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Abstract In a recent publication we have introduced the induced charge computation
(ICC) method for the calculation of polarization charges induced on dielectric
boundaries. It is based on the minimization of an appropriate functional. The
resulting solution produces an integral equation that is transformed into a linear
matrix equation after discretization. In this work, we discuss the effect of careful
calculation of the matrix element and the potential by treating the polarization
charges as constant surface charges over the various surface elements. The cor-
rect calculation of these quantities is especially important for curved surfaces
where mutual polarization of neighboring surface elements is considerable. We
report results for more complex geometries including dielectric spheres and an
ion channel geometry with a surface of revolution.
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1. Introduction

Understanding the behavior of physical systems containing many degrees
of freedom requires considerable computational time unless we treat a cer-
tain portion of the degrees of freedom as continuous response functions. These
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response functions vary widely depending on the interactions they are intended
to replace (electrostatic, dispersion, repulsion) and on the nonlocal nature of
the medium (uniform homogeneous, inhomogeneous, anisotropic response func-
tions). Because electrostatic interactions play a basic role in many fields such
as molecular biology, quantum chemistry, electrochemistry, chemical engi-
neering, and colloid chemistry (without any claim of this being a complete
list), one of the most important response functions is the dielectric response of
fast atomic and molecular motions. This procedure uses constitutive relations
and macroscopic conservation laws and reduces to solving the Poisson’s equa-
tion for source charges (which are the degrees of freedom treated explicitly)
in an inhomogeneous dielectric medium characterized by a space dependent
dielectric coefficient, ε(r) .

One field where such a procedure is commonly used is the study of solva-
tion of molecules. The solute (which can be treated quantum mechanically)
is hosted in a cavity built in a dielectric continuum representing the solvent.
This approach is called the polarizable continuum model (PCM) [1–3] which
is studied by the apparent surface charge (ASC) method. This approach de-
termines the surface charge induced on the surface of the cavity so that the
appropriate boundary conditions are fulfilled at the boundaries. Using Green’s
functions, the problem can be written in the integral equation formalism (IEF)
[4–6], whose numerical solution results in a linear matrix equation. This ma-
trix equation was first developed by Hoshi et al. [7] and named the boundary
element method (BEM). Later Cammi and Tomasi [8, 9] adopted the method of
Hoshi et al. and the group of Tomasi have developed several numerical proce-
dures for the fast solution of the matrix equation using various iterative meth-
ods [10]. The PCM has been extended to cases where the molecule is hosted in
anisotropic solvents, ionic solutions, at liquid interfaces and metals [11]. There
are a large number of studies using various BEM procedures including those
implementing a linear interpolation across each boundary element to improve
accuracy [12–18].

Another field where dielectric continuum models are extensively used is the
statistical mechanical study of many particle systems. In the past decades,
computer simulations have become the most popular statistical mechanical
tool. With the increasing power of computers, simulation of full atomistic
models became possible. However, creating models of full atomic detail is still
problematic from many reasons: (1) computer resources are still unsatisfactory
to obtain simulation results for macroscopic quantities that can be related to ex-
periments; (2) unknown microscopic structures; (3) uncertainties in developing
intermolecular potentials (many-body correlations, quantum-corrections, po-
tential parameter estimations). Therefore, creating continuum models, which
process is sometimes called “coarse graining” in this field, is still necessary.
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The most obvious example is the so called restricted primitive model (RPM) of
electrolytes where the ions are represented as charges hard spheres, while the
solvent is modelled as a dielectric continuum. Examples for inhomogeneous
systems include electrochemical interfaces [19], semiconductor junctions [20],
and cell membranes [21, 22].

A biologically crucial field where dielectric continuum models have a basic
importance is ion channels embedded in the cell membrane. Several works
have been published that use various methods to solve Poisson’s equation for
channel-like geometries. These include interpolation methods using lookup
tables to store discretized Green’s functions [23–27], BEM procedures [28–
30], generalized multipolar basis-set expansion of the Green’s function [31],
and analytical solutions [30, 32–34]. The statistical mechanical methods also
have a wide variety including the Poisson-Nernst-Planck (PNP) equation [32,
35, 36], Brownian dynamics (BD) simulations [23, 25, 26, 29, 31, 35, 36], the
mean spherical approximation (MSA) for homogeneous fluids [37, 38], and
Monte Carlo (MC) simulations [34, 39–42]. Special attention must be paid to
the MC simulation works of Green and Lu [44–46] who developed a method
to calculate dielectric boundary forces that practically equivalent to the BEM
resulting in a matrix equation that corresponds to that developed by Hoshi et
al. [7].

Ion channel studies motivated Allen et al. [47] who have developed an
elegant variational formalism to compute polarization charges induced on di-
electric interfaces. They solved the variational problem with a steepest descent
method and applied their formulation in molecular dynamics (MD) simulations
of water permeation through nanopores in a polarizable membrane [48–50].
Note that the functional chosen by Allen et al. [47] is not the only formal-
ism that can be used. Polarization free energy functionals [51–53] are more
appropriate for dynamical problems, such as macromolecule conformational
changes and solvation [54–57].

In our two previous papers [58, 59] the induced charge computation (ICC)
method for the calculation of polarization charges in an inhomogeneous di-
electric system has been introduced. The method is based on the variational
formulation of Allen et al. [47]. We have developed a different solution [58]
for the minimization of their functional. The discretization of the resulting in-
tegral equation leads to a matrix equation that can be readily applied in a com-
puter simulation. Further simplification of the method for the special cases
where the source charges are point charges and the dielectric interfaces are
sharp boundaries leads to the matrix equation of Hoshi et al. [7] and Green and
Lu [44]. We have implemented the method and proved its usefulness in MC
simulations of hard sphere ions in simple inhomogeneous dielectric geome-
tries, where the dielectric boundaries are planar [58]. We have presented re-
sults for a system for which an analytic solution is available (one flat sharp
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boundary), and we have shown that our ICC method provides results in ex-
cellent agreement with the simulations using the exact solution (on the basis
of electrostatic image charges). Furthermore, we have reported results for the
more general case of two parallel flat sharp boundaries (slab geometry) where
the matrix is not diagonal.

