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Abstract The access resistance (AR) of a channel is an
important component of the conductance of ion chan-
nels, particularly in wide and short channels, where it
accounts for a substantial fraction of the total resistance
to the movement of ions. The AR is usually calculated
by using a classical and simple expression derived by
Hall from electrostatics (J.E. Hall 1975 J. Gen. Phys.
66:531–532), though other expressions, both analytical
and numerical, have been proposed. Here we report
some numerical results for the AR of a channel obtained
by solving the Poisson–Nernst–Planck equations at the
entrance of a circular pore. Agreement is found between
numerical calculations and analytical results from Hall’s
equation for uncharged pores in neutral membranes.
However, for channels embedded in charged mem-
branes, Hall’s expression overestimates the AR, which is
much lower and can even be neglected in some cases.
The weak dependence of AR on the pore radius for
charged membranes at low salt concentration can be
exploited to separate the channel and the access contri-
butions to the measured conductance.

Keywords Access resistance Æ Channel conductance Æ
Membrane pore Æ Poisson–Nernst–Planck equations

Introduction

Conductance measurements are routinely performed on
ion channels to help characterize the translocation of
charged solutes across biological membranes. Single-

channel conductance has been used to explore the
geometry of the pore lumen of a number of ion channels
(Hille 2001), and inversely, their conductance properties
have been predicted on the basis of channel structural
data (Smart et al. 1998; Schirmer and Phale 1999; Im
and Roux 2002; Chung and Kuyucak 2002), though
both methodologies face several problems. Solute-
exclusion experiments, using water-soluble polymers, are
very often combined with measurements of ionic con-
ductance to evaluate the size of the pores (Rostovtseva
et al. 2002, and references therein), although it is well
known that direct estimation of the pore geometry re-
quires elaborate techniques (Merzlyak et al. 1999) and
substantial problems arise because of the sensitivity of
the predicted conductance to details of structure (Allen
et al. 2003, 2004; Hollerbach and coworkers 1999, 2001;
Mamonov et al. 2003; Eisenberg 1996). All these
experiments require a correct interpretation of the fac-
tors contributing to the channel conductance. Besides,
ion conduction from bulk solution to a confined geom-
etry like an ion channel involves a convergence of the
electric current flux lines and the idea of a pore entrance-
related resistance.

The access resistance (AR) of a channel is defined as
the electrical resistance along the convergent paths from
the bulk medium to the end of a pore (Hille 2001) and
can become a significant contribution in ion channels,
which are both short and wide (Fig. 1). For example,
at low-ion concentration or high-applied potential,
electrodiffusion near the channel entrance can be the
rate-controlling step for channel conductance rather
than the intrinsic channel properties (Läuger 1976).
There are channels for which AR is supposed to limit the
flux of ions and consequently control the properties of
the channel (Song et al. 1999). However, in most com-
mon cases, the AR of both channel apertures contributes
between 10 and 30 % to the overall channel resistance
(Bezrukov and Vodyanov 1993; Carneiro et al. 2003).
AR is not easy to measure because of the intrinsic dif-
ficulty in separating it from the channel contribution.
This impediment has been ingeniously circumvented by
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performing different conductance measurements with
salt solutions containing water-soluble polymers
(Vodyanov et al. 1992; Bezrukov and Vodyanov 1993).
Furthermore, these authors estimated the size of ion
channels by using a simple analytical expression for AR,
proposed by Hall (1975).

Predicting theoretically the AR of an ion channel
requires detailed knowledge of the structure of the end
of the channel as well as solving the electrodiffusion
equations at the channel–solution interface, by using
suitable boundary conditions (size and shape of the
openings, membrane fixed charges, channel charged
residues, applied voltage, etc.). The structure of the
channel-forming protein and the shape of its opening at
the membrane–solution interface is not known at the
microscopic level, except for a few proteins whose
crystal structure has been resolved by X-ray diffraction.
Hence, it is usual to consider a circular pore on the plane
of the membrane surface.

