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With the recent availability of high-resolution structural information for several key ion channel proteins and large-scale
computational resources, Molecular Dynamics has become an increasingly popular tool for ion channel simulation. However.
the CPU requirements for simulating ion transport on time scales relevant to conduction still exceed the resources presently
available. To address this problem. we have developed Biology Monte Carlo (BioMOCA), a three-dimensional (3D) coarse-
grained particle ion channel simulator based on the Boltzmann Transport Monte Carlo (BTMC) methodology. Although this
approach i1s widely employed in the engineering community to study charge transport in electron devices, its application to
molecular biology and electrolytes in general is new and hence must be validated. The pair correlation tfunction. which is a
measure of the microscopic structure of matter, provides a suitable benchmark to compare the BTMC method against the
well-established Equilibrium Monte Carlo (EMC) approach. For validation purposes BioMOCA is used to simulate several
simple homogeneous equilibrium electrolytes at concentrations of physiological interest. The jon—ion pair correlation
functions computed from these simulations compare very well with those obtained from EMC simulations. We also
demonstrate several performance-improving techniques that result in a several-fold speed-up without compromising the pair
correlation function. BioMOCA is then used to perform full 3D simulations of ion transport in the gramicidin A channel in
situ in a membrane environment. as well as to study the link between the electrostatic and dielectric properties of the protein
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and the channel’s selectivity.

Kevivordys: Ton channels: Nanodevices: Gramicidin: Monte Carlo simulations

1. Introduction

lon channcls arc a class of proteins that reside in the
membranes of all biological cells |1]. Each channcl
consists of a chain of amino acids folded in such a way that
the protein forms a macromolecular aqueous nanopore that
conducts ions in and out of the cell. An essential feature of
all proteins 1s that many of the side chains of the amino
acids arc ionizable, giving rise Lo a strong permanent charge
that varies sharply along the channel. This distribution of
charge depends on the physiological environment of the
channel. and plays an important role in determining the
conduction mechanisms of the open channel. From a
physiological point of view, ion channels regulate the
transport of ions through the otherwise impermeable cell
membrane, thereby maintaining the correct internal ion
composition that is crucial for cell survival and function.
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They directly control electrical signaling in the nervous
system and muscle contraction. Malfunctioning channels
cause or are associated with many discases. and a large
number of drugs act directly or indirectly on channels [2].

There are many types of ion channels, each with a
specialized function [3-5]. Many channels can selectively
transmit or block a particular ion species and most exhibit
switching properties similar to complex nanoscale
clectronic devices. The wide range of device-like functions
exhibited by ton channels has stimulated a great deal of
interest in the engineering community for their possible
application in the design of novel bio-devices [6]. As
integrated device features continue to shrink, statistical
fluctuations and structural defects increasingly affect the
reliability of solid-state nanoscale devices. Ton channels, on
the other hand. have the distinct advantage of sclf-assembly
and almost perfect structure duplication. The techniques of
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modern molecular biology also offer the possibility of
altering protein structures with atomic resolution [7,8]. By
replacing or deleting one or more of the amino acids that
comprise it, the channel can be mutated. altering the
distribution of charge on the protein. Engineering channels
with specific conductances and selectivities is therefore
conceivable. The incorporation of ion channels in the
design of novel bio-devices is therefore appealing and a
clear understanding of channel operation may provide a
template for the design of functional elements based on
synthetic molecular systems or nanotubes.

Simulations can help provide a clearer understanding of
channel operation. However. the simulation of an ion
channel embedded in a macroscopic membrane environ-
ment presents a formidable time and space multi-scale
problem [9-13]. Channel/membrane system dimensions
range from =~ 10 to =~ wm. while specific channel
functions, such as switching or selectivity, are often
controlled by sub-nanometer functional sub-units of the
protein. At feast part of the channel system therefore needs
to be represented with atomic resolution. In addition.
short-range 1on—ion and ion—protein interactions can be
very strong  so ion motion must be resolved on a
femtosecond time-scale. On the other hand, ion traversal
through the channel is a rare event so reliable estimates of
current and other macroscopic behaviors require simu-
lations lasting several ps. Realistic simulations are also
difficult because at present the complete molecular
structure is known from measurements for only a few
channels. Even then. it is ditficult to predict the structural
and electrostatic changes that may occur when the channel
is exposed to different physiological conditions.

