasi steady flux flows through the channel.
For such time scales, we can approximate pN (x̃, t) by only the first two eigenfunctions, as the other eigenfunctions
decay exponentially faster,

pN (x̃, t) ≈ a0e
−U(x̃)/kBT + a1φ1(x̃)e−λ1t. (55)
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Indeed, for non-interacting particles, it can be shown42, 43 that the second eigenvalue λ1 is much smaller than

all other eigenvalues (λ1 ¿ λ2), as λ1 ∝ aD

|Ω| , while λ2 ∝ D

|Ω|2/3
, where a is the radius of the channel hole, D is

the diffusion coefficient and |Ω| is the volume of the chamber. We conjecture that λ1 ¿ λ2 also for the case of
interacting particles. From the calculation of the eigenfunction φ1(x̃), one can find the pair correlation function
of the quasi steady state. The resulting pair correlation function depends on the choice of the closure relation
used in the calculation, as is the case in equilibrium systems.47

5. DISCUSSION

The renewal controls studied here maintain systems of non interacting particles at constant average concentrations
near the boundaries, and away from the boundaries they produce the stationary Nernst-Planck equation of
classical diffusion theory.

We have proven that all renewal controls produce the same steady state concentration and flux, even though
their time evolutions can differ qualitatively. However, renewal controls—that are widely used in computer
simulations—are problematic because they produce spurious boundary layers. These boundary layers are ex-
pected to appear in interacting particle systems driven out of equilibrium by renewal controls.

The existence of such boundary layers may be of little importance if the particles interact only through short
range forces, such as Lennard-Jones forces, or the forces that prevent overlap of hard spheres. However, the
boundary layers can have a catastrophic effect for particles that interact through long range forces, such as ions
that interact electrostatically. The net charge carried by only a tiny fraction of the total number of ions is, after
all, responsible for electrical signalling in the nervous system and the electrical potentials in electrochemical cells
and these potentials extend over large distances, from micron to many meters, e.g., in the neurons of whales48

as well as in inorganic applications from batteries to the trans-Atlantic cable.49–53

The boundary behavior of diffusing particles has been studied for many types of boundaries, including ab-
sorbing, reflecting, sticky boundaries, and more.44, 54 In Ref 22 a sequence of Markovian jump processes is
constructed such that their transition probability densities converge to the solution of the Nernst-Planck equa-
tion with given boundary conditions, including fixed concentrations and sticky boundaries.

As mentioned above, replacing the baths with renewal sources is a mathematical idealization that can produce
artificial boundary effects. The renewal control effectively terminates trajectories at boundaries and starts new
trajectories there. Most experiments do not. In real physical systems, particles that reach the boundary usually
move into a ‘guard’ region, from which they often return to the domain (with some probability), with a given
time distribution. To capture this behavior by a mathematical model, the entire pdf of the first passage time for
the albedo problem has to be found, not only its first moment. The spurious boundary layers will be avoided if
the correct time course of recycling trajectories in and out of the domain is used. We postpone this calculation,
which we could not find in the literature, to a future paper.

The time evolution of systems whose average concentrations near the boundaries are maintained by renewal
controls is complicated and cannot be described, in general, by a single partial differential equation. We have
shown that the phase space concentration is a sum of two components, each of which satisfies a different integral-
partial-differential equation with different boundary conditions. Only in the steady state does the concentration
satisfy the Fokker-Planck equation with boundary conditions identical to those of the steady state albedo prob-
lem. Although the overdamped limit is a useful approximation inside the domain, it cannot be used near the
boundaries, where the full Fokker-Planck equation has to be solved. For particle systems with only short range
interactions, the outer solution—which is the solution to the Smoluchowski equation—determines the concentra-
tion and correlation functions away from the boundaries. One can hope that a simple boundary condition can
be found for such systems, similar to the simple boundary condition that exists for non interacting systems.

A different approach to the problem is to determine the second eigenfunction of the Neumann problem
for interacting particles, which describes the quasi steady state of the system, as described in Section 4. The
calculation of this eigenfunction is still an unsolved problem. The simulation of this model necessarily involves
the simulation of the entire bath. This approach will be further investigated in the future.
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¿From the theoretical point of view, the absence of a rigorous mathematical theory of the boundary behavior
of Brownian trajectories diffusing between fixed concentrations, based on the physical theory of the Brownian
motion, is a serious gap in classical physics. This paper is a step toward the bridging of this gap.
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