In computing resistance, the simplest choice is using
Ohm’s law for a homogeneous conducting medium.
Note that this implies assuming a noncharged mem-
brane surface and also a neutral pore. This is basically
the approach used by Hille (1967, 1968), who approxi-
mated the AR as the resistance of a region comprised
between a spherical surface centered at the end of the
pore with radius equal to that of the pore and a surface
located at infinity. This result was later corrected by Hall
(1975), who found that the resistance of the hemisphere
close to the pore is of the same order as the remaining
infinite sphere. With the assumption that the end of the
circular pore is an equipotential surface, and using the
theory of ohmic conductors, Hall gave a simple, ana-
lytical expression for the AR of a channel that has be-
come a classic in channel conductance studies:

RHall ¼
1

4aj
; ð1Þ

where j is the homogeneous conductivity of the solution
near the pore and a is the radius of the end of the pore.

Equation 1 is widely used in the literature, applied to
different channels (Vodyanov et al. 1992; Bezrukov and
Vodyanov 1993; Zambrowicz and Colombini 1993;
Corry et al. 2000; Carneiro et al. 2003), either explicitly,
in calculations of AR, or implicitly, when it is assumed
that AR varies inversely with the pore radius while the
resistance of the channel proper varies inversely with the
radius squared. Equation 1 will be used as a reference
throughout this work.

It is worth noting that Hall’s expression, derived from
electrostatics, is formally similar to the equation for
convergence resistance to a conducting circular disk in
an infinite conducting medium, and can be found in
classical texts of electricity and magnetism (Jeans 1960)
as well as in other monographs devoted to the solution
of specific physical problems (Gray and Mathews 1922).
Furthermore, as early as in the nineteenth century, Lord
Rayleigh (1945) reported an expression similar to Eq. 1,
within the context of sound propagation near the cir-
cular aperture of a cylindrical tube. More recently, Engel
et al. (1972) analyzed the electrostatic potential created
by a microelectrode (physically, a source of current)
inside a spherical cell. In their work they discussed the
concept of ‘‘convergence resistance’’ for current flowing
spherically away from the electrode and were aware
of Hall’s formula (Eisenberg and Engel 1970) from the
classical references previously cited.1 Interestingly, they
found the AR was related to two physically different
effects: one coming from the nonuniformity of flux and
the other from the potential drop across the cytoplasm.

Läuger (1976) extended Hall’s treatment and ana-
lyzed the diffusion-limited ion flow in the vicinities of the
pore entrance. His solution of Nernst–Planck flux
equations was restricted to the case of no charges either
within the pore or on the membrane surface. The
spherical symmetry outside the pore and the assumption
of electroneutrality of the solution near the pore en-
trance allowed him to find an analytical solution in a few
simple and relevant cases.

A more elaborate procedure was reported by Peskoff
and Bers (1988), who solved the Poisson and Nernst–
Planck (PNP) equations simultaneously. Nevertheless,
their treatment had two limitations: it considered an
ideally selective channel and it did not include the
hemisphere close to the end of the pore. Furthermore,
they assumed spherical symmetry, which would be a
good approximation far from the channel but is ex-
pected to fail near the pore or in case of a channel
embedded in a charged membrane.

Levadny et al. (1998) introduced a model that takes
into account the hemisphere near the pore, but assumed
straight flux lines inside this region and spherical sym-
metry outside it. They solved 1D PNP equations to
estimate the fluxes. As the authors note, their approach

Fig. 1 Ion flux lines approach each other near the pore mouth. The
contribution of the outer region is known as access resistance (AR)
and can become of the same order of magnitude as the resistance of
the channel proper

1Historical note: it is not clear if Hall knew of the work of Eisen-
berg and Engel or of the classical work cited above. G. Szabo, a
coworker of Hall and colleague of Eisenberg, was certainly aware
of it.
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is only valid for low ion fluxes and not very high channel
ion selectivity.