With the broader availability of standardized software
and large-scale computing power, Molecular Dynamics
(MD) has become one of the most widely employed tools
for studying ion dynamics in protein channels [10].
Although MD simulations can provide key information
regarding the mechanisms of ion conduction in atomic
detail (see Ref. {13} and references within), the
computational requirements of such large-scale simu-
lations prohibit the direct calculation of steady-state
channel currents. particularly when channels are controtled
by trace concentrations of jons, even on massively parallel
machines. At the other end of the simulation hicrarchy,
continuum models based on the drift-diffusion theory used
widely in the engineering community to describe charge
transport in semiconductor and plasma devices [ 14], have
been used to compute macroscopic ion current with a
modest amount of computational effort [15-28]. Although
drift-diffusion theory sacrifices the resolution of molecular
detail. when used with an appropriate value of ion
diffusivity it has been found to describe ion permeation
through some channels surprisingly well. However. ion
diffusivities and dielectric coefficients must be assigned
with some care since the continuum paradigm deals with
average densities rather than discrete particles of finite size,
a premise that has been found 0 overestimate the ion
concentration in very narrow channels [22.28]. Equilibrium

Monte Carlo (EMC) simulations, in which ions are
modeled as discrete particles with a finite size, but water
and protein are treated as continuum dielectric media, have
found recent success in explaining the selectivity
mechanisms of the Ca™ " [29-32] and Na* [33] channels,
indicating that competition between charge and available
volume determines the channel’s selectivity: however it is
not clear how this approach can be used to handle ion
transport in a self-consistent manner.

In order to extend simulation times beyond the current
limit imposed by the computational cost of MD
simulations, while still retaining some atomistic level of
detail. a coarse-grained particle approach is required. In
this respect, Brownian Dynamics (BD) simulations have
become increasingly popular. Ton trajectories computed
from the Langevin equation can be used to probe the ions’
permeation pathways through the channel and statistical
analysis of the trajectories yields macroscopic information
regarding the channel’s conductance and selectivity
[26.34-43]. Although BD simulations are relatively easy
to implement and yield results swiftly, representing ion—
water interactions with a single friction coefficient and a
random stochastic force may be an over-simplification in
narrow regions of the channel where additional ion
scattering mechanisms could prevail. In this paper, we
describe Biology Monte Carlo (BioMOCA). an alternative
three-dimensional (3D) coarse-grained particle transport
model for ion channels based on the Boltzmann Transport
Equation Monte Carlo (BTMC) methodology developed
for semi-classical charge carrier transport in solid-state
devices |44]. A brief introduction to BioMOCA has been
given previously elsewhere [45], however here we furnish
further details of the implementation and present a more
comprehensive discussion of the various advantages and
drawbacks of this approach. The interaction between ions
and the surrounding channel/electrolyte environment is
handled in a simplified way by treating the water. protein
and lipid membrane implicitly as dielectric background
media. lon trajectories are traced in real space as sequences
of free flights interrupted by thermalizing scattering cvents.
The random duration of free flights is linked to the ton’s
diffusivity in the eclectrolyte. In contrast to clectron
transport in semiconductors, ions cannot be treated as
point particles. since their size is comparable with the pore
diameter of channels. The finite 1on size is addressed here
by including a pairwise Lennard-Jones potential, which
prevents the unphysical coalescence of oppositely charged
ions. In reality, the presence of water shells shrouding the
ions plays an important role in maintaining the ions in
solution, however it is not yet clear how to include this
effect in the coarse-grained particle model. Electrostatic
forces are caleulated self-consistendy from the charged
particles positions by solving Poisson’s equation at regular
intervals. Simulation of ion transport under an applied bias
across the channel is modeled in much the same way as the
transport of quasiparticles is done in device simulation
[44.46-49]. However, while typical semiconductor
devices have highly doped contacts with fixed 1on charge
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and a single mobile species, the electrolyte on cither side of

the channel behaves more like an intrinsic semiconductor
because the balance between positive and negative mobile
carricrs s preserved. The BioMOCA simulation code is
described in detail in the following section.