The generalization of ICC method allows to impose arbitrary boundary con-
ditions on various boundaries in the system [59]. Furthermore, a numerical
approach to calculate the surface integrals appearing in the matrix elements
has also been introduced [59]. The correct calculation of these integrals is es-
pecially important in the case of curved surfaces; therefore, it is sometimes
called “curvature correction”. In this work, we present the method of [58]
supplemented by the “curvature corrections” introduced in [59] and we report
results for more complex geometries than those considered in [58]. We show
that “curvature corrections” are important not only for curved surfaces but also
for the slab geometry if the slab is thin. We study the potential of a charge
in a dielectric sphere and show results for the effective interaction between
two charged dielectric spheres. We also show some preliminary results for a
calcium channel that have a rotational geometry.

2. Method

2.1 Variational formulation

Let us consider a discrete or continuous charge distribution ρ(r) confined to
a domain D of volume V with a boundary S. For the geometries considered
in this work, the potential can be chosen to be vanishingly small on S. This
makes the elimination of some surface terms possible. This does not mean
that we impose zero potential on the boundary of the system. Instead, we use
infinite systems (simply assuming that the system is infinite, or, in the case of
simulation, applying periodic boundary condition), or, in the case of a finite
simulation cell, we assume that the cell is large enough that the potential is
small on the boundary in average. Nevertheless, the method has been gener-
alized by Nonner and Gillespie [59] that makes it possible to directly impose
arbitrary boundary conditions on the boundaries of the system. This general-
ization is not considered in this paper.

In the case of an inhomogeneous dielectric, we separate the total charge
distribution into two parts. We treat only a fraction of the charges explicitly,
this part of the charge density is called source (or external, or free) charge
distribution, and it is denoted by ρ(r). The rest of the degrees of freedom,
corresponding usually to fast atomic and molecular motions, is replaced by
their dielectric response using a constitutive relation. In the presence of an
external electric field the dielectric matter containing the charges other than the
source charges is polarized. If the dielectric response is linear, the polarization
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P(r) produced by an electric field E(r) can be given as,

P(r) = ε0χ(r)E(r) = −ε0χ(r)∇ψ(r) , (1)

where χ(r) is the dielectric susceptibility. The dielectric susceptibility is
space-dependent that characterizes an inhomogeneous dielectric in the domain
D. This corresponds to a local relative permittivity ε(r) = 1 + χ(r). In gen-
eral, this is a tensor, but in this work we restrict ourselves to a scalar relative
permittivity (P and E have the same directions). For the case of a bulk system,
this quantity is called dielectric constant; in this work we use the term dielec-
tric coefficient to emphasize that it is not constant in space. The polarization
charge density induced by the source charge distribution is associated with the
potential through,

ρpol(r) = −∇ · P(r) = ε0∇ · [χ(r)∇ψ(r)] . (2)

Introducing the normalized versions of the source and the polarization charge
densities,

g(r) =
ρ(r)

ε0

, (3)

and

h(r) =
ρpol(r)

ε0

, (4)

Poisson’s equation can be given as,

∇2ψ(r) = − [g(r) + h(r)] , (5)

and the corresponding functional [47] is,

I [ψ] =
1

2

∫

D

∇ψ · ∇ψdr −

∫

D

ψ

[

g +
1

2
∇ · (χ∇ψ)

]

dr . (6)

In order to express I[ψ] as a functional of the polarization charge density, the
potential is also split into the “external” and the “induced” parts which are
expressed in terms of g(r) and h(r) with the help of the Green’s function as,

ψ(r) = ψe(r) + ψi(r) =

=

∫

D

G(r − r′)g(r′)dr′ +

∫

D

G(r − r′)h(r′)dr′, (7)

where the Green’s function satisfies,

∇2G(r − r′) = −δ(r − r′) , (8)
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with δ(r − r′) being the Dirac delta function. Substituting Eq. (7) into Eq. (6),
the functional can be given as a function of g(r), h(r), and ψe(r), e. g.
I = I[g, h, ψe]. The task is to determine the polarization charge density h(r)
for a given external charge density g(r) that satisfies Eq. (5), or, equivalently,
minimizes I[g, h, ψe]. Determining h(r) for a fixed g(r) is equivalent to mini-
mizing the h-dependent part of the functional I[g, h, ψe], which is denoted by
I2[h]. Allen et al. [47] showed that the extremum condition,

δI2[h]

δh(r)
= 0 , (9)

leads back to the constitutive relation in Eq. (1), that the extremum is a min-
imum, and that the value of I[h] at the minimum reduces to minus the elec-
trostatic energy. Allen et al. [47] solved the variational problem (after dis-
cretization) with a steepest descent method. In our previous work [58], we
have proposed a different route that results in the integral equation,

h(r)ε(r) −

∫

D

h(r′)∇rε(r) · ∇rG(r − r′)dr′ =

= ∇rε(r) · ∇rψe(r) − [ε(r) − 1] g(r) . (10)

Discretizing the central equation (Eq. (10)) of the ICC method leads to a
matrix equation. In this work, we focus on the case of sharp dielectric bound-
aries, therefore, we will show the details of discretization for that case. To our
knowledge, this equation for the general case ε(r) has not been derived previ-
ously. Recently, Frediani et al. [11] has reported an integral equation for the
case of a molecule solvated at a diffuse interface between two fluid phases (liq-
uid/liquid or liquid/vapor). Their interface is described by a dielectric profile
ε(z) that is a continuous function of the z coordinate, while the charge distrib-
ution of the molecule is placed in a cavity formed in the diffuse interface. An
integral equation has been developed by Frediani et al. by finding the appropri-
ate Green’s function through certain integral operators. The resulting equation
is similar to Eq. (10), but is less general.