Issues of AR and boundary conditions have also been
considered by Nonner and Eisenberg (1998), Gillespie
and Eisenberg (2001, 2002) and Romao and Price
(1996).

It is noteworthy that all the approaches just de-
scribed, which do not predict noticeable deviations from
Hall’s AR values, are only valid for noncharged chan-
nels embedded in neutral or weakly charged membranes.
However, conductance measurements in charged chan-
nels as well as in neutral channels embedded in charged
lipid membranes are very common. By using a contin-
uum electrodiffusion model here, we numerically evalu-
ate AR under several conditions of salt concentration,
channel fixed charge density, membrane surface charge
density and pore radius. The aim is computing the AR
of a channel from a more general perspective and
comparing the results with those obtained using Hall’s
expression. We solve the full set of PNP equations
numerically at the entrance of a cylindrical channel and
account for the convergence resistance arising from the
gradients of ion concentration and electric potential.

There have been many notable attempts to solve the
PNP equations. Kurnikova et al. (1999) solved the full
3D set of PNP equations for a gramicidin A channel,
though they did not include the region immediately
outside the channel. Hollerbach and coworkers(1999,
2001), working independently, included enough bathing
solution to overcome the artificial boundary conditions
used in the previous model. In this case the spectral
element method was used, instead of a finite-difference
method and issues of convergence were dealt with in
some detail (Hollerbach et al. 2001) in the tradition of
numerical analysis (Bank et al. 1990; Damocles 1999;
Gummel 1964; Jerome 1995; Kerkhoven 1988; Ker-
khoven and Saad 1992; Scharfetter and Gummel 1969;
Selberherr 1984).

Im and Roux (2002) used Kurnikova’s approach to
compare results obtained by means of molecular
dynamics and Brownian dynamics to those found with
PNP equations in OmpF porin, and found good agree-
ment between the three approaches.

It is still unclear how far continuum theories can be
applied to systems with sizes comparable to that of
atoms and these matters are under active investigation in
many laboratories. Following the work of Kurnikova
et al., Corry et al. (2000) tested Brownian dynamics
against PNP and Poisson–Boltzmann theories and
found the latter to overestimate shielding effects by
counterions inside the pore. For recent work, see, for
example, Cardenas et al. (2000), Graf et al. (2000),
Kurnikova et al. (1999), Mamonov et al. (2003), Corry
et al. (2003), Edwards et al. (2002) and Schuss et al.
(2001). Other important effects have also been investi-
gated and included in modified PNP versions. For
example, PNP in its original formulation in biophysics
(Barcilon 1992; Barcilon et al. 1992; Chen et al. 1992,
1993; Eisenberg 1996) did not take proper account of the

dielectric boundary force (Nadler 2003) because of its
physically naı̈ve reduction in dimensionality, unknow-
ingly following the history of computational electronics
(Grasser et al. 2003; Jacoboni et al. 1989; Selberherr
1984), as was originally pointed out by Dieckman,
Chung and Coalson’s group at more or less the same
time (Dieckmann et al. 1999; Corry et al. 1999; Kur-
nikova et al. 1999; Graf et al. 2000). The proper treat-
ment of the dielectric boundary force is under active
investigation in many groups because it captures many
of the effects of the shape of the protein and its channel
(Aboud et al. 2004; Boda et al. 2004; Cardenas et al.
2000; Chung et al. 1999; Corry et al. 1999, 2003; Die-
ckmann et al. 1999; Graf et al. 2000; Im et al. 2001;
Kurnikova et al. 1999; Mamonov et al. 2003; Moy et al.
2000; Nadler and coworkers 2003, 2004a, 2004b). Since
we perform PNP calculations in the region just outside
the pore, away from a dielectric boundary, these limi-
tations are not likely to influence the results presented
here (Nadler et al. 2003, Fig. 1). In addition, the effect of
the reaction field inside wide channels (radius close to
1 nm, when the contribution of AR becomes significant)
is almost negligible (Corry et al. 2000).