Although the BTMC mecthod has been used routinely in
the semiconductor community over the past two decades,
its application to tonic solutions is very recent and
therefore requires  validation. For this purpose. we
computed the ton--ion pair correlation function g(r) for
several generic homogencous electrolytes and compared
them to benchmark results obtained from EMC simu-
lations [50.51]. The function g(r) plays a central role in
describing the microscopic structure and thermodynamic
state of a system [52-54]. For homogencous isotropic
systems, it is proportional to the probability of finding two
atoms separated by a distance r. Thus, for any molecular
scale simulation to be thermodynamically correct, it must
reproduce the correct pair correlation function. In Third
Section, we briefly review the EMC method and present
the ion—ion pair correlation function calculated via these
two approaches for several simple electrolytes.

Solving Poisson’s equation repeatedly on a mesh that is
fine enough to resolve the channel's structure and
permanent charge distribution. as well as large enough
to encompass the entire 3D domain, currently presents a
computational bottleneck in BioMOCA simulations. In
Third Section. we discuss several schemes that have been
shown to significantly decrease the computational load.
The pair correlation function is again used as a marker to
determine that these cost-saving schemes do not alter the
outcome of the simulations.

In the remaining sections, we return to the original
motivation for developing BioMOCA—i.c. to simulate ion
transport through protein channels embedded 1n lipid
membranes—and present a full ion channel simulation
based on gramicidin A (gA). a simple channel-forming
molecule expressed by the bacterium Bacillus brevis
[11.40.55-62]. The gA channel is specifically selective
for small monovalent cations. Possible mechanisms
underlying this selectivity have been addressed in several
recent articles. In particular, it has been argued that the
cancellation of the Dielectric Boundary Force (DBF) by
the electrostatic forces arising from the permanent charge
on the protein is responsible for the monovalent cation
selectivity of gA [63.64]. We further examine the role of
the distribution of permanent charge and the dielectric
constant in the protein in the selectivity of gramicidin. The
tinal section concludes with a discussion of this work, as
well as some of the aspects of the coarse-grained approach
that require further work in the future.

2. The BioMOCA ~Boltzmann Transport
Monte Carlo Code

BioMOCA is a 3D code for simulating ion transport in
clectrolyte environments surrounding proteins, based on

the Boltzmann Transport Monte-Carlo (BTMC) [44] and
particle - particle ~ particle-mesh (P*M) methodologics
[46]. Although specifically designed to simulate transport
through ion channel proteins embedded in membranes.
BioMOCA can also be used to study ion transport in other
proteinaccous environments as well as bulk clectrolyte
solutions. In order o reduce the amount of computation.
the protein, membrane and water are all treated as
dielectric background media. Ton motion is assumed to be
classical and overdamped by frequent scattering events
with water molecules. In between scattering events, the
ions move according to Newton’s laws of motion in
response to the local field. Trajectories are synchronously
propagated in time and space by integrating the equations
of motion using the second-order accurate leap-frog
scheme [46]. Ton positions r and forces F are defined at
time-steps . 1+ dr while ion velocities are defined at
1 —(de/2), t +(d1/2). The finite difference form of the
equations of motion is thus.
y’*ﬁ“’{ = p'” Yt Fode
ot
(h
l'Hdl =/ ar ‘;’”"—L?Ydl

where the total force on the ion F . is the sum of the
electrostatic component and a pai‘x“\lwisc ion—ion inter-
action component which represents the finite size ot the
ions. The overall flow of control in the BioMOCA
algorithm is illustrated in figure 1 and the various steps are
described in detail below.