2.2 Discrete, point source charges

When the source charges are point charges in discrete locations, the source
charge density is given by

g(r) =
e

ε0

∑

k

zkδ(r − rk), (11)

where source charge k with valence zk is located at rk and e is the elemen-
tary charge. Because these charges have no surface area, the induced charge
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around each point charge k is localized at its position rk. Assuming that the
dielectric is locally uniform around the source charge zke with dielectric co-
efficient ε(rk), the magnitude of the induced charge is −zke[ε(rk) − 1]/ε(rk)
[60]. Therefore, the contribution to h from the induced charges around the
source charges is,

h′(r) = −
e

ε0

∑

k

zk

ε(rk) − 1

ε(rk)
δ(r − rk) . (12)

Let us consider the source point charges g(r) and the induced charges h′(r) lo-
calized on them together; and let us denote the sum of these two terms by g(r)
hereafter. In other words, we move h′(r) from the group of induced charges to
the group of source charges. Accordingly, the electric potential raised by h′(r)
also contributes to the potential of the source point charges; the sum of the two
potentials is denoted by ψe henceforth. It can be shown that for the resulting
potential,

∇2ψe(r) = −
[

g(r) + h′(r)
]

= −
e

ε0

∑

k

zk

ε(rk)
δ(r − rk) , (13)

applies from which this potential is expressed as,

ψe(r) =
e

4πε0

∑

k

zk

ε(rk)|r − rk|
. (14)

The dielectric coefficient ε(rk) at the place of charge k appears in the denomi-
nator. This corresponds to a dielectric screening that is conventionally used in
various descriptions of electrolytes where the solvent is interpreted as a dielec-
tric continuum background (for instance, in the Debye-Hückel theory, in the
Gouy-Chapman theory, or in the RPM of electrolyte solutions).

Substituting the redefined g(r) and ψe(r) into Eq. (10), we obtain,

h(r)ε(r) −

∫

D

h(r′)∇rε(r) · ∇rG(r − r′)dr′ = ∇rε(r) · ∇rψe(r), (15)

where h(r) refers solely to the induced charges other than h′(r).
It is important to note that if the source charge were an ion represented, for

example, as a point charge at the center of a hard dielectric sphere (with a di-
electric coefficient different from that of the surrounding medium), then the in-
duced charge on the ion surface must also be determined (as in the case of ASC
methods); this would be another contribution to h(r) on the LHS of Eq. (10).
Since in a computer simulation the source charges are moving compared to
the dielectric surfaces, the geometry of the dielectric pattern would constantly
change, which, in turn, would make the computation time consuming. There-
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fore, in the simulations, we assume that the interior of the ion has the same
dielectric coefficient as the surrounding medium. For the same reason, we as-
sume that the ions move in regions of constant dielectric coefficient, namely,
they do not overlap with dielectric boundaries and they are not displaced from
one dielectric domain to another. In this work, we will show results for the
cases where the interior of an ion has different dielectric coefficient than that
of the surrounding medium.

2.3 Sharp dielectric boundaries

In the special case of sharp dielectric boundaries the dielectrics is sepa-
rated into domains of uniform dielectric coefficients. The dielectric coefficient
jumps from one value to another along a boundary. Let us denote the surface of
the dielectric boundaries by B . Then the induced charge is a surface charge on
the dielectric interfaces (if the induced charges around the source charges are
not considered), and the volume integral in Eq. (15) becomes a surface integral
over the surface B,

h(s)ε(s)−∆ε(s)

∫

B

h(s′)∇sG(s− s′) · n(s)ds′ = ∆ε(s)∇ψe(s) · n(s) , (16)

where the dielectric coefficient ε(s) on the boundary is defined to be the arith-
metic mean of the two dielectric coefficients on each side of the boundary.
Furthermore, the dielectric jump ∆ε(s) is the difference of the two dielectric
coefficients on each side of the boundary in the direction of the local unit nor-
mal of the surface n(s).

To solve Eq. (16) numerically, the surface B must be discretized; specif-
ically, each discrete surface element Bα of B is characterized by its center-
of-mass sα, area aα, unit normal nα = n(sα), value of the mean dielectric
coefficient εα = ε(sα), and value of the dielectric jump ∆εα = ∆ε(sα). Due
to the assumption of the vanishingly small potential on S, the Green’s function
simply is,

G(s − s′) =
1

4π|s − s′|
. (17)

Also, since the density of the discrete point charges is given, the resulting po-
tential ψe is known from Eq. (14). Of course, ∇sG(s − s′) and ∇ψe(s) are
also known. The otherwise continuous surface charge density h(s) is then
discretized into certain constant values hα = h(sα) taken on the surface ele-
ment Bα.

Eq. (16) is valid for any vector s. If we rewrite the equation for the discrete
values of the centers of the surface elements sα, the surface integral in Eq. (16)
becomes a sum of surface integrals over the surface elements Bβ . Using the
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assumption that hβ is constant over Bβ , we obtain for a given α that,

∑

β

hβ

[

εβδαβ − ∆εα

∫

Bβ

∇sαG(sα − sβ) · nαdsβ

]

=

= ∆εα∇ψe(sα) · nα , (18)

where δαβ is the Kronecker δ. This can be rewritten in a matrix form as,

Ah = c, (19)

where each element of the matrix A is given by the expression in square bra-
ckets,

Aαβ = εβδαβ − ∆εαIαβ , (20)

where Iαβ denotes the integral in Eq. (18). Each element of the column vector
h is given by hβ and each element of the column vector c is given by the right
hand side of Eq. (18),

cα = ∆εα∇ψe(sα) · nα . (21)

For the calculation of the integral Iαβ , there are two levels of approximation
to interpret the charge on a surface element. The first route is to consider the
surface charge as a point charge of magnitude hβaβ localized at sβ . We call
this approach the point charge (PC) approximation. In this case the integral
reduces to an interaction term between point charges,

Iαβ = ∇sαG(sα − sβ) · nαaβ (22)

for β �= α and 0 otherwise (an induced point charge does not polarize itself).
This approach was used in our previous work [58], where we tested the method
on planar dielectric interfaces.