Model

Let us assume a cylindrical channel of radius a embed-
ded in a planar lipid membrane. There may be
fixed-charge groups either on the pore wall or on the
membrane–solution surface.

The equations that describe the flux of ions through
the pore and solution are Poisson’s equation from
electrostatics and Nernst–Planck’s equations giving the
flux of ions in terms of the generalized forces acting on
them. They read, respectively,

r2/ ¼ � q
e
; ð2Þ

~Ji ¼ �Di
~rci þ

zie
kT

ci
~r/

� �
; ð3Þ

where q stands for the total volume density of electric
charge, e is the electric permittivity, / is the electrostatic
potential and ci is the local concentration of ionic species
i. Here q, / and ci are local functions of the position in
the solution, but we will omit explicit reference to this
dependence to simplify the notation. Subindex i spans
up to N present ionic species. k is the Boltzmann con-
stant, e is the positive elementary charge and zi is the
charge number. We use the symbol �2 for the Laplacian
operator and ~r for the gradient operator. These equa-
tions are coupled, since charge density q can be written
as:

q ¼ eNA

X
zici; ð4Þ

where NA is the Avogadro number. The sum is over the
ionic species (i) present in solution. We cannot solve
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these equations directly because the fluxes ~Ji depend on
position and are unknown. Additional information is
provided by the continuity equation under the assump-
tion of steady state (also known as Smoluchowski’s
equation):

~r~Ji ¼ 0: ð5Þ

By substituting Eq. 4 into Eq. 2 and using Eq. 5 over
Eq. 3 we obtain

r2/ ¼ � F
e

P
zici;

~r ~rci þ ziF
RT

~r/
� �

¼ 0:
ð6Þ

For the purpose of numerical computation, it is conve-
nient to write these equations by using dimensionless
variables defined as

ci ¼ cbulk�ci; k�2 ¼ e2NAcbulk
kT e

; X ¼ x
k

; R ¼ r
k

;

u ¼ e/
kT
:

ð7Þ

Note that distances are scaled to the Debye length k.
Substitution of these new variables into Eq. 6 gives

r2u ¼
P

zi�ci;

~r ~r�ci þ zi�ci
~ru

� �
¼ 0:

ð8Þ

For convenience, we introduce the so-called Slotboom
change of function (Selberherr 1984; Jerome 1996), so
that a new variable ci is defined as

�ci � cie
�ziu; ð9Þ

which further simplifies our equations leading to

r2u ¼
P

zicie
�ziu;

~r e�ziu ~rci

� �
¼ 0:

ð10Þ

The cylindrical symmetry demands the use of cylindrical
coordinates. The channel axis is chosen as the x-axis
with the origin located at the center of the circle repre-
senting the channel entrance. We get finally in cylindri-
cal coordinates

1
R
@
@R R @u

@R

� �
þ @2u

@X 2 ¼
P

zicie
�ziu;

~r @ci
@R ; 0;

@ci
@X

� �
e�ziu

h i
¼ 0:

ð11Þ

In Eq. 11, we do not write explicitly the divergence
operator, as we will need to use a special treatment for it
when solving numerically this system of equations. Also,
the assumed cylindrical symmetry makes the PNP
equations independent of the angular coordinate, so we
have (N+1) 2D partial differential equations that
should be solved simultaneously over the selected coor-
dinate ranges. Hereafter, we will assume N=2 (e.g., a 1:1
electrolyte like NaCl).