2.1 Field solution

The local clectrostatic potential @(r) is obtained self-
consistently by solving Poisson’s equation,

v- (EI(I:)V(’)(’:)) = (l’(}:)i()n\ + p“:);mrm) &y

where pion () and ppenn{r) are respectively, the densities
of mobile 1ons and permanent fixed charge on the
protein. and (r) is the local diclectric constant. Solving
cquation (2) over the entire domain subject to specilic
Dirichlet boundary conditions provides a simple way to
include an applied bias and the effects of image charges
induced at dielectric boundaries. The mobile charge
density gions(r) 1s recomputed at regular intervals from
the current positions of all ions in the system. Each ion’s
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Figure . Flowchart of the BioMOCA algorithim
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charge is associated to a finite rectilinear grid using the
cloud-in-cell (CIC) scheme [46] to weight the charge to
the cight nearest grid points. Equation (2) is then
discretized using finite differences or finite elements and
solved using either conjugate gradient [65] or multi-grid
[66] methods, subject to boundary conditions chosen o
suit the particular system being modeled. The electro-
static field £ at each grid point is obtained from the
potential using sccond-order finite differences and the
field at the eight nearest grid points is then weighted back
to the ion using the same interpolation kernel that was
used to map the charge density. The grid spacing is
typically TA.

The discretization of Poisson’s cquation leads to an

unavoidable truncation of the short-range component of

the electrostatic force. which can be corrected using the
P'M scheme. Short-range charge—charge clectrostatic
interactions are included explicitly by evaluating the
Coulomb field £ in a finite short-range domain 0"
surrounding each ton. The total electrostatic tield £ is
obtained by adding the short-range Coulomb
component (particle—particle) E" with the field
obtained from Poisson’s equation (particle-mesh) £™%,
plus a correction or reference term E* to avoid double
counting in the overlap region between the short-range
and global domains. Thus the total field acting on ion 7 is
written as

Ilmt «muh + rmul Ewi' 3)
[ >

e i
regy

where M s the field acting on ion i, obtained from
Poisson’$ equation. £ is the Coulomb field acting on
100 7 duc to all ions j that lie within the short-range domain
L7 surrounding ion 4, and £™' is the reference term that
removes the contribution t0” E™ from ions j that lic
within {27, Ideally £' should cancel the mesh component
inside the short-range domain while outside the short-
range domain it should cancel the Coulomb component. In
practice there is no computationally reasonable procedure
for determining the exact reference term. Hockney and
Eastwood describe an approximation that minimizes the
crror in transitioning from the global to short-range
domains, by effectively ascribing a finite size to the
charged particle [46]. Here we use a simpler and less
computationally burdensomc approach, approximating the
short-range  component of the mesh force using the
analytical expression for the Coulomb field due to a
charged sphere of radius r, = 1.5A where A is the uniform
mesh spacing. The chargc distribution that best represents
the short-range behavior of the mesh foree is one that is
lincarly decreasing with radius, viz.

3y " v
) ] rE o, (4)
e T
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Using equation (4), the ce term is given by

'1‘ J [E!!;l
: J
(5

r & (2

J

where 1. and r; are the locations of jons andj {2
sphere of radius r = r, centered on r, and s = |r = | is
the separation between ions i and j. In pl actice @ s ()nl)
ever computed for those 1ons that reside within lhc short-
range domain since the last two terms of equation (3)
cancel exactly for ions located outside (2'. Extensive
benchmarking discussed in the following section has
demonstrated that this approximation works well for ionic
solutions. This treatment of the electric field is quite
different from that in traditional protein molecular
dynamics [9]. There periodic boundary conditions are
almost invariably used. and when particle-mesh methods
are used, they are used quite differently.

2.2 Dielectric coefficient

An important aspect for ion channel simulations that
compute clectrostatic forces from Poisson’s equation is
the assignment of appropriate values for the dielectric
coefficient of the protein and membrane. The dielectric
coefficient determines the strength of the interaction
between two charged species as well as the self-force felt
by anion as it approaches a boundary between two regions
having different dielectric coefficients, hereafter referred
to as the DBF. The resulting potential energy barrier faced
by a single point charge trying to pass through the center
of the channel is strongly dependent on the relative values
of the dielectric coefficient in the two regions: as we show
later, reducing the dielectric coefficient in the protein from
£, = 20 10 &, = 2 increases the height of the barrier by
almost a factor of three, which has strong tmplications for
the channel’s conductance. It is therefore cructal to have a
realistic idea of the dielectric propertics of the channel
before channel conduc-
tance from simulations.