On the higher level of approximation, the induced charge on the βth surface
element is considered as a surface charge with the constant value hβ . This
approach, which we call the surface charge (SC) approximation, was intro-
duced in [59]. The main difference is geometrical: the values of the integrals
in Eq. (18) do not depend on charges, they depend only on the geometry of
the dielectric boundary surfaces and the way they are discretized. The integral
represents the polarization of the induced charges on the surface element Bβ

by the induced charge at sα. Practically, this approach means that we have to
evaluate the surface integrals Iαβ . This is a numerical problem; a procedure
to solve it was proposed in [59]. We parametrize the two-dimensional surface
Bβ by two variables u and v. There is a transformation that converts u and
v into Cartesian coordinates: x = X(u, v), y = Y (u, v), and z = Z(u, v).
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Therefore, both G(sα − sβ) and n(sα) can be expressed in terms of the new
parameters: G(uα, vα, uβ, vβ) and n(uα, vα). Let us discretize the βth sur-
face element into subelements by evenly dividing the variables uβ and vβ into
subintervals of widths ∆uβ and ∆vβ . Then, the integral can be calculated as,

Iαβ =
∑

k

∑

l

∇αG(uα, vα, uβ,k, vβ,l) · n(uα, vα) a(uβ,k, vβ,l) ∆uβ ∆vβ ,

(23)
where a(uβ,k, vβ,l) denotes the area element and (uβ,k, vβ,l) gives the center
of the k, lth subelement of the βth surface element. Also, care must be taken
to ensure that uα �= uβ,k and vα �= vβ,l.

It has been realized before that the convergence of the results with increas-
ing the resolution of the grid is poor using the PC approximation. A curvature
correction was used by many workers [1, 3, 7, 23, 24], where an empirical
parameter was built into the diagonal elements of the matrix (for reviews, see
[18, 61]). Instead of this uncertain parameter, it is more appropriate to evaluate
the integrals numerically. In our SC approximation, the integrals are computed
by assuming that the surface charge is constant within a surface element. A
higher level approximation was used in several works [12–18] where the sur-
face charge within a surface element is interpolated from the surface charges
in the neighboring tiles. Recently, Chen and Chipman [18] have proposed a
linear interpolation method using a triangulation of the surface. The sample
points (sα) are the corners of the triangles, and the integrals over the triangles
are evaluated by interpolating the surface charge inside a triangle from those at
the three corners. The development of a similar interpolation method for our
parametrization procedure using the u, v parameters is under way.

The evaluation of the integrals in the SC approximation is quite time con-
suming. Nevertheless, the speed of filling and inverting the matrix is not an
issue in computer simulations if the geometry of the dielectric boundaries does
not change during the simulation. Thus, the inverse of A (or any factorization
of A) need only be computed once for a given geometry and dielectric pro-
file. The calculation of Iαβ by subdiscretizing the surface elements does not
increase the size of the matrix, it only influences the fill time of the matrix,
which is also performed once at the beginning of a simulation.

Note that two points situated on a planar surface do not polarize each other.
Therefore, it is expected that for planar interfaces the method of the calculation
of the integral Iαβ has smaller effect on the accuracy of the method. Indeed,
in our previous work [58], we have obtained satisfactory results for one planar
and two parallel planar interfaces using the PC approximation. In the case of
curved surfaces, the accurate calculation of Iαβ is very important as we will
show for spherical and cylindrical geometries in the Results section.
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2.4 Calculation of the energy

In an MC simulation the essential quantity is the change in the energy of the
system in an MC step. The MC step is normally a stochastic particle displace-
ment, chosen from a uniform distribution, but biased moves are also possible
[62–65]. Some details of our MC simulations will be given in the Results
section, here we give the procedure with which the electrostatic energy is cal-
culated in the framework the ICC method. We assume that the source charges
are point charges and that the dielectric boundaries are sharp as described in
the preceding two subsections.

The electrostatic energy can be split into two parts. The source charge –
source charge interaction energy is,

We =
1

2

∑

j

ezjψe(rj) , (24)

where the electrostatic potential of the source point charges is given by Eq. (14).
The source charge – induced charge interaction is given by,

Wi =
e

8π

∑

j

zj

∫

B

h(s)

|s − rj |
ds . (25)

After discretization, as in the case of filling the matrix, we have two choices
in the calculation of the above integral. In the PC approximation the integral
becomes a sum of point charge – point charge interactions,

Wi =
e

8π

∑

j

zj

∑

β

hβaβ

|sβ − rj |
. (26)

In the above equations, the indices j and β range over the source point charges
and the surface elements, respectively. In the SC approximation the integral
expresses a point charge – surface charge interaction,

Wi =
e

8π

∑

j

zj

∑

β

hβ

∫

Bβ

ds

|s − rj |
. (27)

The integral in Eq. (27) is a geometrical term similarly to Iαβ in Eq. (18) and
it can be calculated similarly by the parametrization procedure outlined in the
previous subsection. The problem with the SC route is that the integral has
to be recalculated for the jth ion every time when it is displaced in the MC
step. This would slow the simulations down considerably. Fortunately, as we
will see from the results shown in the next section, this integral is important
only if the charge is very close to the dielectric boundary. Since we simulate
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ions with a finite diameter and the ion centers (where the source charges are
located) cannot approach the surface closer than the half of the ionic diameter,
this problem does not arise in our simulations.

In a usual MC simulation we use single particle movements, namely, only
one particle is displaced in an MC step. This fact and the linearity of the matrix
equation Ah = c make it possible to decrease the computation time of the en-
ergy change ∆W . This is because the distances between particles that are not
moved do not change in the MC step and the distances between these particles
and the surface elements are also unchanged. Storing the intermolecular dis-
tances in an array, the computational burden can be decreased by saving time
consuming square roots. The details can be found in [58].

It is important to note that in our simulations we assume that the ions do
not cross the dielectric boundaries. If an ion were to cross a dielectric bound-
ary in the MC step, the energy of interaction of the ion with the two different
dielectrics (that corresponds to the solvation energies) must be included. Cal-
culating such energies is difficult. Instead, empirical parameters describing
this energy difference might be included in the calculation as in our previous
work [34] where we studied the selectivity of a calcium channel where the di-
electric coefficient of the selectivity filter was different from that of the bulk
electrolyte. Nevertheless, estimating such empirical parameters is still prob-
lematic. Therefore, as a first approximation, we avoid this problem and assume
that the dielectric boundaries act as hard walls and the ions cannot leave their
host dielectrics.

3. Results

3.1 Planar geometry

In the planar geometry we consider a dielectric slab shown in Fig. 1. Two
semi-infinite dielectrics of dielectric coefficients ε1 and ε3 are separated by a
dielectric slab of thickness D and with a dielectric coefficient ε2. The bound-
aries of the slab are flat, sharp, and parallel. This can be regarded as a sim-
ple model of a membrane. This case has been studied in our previous paper
[58] where MC simulation results have been shown for the distribution of hard
sphere ions around a slab. Nevertheless, in our previous work, we did not use
the SC approximation. In the following, we will show that it is necessary only
if the width of the slab is small compared to the width of the surface elements.