For solving PNP Eq. 11, we select the finite-size box
shown in Fig. 2 (see the domain for computation en-

larged). It is large enough for the following boundary
conditions to be approximately valid. First, from the
cylindrical symmetry it follows

@u
@R
¼ 0;

@ci

@R
¼ 0 at R ¼ 0: ð12Þ

Second, far from the pore, at a distance Lk (much
greater than the channel size) in the radial and axial
directions, we can assume constant potential or their
derivative and concentrations, that is,

ci ¼ 1; u ¼ 0 for X ¼ L; any R;

ci ¼ 1; @u
@R ¼ 0 for R ¼ L; any X : ð13Þ

At X=0, we have two regions: the end of the pore and
the membrane surface. At the pore entrance the electric
potential and the concentrations are not known a priori,
so we introduce new parameters ci

mouth and V, which will
be estimated later.

c1 ¼ cmouth
1

c2 ¼ cmouth
2

u ¼ V

9=
; for X ¼ 0 and R\a ð14Þ

At the membrane surface (assumed to be impermeable
to ions) ion fluxes vanish. In addition, we use Gauss’s
theorem as a boundary condition for the electrostatic
potential (the assumption of negligibly small potential
and/or low dielectric inside the lipid membrane is im-
plicit). Then, we have

@u
@X ¼ � erk

kT e
@ci
@X ¼ 0

)
for X ¼ 0 and R> a; ð15Þ

where r is the surface charge density. The set of Eqs. 11
with boundary conditions Eqs. 12, 13, 14 and 15 cannot
be solved analytically, so we use a numerical approach
based on a finite-difference method, together with a
Gummel iteration. That is, we solve the Poisson equa-
tion for a guessed ci and use this potential profile / in

Fig. 2 Simplified view of the model used to compute AR. A
charged pore of radius a immersed in a charged membrane and
bathed by an ionic solution. The computational domain shown
includes a portion of the solution located near the mouth of the
channel. Boundary conditions are included
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the Nernst–Planck equations to get improved values for
ci. This procedure is then repeated several times until
convergence is reached. This convergence can be
checked computing the residues of the difference equa-
tions.

One important point that we need to take into ac-
count when discretizing the set of Eqs. 11 is the use of a
conservative approach, which preserves the physical
meaning of divergence. To this end, we build a rectan-
gular mesh over our numerical box. We consider a basic
cell around a point of our mesh (Figs. 3), and apply
Gauss’s theorem to it. The continuity Eq. 5 for ionic
species i, in the basic cell (m, n), can be written as

~r �~Ji

� �
m;n
¼ J

mþ1
2;n

ri 2pRmþ1
2

Xnþ1
2
� Xn�1

2

� �

� J
m�1

2;n
ri 2pRm�1

2
Xnþ1

2
� Xn�1

2

� �

þ J
m;nþ1

2
zi 2pRm Rmþ1

2
� Rm�1

2

� �

� J
m;n�1

2
zi 2pRm Rmþ1

2
� Rm�1

2

� �
¼ 0

ð16Þ

where we have defined discretized radial and axial
coordinates at each grid point as Rm and Xn. We should
take into account that each grid cell is a ‘‘ring’’ in real
space because of the axial symmetry (this is the origin of
the term 2pR in Eq. 16). We substitute in this expression
the difference approximation of

Jri ¼ @ci
@R e

�ziu;

Jxi ¼ @ci
@X e�ziu

ð17Þ

to obtain the difference equivalent to the second equa-
tion in Eqs. 11 (Gummel 1964; Jerome 1995; Selberherr
1984).

In our case, we use a third-order upwind expression
for Eq. 17 and for the first equation in Eqs. 11. We also
check higher- and lower-order expressions, but our
choice is the one that gives optimal results. Following
this method, we obtain a potential and concentration

profile near the end of the pore. These profiles are read
with Mathematica and later used for calculating the
electric flux crossing a surface that completely encloses
the end of the pore, by using the simple relationship