drawing any conclusions about

The task of assigning specific values for the dielectric
coefficient in the protein and membrane environments is
problematic because the protein environment can respond
to an external field in several different ways. For example,
tield-induced dipoles. re-orientation of permanent dipoles
and larger scale re-organization of ionized side-chains and
water molecules. both within the interior and on the
surface of the protein, all contribute to the protein’s
dielectric response on different relaxation time-scales.
When deciding what value to assign to protein dielectric
coefficient &, one must tirst consider how much physics is
included explicitly in the model. In MD simulations where
all of the charges and dipoles are included explicitly. then
clearly e, should be equal to | everywhere

For models that treat only the field-induced atomic
polarization of the proteinaccous region implicitly, it has
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been suggested that g, = 2 is more appropriate. However,
when protein and water re-organization are also treated
implicitly, as is the case in BioMOCA and most other
coarse-grained particle ion channel simulation codes, the
diclectric coefficient is hard to define, particularly when
ion motion takes place on the same time-scale as the
protein’s response to its presence. It has been suggested
that for continuum models that seek to encapsulate the
diclectric response of the water and protein side-chains
with a single dielectric coeflicient, the value of &, should
be greater than 2 [67]. The issue of protein dielectric
coefticients is addressed in detail in several recent articles
(sec Refs. [67-70] and references within).

In addition to the protein and membrane dielectric
cocfticients, some thought must be given o assigning
values for the dielectric coefticients of the aqueous
regions of the ion channel system. The clectrolyte bath
regions are generally given the same dielectric
coeflicient as bulk water, viz. &, = 80. However, in
most ion channels the pore is very narrow and is often
lined with highly charged residues and/or strong
permanent dipoles that can form hydrogen bonds with
water molecules within the channel. As a result, water
molecules can be highly ordered within the channel
pore. restricting their response to external fields [13,71].
In the case of the gramicidin channel, which is
discussed later in this paper. correlated motion of water
molecules inside the channel is extreme. The pore is
lined with strongly polarized carbonyls and NH bonds
in the polypeptide backbone. which hydrogen-bond to
cach other. helping to stabilize the channel’s helical
structure. These dipoles are tilted with respected to the
channel axis such that the carbonyls protrude slightly
into the pore forming hydrogen bonds with water
molecules which. due to the narrow width of the pore,
must traverse the channel in single file [72]. As a
result, water is extremely ordered within the channel
and the dielectric coefticient e, can be expected to be
significantly lower than the value used for water under
bulk conditions. and morc than likcly anisotropic.
Computing clectrostatic forces acting on 1ons in regions
surrounding a sharp transition in diclectric coefficient
poses additional numerical complications. Ideally the
dielectric coefticient should decrease gradually from the
bulk-like bath regions to the channcl pore. This aspect
of the BioMOCA simulator is still under development.
For the simulations presented here we have adopted the

same  approach  as  several  other  groups
[17.18,21.2224-46] and use & = 80 inside the

channel pore.
With these considerations in mind. BioMOCA s

designed o handle any user-provided distribution of

dielectric coefficient. For the results presented here we
have chosen to specily € on a region by region basis.
However. the code s flexible enough to accept a grid-
based description of dielectric coefhicient. The technique
used to detine the boundaries between the various regions
is discussed Jater in this section.

2.3 Ion size

In addition to electrostatic forces acting on the ions. a
pairwise repulsive force is also included to mimic ionic
core repulsion, thus preventing ions from overlapping or
coalescing unphysically. Several forms for the interaction
potential are reported in the literature, all requiring fitting
parameters. The most commonly cmployed is the
Lennard-Jones 6-12 potential. which does an admirable
job of predicting the properties of condensed noble gases.
For ionic systems another simple inverse power law where
the value of the index parameterizes the hardness ol the
ionic core repulsion is often used. Unlike the
Lennard-Jones potential this potential ignores the effects
of field-induced polarization. For the results presented in
this paper we have used a truncated-shifted form of the
Lennard-Jones potential, discussed further in the follo-
wing section. However, in principle any analytic form can
be used. The issue of how to calibrate these interaction
potentials and fitting parameters, though a most important
one. i1s not addressed in this paper. 1t is a constant issue of
discussion among us, because the properties of concen-
trated salt solutions depend so sensitively on the diameter
of their ions [73-76].