When we solve the problem numerically, the number of surface elements,
and consequently, the size of the dielectric boundary surfaces must be finite.
This is in accordance with the practice in a simulation, where the simulation
cell is also finite. To approximate an infinite system in a simulation, periodic
boundary conditions are applied in the x and y directions. The closest image
convention is used not only for the ionic distances but any distances between
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Figure 1. The slab geometry.

two physical points in the simulation cell including points on the boundary
surfaces (sβ). Here we show results only for one source point charge. Nev-
ertheless, to remain in connection with simulations, we use two square walls
of dimensions L × L, although using circular walls with the charge above the
center is also possible. According to periodic boundary conditions, the grids
on the surface of the two walls are constructed by evenly dividing them into
square elements of width ∆x (with L/∆x being an integer). This means that
the surface elements are parametrized by the x and y variables (u = x and
v = y). The value of ∆x, namely the fineness of the grid, is a crucial point of
the calculation (it was discussed in [58] in detail). Briefly, ∆x must be small
enough compared to the closest approach of a charge to the surface. Further-
more, the dimensions of the simulation cell have to be large enough, which is
a usual criteria in computer simulations.

In this work, we concentrate on the issue of what happens if the width of
the slab is small. In this case, the induced charges on the left wall are close
to the induced charges on the right wall so the effect of their mutual polariza-
tion is large. Consequently, the accurate calculation of the Iαβ integral, which
represents this mutual polarization, is important. To investigate this effect, we
calculate the polarization energy of a single point charge of magnitude e as a
function of the distance of the charge from the slab. The polarization energy is
the interaction energy between a charge and the polarization charges induced
by this charge; this corresponds to Wi in Eq. (25) with z1 = 1 (j = 1 because
only one charge is present). This is a dominant term in the energy of a many
particle system when an ion is close to the boundary, therefore, it is appropriate
to test the accuracy of the method. Its precise value depends on the situation of
the charge with respect to the surface element as we discussed in detail [58].
Here we calculate the polarization energy assuming that the charge is above
the center of a square which corresponds to position 3 in Fig. 3 of [58]. The
slab geometry has the advantage that analytical solutions are available in the
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Figure 2. The polarization energy Wi of a single charge of magnitude e as a function of the
distance of the charge from the slab for different slab widths. The dielectric coefficients of the
slab geometry are ε1 = 80; ε2 = 2; ε3 = 80. The polarization energy is normalized by kT
where T = 300 K. The ICC curves as obtained from different approaches (PC/PC, SC/PC, and
SC/SC; the explanation of the abbreviations can be found in the main text) are compared to the
analytical solution [66].

form of infinite series. Here, we use the formulas given by Allen and Hansen
[66].

We consider three possibilities that differ whether we use the PC or the SC
approximation in the calculation of Iαβ and/or Wi :

(1) We can use Eq. (22) for the calculation of the matrix element and Eq. (26)
for the calculation of Wi, namely, the PC approximation is used in both
cases (PC/PC). This approach was used in [58].
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(2) Using Eq. (23) for the calculation of the matrix element and Eq. (26) for
the calculation of Wi means that the SC approximation is used only to
fill the matrix (SC/PC).

(3) If we use Eq. (23) for the calculation of the matrix element and Eq. (27)
for the calculation of Wi, the SC approximation is used in both cases
(SC/SC). As mentioned before, using Eq. (27) significantly slows the
simulation.

These notations will also be used in subsequent subsections.

ro e

R
ε

ε

1

2

d

(a)

∆φ

∆θ

(b)

Figure 3. (a) The geometry of a dielectric sphere of dieletric coefficient ε1 embedded in a
mediun of dielectric coefficient ε2 with a source point charge within the sphere. (b) The grid on
the surface of a sphere is constructed by evenly dividing the spherical coordinates φ and θ into
subintervals of widths ∆φ and ∆θ.

Figure 2 shows the results for these cases for different values of D . For
the width of walls the value L = 20∆x is used. The temperature is T =
300 K in every calculation in this work. In the PC/PC case (dashed lines)
the polarization energy is not reproduced even for large z when the width of
the slab is small compared to ∆x. In the case of D = 2∆x/3, the deviation
is considerable. Using the SC approximation to fill the matrix (SC/PC), the
magnitude of the energy for large z is recovered, but the behavior near the
boundary is still bad (solid curves). Using the SC approximation to calculate
the energy also (SC/SC), the behavior of the curves becomes much better even
for small distances from the boundary. It is worth emphasizing that the SC/SC
approach gives good results for D = ∆x, which means that the errors due to
different positions of the charge with respect to the grid [58] can be overcome
(at least partly) by using the SC approximation to calculate Wi .
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3.2 One dielectric sphere

A dielectric sphere of dielectric coefficient ε1 embedded in an infinite di-
electric of permittivity ε2 is an important case from many points of view. The
idea of a cavity formed in a dielectric is routinely used in the classical theo-
ries of the dielectric constant [67–69]. Such cavities are used in the studies
of solvation of molecules in the framework of PCM [1–7] although the shape
of the cavities mimic that of the molecule and are usually not spherical. Di-
electric spheres are important in models of colloid particles, electrorheological
fluids, and macromolecules just to mention a few. Of course, the ICC method
is not restricted to a spherical sample, but, for this study, the main advantage
of this geometry lies just in its spherical symmetry. This is one of the simplest
examples where the dielectric boundary is curved; and an analytic solution is
available for this geometry in the form of Legendre polynomials [60]. In the
previous subsection, we showed an example where the SC approximation is
important while the boundaries are not curved. As mentioned before, using
the SC approximation is especially important if we consider curved dielectric
boundaries. The dielectric sphere is an excellent example to demonstrate the
importance of “curvature corrections”.
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( 80 ) 2

SPHERE

source charge

N=512

N=128

N=2048

Figure 4. The potential of the induced charges eψi(r)/kT as a function of r along the line
crossing the center of the sphere and the source charge. The ICC curves as obtained from dif-
ferent approaches (PC/PC, SC/PC, and SC/SC) are compared to the analytical solution obtained
from a series expansion of Legendre polynomials [60].