I ¼
X

i

ziF
Z
~Jid~S: ð18Þ

The AR is then simply AR ¼ U=I . In this equation, U is
the difference between the potential naturally arising
under equilibrium conditions at the end of the pore (in
the absence of flux) and the boundary condition used to
solve numerically the equations (V), as pointed out
previously by Peskoff and Bers (1988). ~Ji is calculated
from Eq. 3 using the calculated potential and concen-
tration values and the bulk aqueous diffusion coefficients
of the appropriate ions. Computations have been made
under several conditions to check the range of validity of
the widely used Hall expression. All calculations were
performed with a Pentium 4, 2.4-GHz computer, with
512-MB memory. A grid of 128·128 points was enough
for most of the computations, though in some cases it
was necessary to increase it to 256·256 in order to get
convergence. Before computing these cases, we tried to
reproduce Hall’s results by simulating the conditions for
which it is valid, that is, a homogeneous solution around
the pore in a neutral membrane and small fluxes. In all
cases the accuracy was within 0.5%. NaCl electrolyte
was used in all calculations, though our code can be
easily modified to account for other binary or ternary
electrolytes.

At this point, we still have to clarify what the selected
values for ci

mouth andV in Eq. 14 are, in order to complete
our set of boundary conditions. Correct values for these
quantities can only be obtained by solving the full set of
PNP equations in the whole system, and generally they
would depend not only on the pore andmembrane charge,
concentrations, and radius of the pore but also on the
fluxes crossing the entire system. Our simple approach,
however, will use the classic Donnan expression for con-
centrations and potential near the end of the pore, pro-
vided we have the pore charge, radius and remaining
parameters.Whenwe have a chargedmembrane,Donnan
magnitudes are not well defined and we use previous re-
sults for the potential profile near the pore by Aguilella
and Bezrukov (2001). From this potential profile, con-
centrations are obtained by assuming equilibrium and
using the classical Boltzmann equation. This procedure
assumes equilibrium for the solution near the pore. It is
clear that this would imply no fluxes and, therefore, the
PNP equations would be nonsense. However, previous
results from Gillespie and Eisenberg (2001) suggest that,
at least at low fluxes, this approach leads to correct results
and also that it is not necessary to use a more accurate
expression for the potential at the end of the pore, in the
cases that they studied. Additionally, the Donnan ap-
proach is often used to obtain boundary conditions for
channel models, and it would be interesting to quantify
the correction in this framework.

Fig. 3 A basic cell of the mesh used to solve the Poisson and
Nernst–Planck equations. Gauss’s theorem is applied to this cell to
obtain a conservative form of the divergence operator
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Results and discussion

In what follows, we use values of AR calculated
according to Hall’s equation, RHall, as a reference, and
compare them with the numerical results of AR ob-
tained with our model. RHall ¼ 1= 4ajð Þ is the exact
solution to the AR in the case of a homogeneous solu-
tion near a circular pore entrance on a neutral mem-
brane, i.e., in the case of no charged membrane, neutral
pore and very small fluxes.

Figure 4 shows the computed AR for a channel with
radius 1 nm inserted in a charged membrane bathed by
0.1 M NaCl. The membrane charge density takes real-
istic values commonly found in charged lipid bilayers.
For a neutral membrane, the numerically computed AR
agrees with RHall. However, the AR is considerably re-
duced when the membrane is charged, either positively
or negatively. The theoretical prediction for a strongly
charged lipid bilayer (approximately 50 Å2/e) is a
reduction of an order of magnitude with respect to AR
in a neutral membrane. Also this decrease is almost
independent of the sign of the membrane charge density.

The decrease of the AR as the membrane is more
charged can be understood as a consequence of the
counterion accumulation near the pore entrance because
of the membrane surface charge. As a first approxima-
tion, the conductivity of the solution scales with the
ionic concentration, i.e., with the number of available
charge carriers, the salt ions: whatever changes this
concentration should change the solution conductivity.
The electric double layer near the membrane surface
increases the conductivity of the solution, and hence the
AR is decreased, as shown in Fig. 4.