2.4 Ion—water interaction

Unlike MD simulations. which treat all particle—particle
interactions explicitly, BlioMOCA simulations replace the
individual water molecules with a continuum background
media and 1on—water interactions are handled using the
BTMC method. Ton trajectories are randomly interrupted
by scattering events that account for the ions’ diffusive
motion in water. The flight times 7, between thesc
scattering events or collisions are generated statistically
from the total scattering rate for all collision mechanisms
Ao p(1)) according o

Ty

—lnr= [)\u,l (ptoy)dr (6)

0

where 7 1s a random number uniformly distributed on
the unit interval. In general the scattering rate can
depend on particle momentum p, which in turn will
depend on the ion’s local environment, and should
constitute the sum of individual scattering rates for
various scattering processes. At the start of each ion
trajectory a random number # is used to set the flight
counter «, given by the left-hand side of equation (6)
which can be rewritten as
Lk 1;"“ I

A S |

(=)

Aot (PN A+ | A (Pde

ide il

}_: Iide+ 1,7, 7)
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where T is the maximum scattering rate during the ith
time-step. At the beginning of each time-step, the flight
counter is incremented by an amount «; . = «; + Idr.
As long as a;.1 > 0, the ion trajectory is integrated over
the whole time-step. When «,..; << 0, the ion is assumed
to have scattered with a water molecule during the time
interval (1, f; + dry. The trajectory is integrated up to the
time of scauering over the sub-time-step (1, 1; + dr),
where df = Ty — 1; is given by «;/I". Another random
number is then used to select which type of scattering
event took place and the final state of the ion is selected
according  to  the particular  scattering  model
implemented.  Although  BioMOCA is cquipped to
handle multiple scattering processes, and space  and
momentum dependent scattering rates. for this work we
have assumed a single scattering  mechanism  that
“thermalizes™ the 1on. with a constant scattering rate
for each species, linked to the ion’s diffusion coefficient
m water. That is to say, the final state is selected
randomly from a Maxwellian distribution, the flight
counter s reset using another random number and the
ion trajectory is integrated over the remainder of the
time-step. We note that in simulations of regions of
restricted volume. such as inside the channel pore,
additional scattering mechanisms may alter the scatter-
ing rate significantly. Scattering models that include
position-dependent diffusion coefficients obtained from
MD simulations will be addressed elsewhere.

2.5 lon—protein interaction

In order to model the interaction of ions with the protein and
membrane, the boundary between electrolyte. protein and
lipid membrane regions must first be defined. Due to the
lack of structural information. as well as tools for
representing molecular structure within the simulation
framework, carly coarse-grained particle ion channel
simulations often used simple geometric structures (c.g.
cylindrical holes and toroids) to represent the protein
boundary as a smooth surface [34-36.41,42]. The
simulation domain was thus divided into regions that ions
can physically access and regions from which they are
excluded. Although this approach is simple to implement, it
does not capture the detailed protein topography, which can
play an important role in the channel’s function.

Despite the difticulty in crystallizing ion channel
proteins. high-resolution X-ray crystallographic measure-
ments of complete molecular structures have recently
been obtained for several ion channels [13.77].% These
molecular structures provide information about the type
and location of the atoms that form the protein, although
they of course do not settle the location or description of
diclectric boundaries. or distributions of permanent charge
of the channel protein. In addition, several force-fields are
available in the literature providing information about
the charge and radii of the atoms in different amino-acid

chup/fwww resh.org/pdb/

groups. These force fields are the result of an
extraordinary effort 1o choose atomic parameters that
reproduce  important miacroscopic properties of amino
acids and proteins [9]. There is not agreement, however.
about which macroscopic properties are important. e.g.
solvation energy or/and activity coefficient, nor are the
choices used historically to design each force field always
apparent. Clearly, the force fields are macroscopic fitting
parameters subject to ambiguity and error as other
macroscopic parameters (e.g. dielectric coefficient), and
future work will be needed to optimize their choice. The
molecular structures together with the force-fields provide
the coordinates, charge and radii of each constituent atom
of the protein. One way to model the interaction between
ions and protein surface 1s to use a radially symmetric
interaction potential (e.g. Lennard Jones) for cach near-
surface protein atom, of which the short-range repulsive
component “naturally” prevents the ions from penetrating
the protein. Molecular dynamics simulations of the protein
cquilibrated in site in a lipid bilayer can also provide
structural information for the membrane, allowing the
membrane surface to be similarly modeled. However this
approach can be computationally costly, especially for
larger protein channels like porins. Furthermore, this
approach assumes the protein to be a static structure,
ignoring the movement of the protein in response to
applied fields and thermal fluctuations.