We will show results for the case where the dielectric coefficient is ε1 = 80
inside, and ε2 = 2 outside. For the reverse case, when the sourse charge is
in the regime with the higher dielectric coefficient, we would obtain qualita-
tively similar, quantitatively even better converging results. Because of the
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spherical symmetry, the surface of the sphere is parametrized by the spherical
coordinates (u = θ and v = φ). The geometry is shown in Fig. 3a, while the
corresponding grid is illustrated in Fig. 3b. A source charge is placed inside
the sphere in a distance d = 0.8R from the center of the sphere, where R is
the radius of the sphere. Fig. 4 shows the potential produced by the polariza-
tion charges induced by the source charge on the surface of the sphere. The
dimensionless potential eψi/kT is plotted as a function of r/R, where r is the
distance from the center of the sphere along the line through the center and
the source charge. The positive direction shows from the center to the source
charge. In the case of the PC/PC approach there is a large difference between
the analytic and the ICC solutions even for a very large number of surface
elements N = 2048 (dot-dashed line). If we use the SC approximation to cal-
culate the matrix elements (SC/PC), the agreement with the analytic solution
becomes much better, but near the surface of the sphere the ICC curves (dashed
lines) fail to reproduce the kinks in the analytic curve (dotted lines). Increasing
the number of surface elements (from N = 128 to N = 512) the ICC curves
approach the analytic curve. Using the SC/SC approach, the behavior of the
ICC curves becomes satisfactory even in the vicinity of the boundary of the
sphere (solid lines).

It is important to determine the centers of the surface elements correctly. If
we parametrize the area element α by the variables u and v then the coordinates
of the center are calculated as,

uα =

∫∫

Bα
u a(u, v)dudv

∫∫

Bα
a(u, v)dudv

, (28)

and similarly for vα, where s = (uα, vα) is the center of the tile [59]. The
centers of the subelements should be calculated similarly. If we determine the
center by simply taking the centers of the ∆uα and ∆vα intervals instead of the
above weighted average, we introduce a small error into our calculation. For
the example of the one dielectric sphere, the polarization energy (Wi/kT =
eψi(d)/kT denoted by open circles in Fig. 4) is 57.4 if we calculate s correctly
from Eq. (28) (using 512 tiles), and 57.074 otherwise. The analytical value is
57.9616. Although it is small, this error might be important as in the case of
the two spheres in the next subsection.

3.3 Two dielectric spheres

As mentioned before, the ions are modelled as point charges embedded in
the center of a hard sphere where the sphere has the same dielectric coefficient
as the surrounding medium. This approach replaces the polarization charges
induced around the source charge from the surface of the sphere to the position
of the source charge localized on it. The error made by this assumption was
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investigated by Allen and Hansen [70] who used their variational approach to
calculate the effective interaction between charges within dielectric cavities.
For a few special cases, they have developed solutions for the problems in
the form of series expansions without using a grid. The general situation for
spherical cavities can be seen in Fig. 5. Two dielectric spheres of radii R1

and R2 are immersed in a dielectric of dielectric coefficient ε3. The dielectric
coefficients in the spheres are ε1 and ε2. The distance of the centers of the
spheres is r. Point charges of magnitudes q1 and q2 are placed at the centers of
Sphere 1 and 2, respectively.

q qr

R

2

2

1

R 1

ε ε

ε

1 2

3

Sphere 1
Sphere 2

Figure 5. The geometry for two charges within dielectric spheres.

If the dielectric is homoegeneous (ε1 = ε2 = ε3), the interaction poten-
tial between the charges is the Coulomb potential divided by ε3. Introducing
the effective dielectric coefficient εeff(r) [70], the interaction potential can be
written in the form of the Coulomb potential by

Vint(r) =
q1q2

4πε0 εeff(r) r
(29)

for the case where dielectric boundaries are present. The interaction potential
is defined by the difference,

Vint(r) = W (r) − W (∞) , (30)

where W (∞) is the energy of the system when the spheres are infinitely far
from each other. This term is the interaction energy between the ions and the
polarization charges induced by the charges on their own spheres. This is an
“intramolecular” term, while Vint(r) is an “intermolecular” term which goes to
zero increasing the distance of the spheres. For the former term an analytical
expression exists,

W (∞) =
ε1 − ε3

8πε0ε1ε3

q2
1

R1

+
ε2 − ε3

8πε0ε2ε3

q2
2

R2

. (31)
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Figure 6 shows results for the case ε1 = ε2 = 1, ε3 = 80, R = R1 = R2

with charges of the opposite (q1 = −q2 = e, Fig. 6a) and the same (q1 = q2 =
e, Fig. 6b) sign. This corresponds to two ions solvated in water, where the ions
are modelled as vacuum spheres with point charges in the center. When the dis-
tance of the spheres is large, the solution of the problem converges to the case
of point charges with the polarization charges localized on them (discussed in
Sec. 2.2). In this limit, εeff(r) → ε3 for r → ∞. We have calculated the en-
ergy of the two sphere systems for r/R = 2.25, 2.5, 2.75, and 3 using various
numbers of surface elements (N = 256, 484, 1024, and 1600). The effective
dielectric coefficient is plotted as a function of 1/N (open circles). In the limit
of “infinitely fine” grid (1/N → 0), the analytical results obtained from Figs.
5b and 5d of the paper of Allen and Hansen [70] are also shown (filled circles).
Increasing the number of tiles, our results converge to the analytical data.
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Figure 6. The effective dielectric coefficient as a function of 1/N , where N is the number of
tiles. Results are shown for charges of opposite (a) and equal (b) sign for different distances of
the spheres. The filled circles are analytical results [70].