There is nevertheless a small difference between the
AR for pores embedded in a membrane with equal po-
sitive or negative surface charge density. It can be as-
cribed to the different diffusion coefficients of Cl� and
Na+ ions: the diffusion coefficient of Na+ is lower than
that of Cl�. Positively charged membranes will accu-
mulate Cl� ions near the pore entrance, and negatively
charged membranes will do the same with Na+ ions.
However, the smaller mobility of cations compared with
that of anions will be reflected in a greater AR in the
latter case. As Fig. 4 shows, AR values corresponding to
positive membrane charge densities are always below
those corresponding to oppositely charged membranes.

The combination of both trends, that is, the effect of
the different cation and anion diffusivities and that of
the increase in the local concentration of counterions,
has a different effect depending upon the sign of the fixed
charge. In the case of a positively charged membrane,
both effects produce a decrease of the AR with respect to
the neutral case (RHall). In the case of negatively charged
membranes, each effect goes in a different direction and
it occurs that for slightly negative charge densities the
diffusion coefficient effect dominates, giving an AR
higher than that predicted by Hall (see in Fig. 4 that AR
is slightly greater than RHall for a membrane charge
density of 1 mC/m2). Higher charges in absolute value
result in a overall reduction of the AR owing to the
counterion accumulation.

Figure 5 shows the effect of the radius of aperture on
the AR for a channel in a strongly charged membrane
(�0.3 C/m2). Numerical results follow the same trend as
RHall, i.e., a decrease in AR for increasing pore radius.
However the dependence of AR with pore radius is
weaker in our model. For 0.1 M NaCl, AR is almost
insensitive to changes in the radius, while for 1 M NaCl
the dependence is similar to that of RHall / 1=a. This
result is relevant to channel studies, which take advan-
tage of the fact that the resistance of the channel proper
roughly scales with 1/a2, while AR has a less steep
dependence on the radius. The weaker the AR depen-
dence on a, the easier it should be to separate the
channel and access contributions (Bezrukov and
Vodyanov 1993). Our model predictions show that this
condition is best realized for channels inserted in
charged membranes at low salt concentrations.

To understand this behavior, we must differentiate
several solution regions in which the ion conduction
takes place in the case of a charged membrane at high
and low concentrations. At high salt concentration, the
influence of the membrane spreads over very short dis-
tances from the wall, because of the ion screening. In this
case, the ionic solution will hardly be influenced by the
charges on the membrane and the situation will resemble
that of a neutral unperturbed solution. Accordingly,
AR�RHall. In contrast, at low concentration, screening
will be weaker. Consequently, counterions will accu-
mulate near the pore entrance and their concentration
will be determined by the membrane charge, and will be
largely independent of the bulk ion concentration. As

Fig. 4 AR for a channel with radius 1 nm inserted in a charged
membrane bathed by 0.1 M NaCl. Both membrane charge density
and its equivalent average surface area per elementary charge are
shown. AR calculated using Hall’s expression is shown as a dashed
line. Values correspond to one pore entrance
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long as the Debye length of solution is similar to the
pore radius, AR will be insensitive to the pore radius
(Fig. 5, top panel).

Figure 6 shows the change of AR with salt concen-
tration for a neutral pore in a strongly chargedmembrane
(�0.3 C/m2 or equivalently one elementary charge per
average surface area of 50 Å2, which is roughly the area
per lipid molecule on a phospholipid bilayer). The dif-
ference between RHall, shown as a solid line, and numer-
ical calculations of AR is bigger at low concentrations.
The reason for this lies in the influence of the membrane
charge density over a wider region as the concentration is
lowered, since the Debye length of the solution increases
at lower concentrations: the same effect discussed before
for Fig. 4. At very low concentrations (approximately
0.05 M), the numerically computed AR is an order of
magnitude below the reference value RHall. Given that
RHall is at most 30% of the channel measured conduc-
tance, this result shown in Fig. 6 gives an indication that
when conductance is measured in a channel inserted on a
charged membrane, AR can be neglected.

In the results shown until now, we have assumed that
the membrane in which the channel is inserted has a
number of ionizable groups which polarize the solution

near the channel entrance. It is this charge separation in
the solution, what gives rise to the inhomogeneity that
invalidates Hall’s assumptions; therefore, AR deviates
from RHall. However, it is also common to find channels
with ionizable residues facing the pore lumen, which are
partly responsible for their selectivity as well as for other
electrokinetic phenomena. This charge inside the chan-
nel, like that on the membrane surface, can cause some
inhomogeneity in the vicinity of the channel. This may
happen if the fixed charges are located near the channel
entrances. In Fig. 7 we show the numerical results for
the AR of a charged channel with 10-Å radius as a
function of the number of charges facing the pore lumen.
In the calculations it is supposed that the channel has a
length of 50 Å, which is the typical width of a lipid bi-
layer like that in cell membranes.

Figure 7 shows slightly different AR values for po-
sitive and negative pore charge for NaCl solution (cir-
cles). Positively charged pores tend to show smaller ARs
than the value predicted from the Hall equation, while
the negatively charged ones show a higher resistance. In
fact, this behavior compares nicely to that found in the
case of a charged membrane (Fig. 5) for small values of
the charge density. What we see in Fig. 7 results from
the different diffusion coefficients of positive (Na+) and
negative (Cl�) ions. For positively charged pores,
Cl�-mediated conduction dominates. As chloride has a
higher diffusion coefficient, this gives a lower AR. For
negatively charged pores the behavior is the opposite.
The effects on the AR are much more modest since the
typical charges of the pores are usually much smaller
than those in membranes. The effect is not more than
15% of the value obtained with Hall’s equation.

In order to make the effect of the diffusion coefficient
more apparent, we also include in Fig. 7 values com-
puted for KCl (triangles) together with the predicted
Hall value (dotted horizontal line). K+ and Cl� have
very similar diffusion coefficients, and then we should
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Fig. 6 AR versus solution concentration for a 10-Å-radius channel
embedded on a negatively charged membrane (�0.3 C/m2). The
solid line represents Hall’s prediction and dots correspond to our
model calculations. Values correspond to one pore entrance
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expect very similar conductivities no matter whether the
cations or the anions are favored inside the channel. In
this case, we recover the lowering of the AR already seen
in Fig. 4 owing to the same effect: the increase in
counterions produced by the pore charge in the vicinity
of the pore, and consequently the increase in the number
of carriers, decreases the AR.

We can conclude from these data that two opposite
effects influence the AR in the general case: one coming
from the pore charge, irrespective of its sign, which
invariably reduces the value of the AR, and the other
coming from the different diffusivities and the coion
exclusion near the pore, which would increase or de-
crease the AR depending on the charge sign.

The model calculations presented here assume a cir-
cular aperture on the membrane surface. This is a rough
but useful approximation that has been used in other
studies of the influence of membrane charge on channel
conductance (Rostovtseva et al. 1998; Aguilella and
Bezrukov 2001). It is expected that channels with bulky
entrances—e.g., the Staphylococcus Aureus a-hemolysin
channel—would behave in a differentway. The agreement
between our model calculations and the AR predicted by
Hall’s expression is remarkable for uncharged pores in
neutral membranes. Leaving apart this particular case, as
a general trend, the computed values for AR are always
lower thanRHall, with the only exception being the case of
a negatively charged pore inserted on a neutral membrane
with NaCl electrolyte. However, the difference between
the numerical and the analytical values is small (approx-
imately 10%); therefore, the value for AR given by Hall’s
expression can be regarded as an upper limit in most cases
of interest. Finally, it is interesting to note that the weak
dependence of AR with the pore radius in charged mem-
branes and low concentrations may be useful in experi-
ments aimed at separating the channel and access
contributions to the measured conductance.
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