The convergence is quite slow, however. To explain this, the energies ob-
tained for two specific cases with different fineness of grid are tabulated in
Tab. 1. The small value of Vint is obtained from the sum of three large quan-
tities: Vint = We + Wi − W (∞). For this reason, a small error in Wi or
W (∞) causes a large error in Vint, and consequently, in εeff . The phenomenon
of dielectric screening is well illustrated by these values. The large direct in-
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Table 1. The various energies calculated for distance r/R = 2.25 for equal and opposite
charges. The direct interaction between the charges is We/kT = ±49.5140. The analytical
value for the energy of separated spheres is W (∞)/kT = −110.0139 calculated from Eq. (31).
The literature data for the effective dielectric coefficient is εeff ∼ 74.7 and 84.3 for equal and
opposite charges, respectively.

N Wi/kT W (∞)/kT Vint/kT εeff

q1 = q2 = e
256 –158.8532 –110.0572 0.7181 68.95
484 –158.8739 –110.0466 0.6868 72.10
1024 –158.8799 –110.0362 0.6703 73.87
1600 –158.8801 –110.0318 0.6657 74.38

q1 = −q2 = e
256 –61.1972 –110.0572 –0.6540 75.71
484 –61.1504 –110.0466 –0.6176 80.15
1024 –61.1213 –110.0362 –0.5991 82.65
1600 –61.1114 –110.0318 –0.5937 83.4

teraction between the charges (We) is screened by a corresponding term raised
by the polarization charges (Wi − W (∞)). Note that for W (∞) the value
obtained from our numerical method was used instead of the analytical value
because the same numerical errors appear in both We and W (∞) which can-
cel each other. Using the analytical value for W (∞) results in a considerable
overestimation of εeff .

In these two subsections, simple calculations for systems containing dielec-
tric sphere(s) have been presented. Simulations for the distribution of ions
around and within dielectric sphere(s) are under way.

3.4 Ion channel geometry

Ion channels are proteins with a narrow, highly selective pore in their center
penetrating the cell membrane. They provide an effective and physiological-
ly very important mechanism to control the pass of selected ions through the
membrane. Calcium and sodium channels have crucial role in the function of
nerve system, muscle contraction, and cell communication. The accurate 3D
structure of these channels is unknown. However, the amino acid side chains
that line the selectivity filter, which is a small and crowded region in the pore,
are known. The selectivity of the channels is determined by these side chains
which are 4 glutamate groups (EEEE locus) in the case of the calcium channel.
Based on this minimal information a simple model for the calcium channel has
been developed [37–43]. A small cylinder representing the filter is connected
to baths that large enough for a bulk system to form in their middle. In this
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study, the filter is embedded in a membrane (Fig. 7a). The two baths are
connected to the filter through two cone shaped vestibules at the entries of
the filter (these vestibules were absent in our earlier studies). The system has
a rotational symmetry: the surfaces in the simulation cell form a surface of
revolution around the centerline of the pore.

membrane
3ε

vestibulefiltervestibule

protein

membrane

protein

bath

ε

ε

ε

ε1

2

2

3

bath

ε

1
1

Figure 7. (a) The simulation cell for the ion channel geometry. (b) Illustration of the method
to construct the grid on the dielectric boundary surfaces.

The dielectric coefficient was uniform ( ε = 80 ) in our previous studies [39–
42]. In this work, we present some MC results for the case where we allow var-
ious regions in the system to have different dielectric coefficient. Specifically,
the membrane, the protein, and the electrolyte solution in which the ions move
have dielectric coefficients ε3 = 2 , ε2 = 20 , and ε1 = 80 , respectively.
The dielectric boundary surfaces that appear in the simulation cell have dif-
ferent geometries. Consequently, different u, v parameters are used for these
surfaces. Due to the rotational symmetry, the variable φ is one of the parame-
ters in all cases. The other parameter depends on the geometry of the various
regions which are: (1) filter/protein and (2) protein/membrane boundaries –
cylinders with z the second parameter, (3) vestibule/protein boundary – a cone
shaped surface with a spherical curvature (an appropriate θ angle parametrize
the curvature), and (4) bath/membrane boundary – planes perpendicular to the
z-axis, the other parameter is r which is the distance from the rotational axis.
The grid we constructed is illustrated in Fig. 7b; the grid is finest inside the
filter (where important things happen) and it becomes coarser farther from the
filter.

The whole simulation cell is confined by a large cylinder. The cell is finite,
no periodic boundary conditions are applied. The radius of the cell is 60 Å, its
length is 178.72 Å. These values are large enough so that the potential at the
outer walls can be regarded as zero in average. The radius and length of the
filter are 5 and 10 Å, respectively. The outer radius of the protein is 15 Å, its
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length (that equals the width of the membrane) is 30 Å. This means that the
curvature radius of the vestibules is 10 Å.

There are 8 half charged oxygen ions (with diameters 2.8 Å) in the filter
representing the 4 unprotonated structural groups of the EEEE locus of the
calcium channel. These ions are assumed to be mobile inside the filter but
they are restricted to the filter. There are 100 sodium and 100 chloride ions
(diameters 1.9 and 3.62 Å) in the system in appropriate numbers to obtain
a 0.1 M NaCl solution in the bath. There are also 2 calcium ions (diameter
1.98 Å). Thus, the whole simulation cell is electroneutral.
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Figure 8. The concentration profiles for the various ionic species as obtained from MC simu-
lations applying grids of different resolutions. The system is symmetric for the center plane of
the membrane, so the results obtained for the left and right sides are averaged.

We present results of 3 simulations which differ from each other only in the
resolution of the grid. The widths of the surface elements in the filter are 1.43,
1, and 0.91 Å, which correspond to total number of tiles N = 814, 1760, and
1995, respectively. The lengths of the simulations are 886 000, 339 000, and
308 000 MC cycles, respectively. Besides the usual particle displacements,
biased particle exchanges between the channel and the baths were applied (for
details, see [41, 42]).

The results for the density profiles (in mole/dm3 unit) are shown in Fig. 8.
Comparing the results to Fig. 7 of [41] (where a similar geometry was used
but without dielectric boundaries), it can be seen that the presence of dielectric
inhomogeneity has a large effect on the charge distribution in the channel. In
our earlier study [41] both the Ca++ and Na+ ions were concentrated in the
center of the filter. On the contrary, our present results indicate that the Ca++
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ions tend to accumulate in the center of the filter, while the Na+ ions are rather
positioned at the entries of the filter and in the vestibules. This result clearly
shows the importance of dielectric boundaries.

For this work, the important aspect of our simulation is the dependence of
the results on the resolution of the grid. It is seen that our results converge as
the number of surface elements is increased. For N = 814 the curves are quite
different from those obtained for N = 1696 and 1995 although the qualita-
tive behavior is the same. The curves obtained for the two better resolutions
differ from each other only in minor details. This is in accordance with our
earlier findings which showed that we can obtain accurate results from simu-
lations if the dimensions of the surface elements are smaller than the closest
approach of the ions to the surfaces. The SC/PC approximation was used in
our simulations.

4. Summary

We have presented the ICC method with developments in which the polar-
ization charges are treated as surface charges with a constant value inside a
boundary element (SC approximation). We have discussed the effect of using
the SC approximation to calculate the matrix elements and polarization energy
for various geometries. It was shown that this approach is important not only
for curved dielectric boundaries but also for flat boundaries if the are close
to each other. On the examples of dielectric spheres, it was shown that using
the SC approximation (or “curvature corrections”) is especially important for
curved surfaces. If the geometry of dielectric interfaces does not change during
a simulation, the method can efficiently been used in computer simulations, as
our results for an ion channel geometry do show.
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[30] Baştuĝ, T., and Kuyucak, S. Biophys. J., 2003, 84, p. 2871.

[31] Im, W., and Roux, B. J. Chem. Phys., 2001, 115, p. 4850.

[32] Schuss, Z., Nadler, B., and Eisenberg, R.S. Phys. Rev. E, 2001, 64, p. 036116.

[33] Nadler, B., Hollerbach, U., and Eisenberg, R.S. Phys. Rev. E, 2003, 68, p. 021905.

[34] Boda, D., Varga, T., Henderson, D., Busath, D.D., Nonner, W., Gillespie, D., and
Eisenberg, B. Mol. Sim., 2004, 30, p. 89.

[35] Moy, G., Corry, B., Kuyucak, S., and Chung, S.-H. Biophys. J., 2000, 78, p. 2349.

[36] Corry, B., Kuyucak, S., and Chung, S.-H. Biophys. J., 2000, 78, p. 2364.

[37] Nonner, W., Catacuzzeno, L., and Eisenberg, B. Biophys. J., 2000, 79, p. 1976.

[38] Nonner, W., Gillespie, D., Henderson, D., and Eisenberg, B. J. Phys. Chem. B, 2001,
105, p. 6427.

[39] Boda, D., Busath, D.D., Henderson, D., and Sokołowski, S. J. Phys. Chem. B, 2000,
104, p. 8903.

[40] Boda, D., Henderson, D., and Busath, D.D. J. Phys. Chem. B, 2001, 105, p. 11574.

[41] Boda, D., Henderson, D., and Busath, D.D. Mol. Phys., 2002, 100, p. 2361.

[42] Boda, D., Busath, D.D., Eisenberg, B., Henderson, D., and Nonner, W. Phys. Chem.

Chem. Phys., 2002, 4, p. 5154.

[43] Gillespie, D., Nonner, W., and Eisenberg, R.S. J. Phys.: Condens. Matt., 2002, 14,
p. 12129.

[44] Lu, J., and Green, M.E. Progr. Colloid Polim. Sci., 1997, 103, p. 121.



Summary 43

[45] Green, M.E., and Lu, J. J. Phys. Chem. B, 1997, 101, p. 6512.

[46] Lu, J., and Green, M.E. J. Phys. Chem. B, 1999, 103, p. 2776.

[47] Allen, R., Hansen, J.-P., and Melchionna, S. Phys. Chem. Chem. Phys., 2001, 3, p. 4177.

[48] Allen, R., Melchionna, S., and Hansen, J.-P. Phys. Rev. Letters, 2002, 89, p. 175502.

[49] Allen, R., Melchionna, S., and Hansen, J.-P. J. Phys.: Condens. Matter, 2003, 15,
p. S297.

[50] Allen, R., Hansen, J.-P., and Melchionna, S. J. Chem. Phys., 2003, 119, p. 3905.

[51] Marcus, R.A. J. Chem. Phys., 2956, 24, p. 966; ibid, 1956, 24, p. 979.

[52] Felderhof, B.U. J. Chem. Phys., 1977, 67, p. 493.

[53] Attard, P. J. Chem. Phys., 2003, 119, p. 1365.

[54] Löwen, H., Hansen, J.-P., and Madden, P.A. J. Chem. Phys., 1993, 98, p. 3275.

[55] York, D.M., and Karplus, M. J. Phys. Chem. A, 1999, 103, p. 11060.

[56] Marchi, M., Borgis, D., Levy, N., and Ballone, P. J. Chem. Phys., 2001, 114, p. 437.

[57] HaDuong, T., Phan, S., Marchi, M., and Borgis, D. J. Chem. Phys., 2002, 117, p. 541.

[58] Boda, D., Gillespie, D., Nonner, W., Henderson, D., and Eisenberg, B. Phys. Rev. E,
2004, 69, p. 046702.

[59] Nonner, W., and Gillespie, D. Biophys. J., 2004, (in preparation).

[60] Jackson, J.D. (1999). Classical Electrodynamics, 3rd ed. New York: Wiley.

[61] Chipman, D.M., and Dupuis, M. Theor. Chem. Acc., 2002, 107, p. 90.

[62] Allen, M.P., and Tildesley, D.J. (1987). Computer Simulation of Liquids. New York:
Oxford.

[63] Frenkel, D., and Smit, B. (1996). Understanding Molecular Simulations. San Diego:
Academic Press.

[64] Sadus, R.J. (1999). Molecular Simulation of Fluids; Theory, Algorithms, and Object-

Orientation. Amsterdam: Elsevier.

[65] Schlick, T. (2002). Molecular Modeling and Simulation. New York: Springer Verlag.

[66] Allen, R., and Hansen, J.-P. Mol. Phys., 2003, 101, p. 1575.

[67] Born, M. Z. Phys., 1920, 1, p. 45.

[68] Kirkwood, J.G. J. Chem. Phys., 1934, 2, p. 351.

[69] Onsager, L. J. Am. Chem. Soc., 1936, 58, p. 1586.

[70] Allen, R., and Hansen, J.-P. J. Phys.: Condens. Matter, 2002, 14, p. 11981.