In BioMOCA. we take a simpler approach that partitions
the simulation domain into contiguous regions. Many
open-source molecular biology packages now have butlt-in
facilities that determine the regions accessible to finite-
sized ions in a protein system mapped onto a rectilinear
grid. We have incorporated the scheme implemented in the
Adaptive Poisson Boltzmann Solver (APBS) [66] into the
BioMOCA simulator. The algorithm takes as input the
molecular structure of a given protein channel, which is
publicly available in the Protein Data Bank.# along with
one of the force-fields (atomic radii and partial charges)
described earlier. A uniform rectilinear grid is placed over
the domain and a ball having radius appropriate to a water
molecule is used to sample the 3D space. Grid points that
cannot be accessed without the ball overlapping protein are
labeled as protein and the rest are considered electrolyte.
The volume embedding the protein in the direction radial to
the channel axis s then designated as lipid membrane. to
create three contiguous regions (protein. lipid. and channel)
connecting two electrolyte baths. The regions classitied as
protein and lipid are deemed maccessible to 1ons. The ions
themselves are assigned a finite radius. equal to the Pauling
ionic radius | 3]. If any point within the sphere thus defining
the ion crosses the protein or membrane boundary during a
time-step. the ion is assumed to have collided or interacted
i some way with the protein/membrane. The ion is
returned to its position at the beginning of the time-step and
reflected diffusively. This process is repeated until the ion’s
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Figure 2. A 2D shee through the 3D BioMOCA domain, passing
through the center of the gramicidin ton channel in sinein a dielectric slab
representing the lipid membrane. A single Na' ion trajectory that passed
through the channel is superimposed

Update g) &
diagnostics

tinal position lies outside the protein/membrane region.
A 2D slice through the 3D BioMOCA representation of the
gramicidin ton channel in situ in a neutral lipid membrane
of thickness 22 A, is shown in figure 2. Planar contacts are
included at either end of the domain to enable a fixed bias
voltage to be applied across the system. The trajectory of a
single Na ™ ton that successfully passed through the channel
during a typical simulation is also shown.

2.6 Boundary conditions

Experimentally. the electrical and physiological properties
ol a single jon channel can be measured by inserting the
channel into a lipid bilayer (imembrane) separating two
baths containing solutions of specific concentrations |78].
Electrodes are immersed in the baths o maintain

a constant bias voltage across the membrane. Formulating
boundary conditions that adequately represent these
conlact regions can require extremely large baths and is
a challenging task. For general BioMOCA applications.
we assume that beyond a Debye length from the
membrane the avcrage electrostatic potential and ion
densities do not vary appreciably. an assumption
supported by the results of recent continuum simulations
[25]. For salt concentrations considered here. this distance
is of the order of 10A. We therefore impose Dirichlet
boundary conditions on the potential at the two domain
boundary planes that lic parallel to the membrane, taking
care to ensure that the Dirichlet boundary planes are
sufficiently tar from the membrane. Homogencous (i.e.
zero) Neumann boundary conditions are imposed at all
other domain boundaries. Periodic boundary conditions
are never uscd.

To model electrolyle baths of lixed concentration on
either side of the membrane, a constant ion population is
maintained in buffer regions that extend into the domain
from the Dirichlet boundary planes. lons that leave the
domain through the Dirichlet boundary planes are
removed from the simulation. At the end of cach time-
step the total number of ions of cach species in the buffer
regions is counted. If the ion population falls below the
valuc representing the desired density new ions are
imjected with a Maxwellian velocity to maintain the given
density. It should be noted however, that ions are never
artificially removed from these buffer regions. lons that
attempt to cross the Neumann boundary planes are
reflected elastically.

3. Validating BioMOCA for simulation of electrolytes

The BTMC method is a numerically efficient way to solve
the Boltzmann Equation for semi-classical transport. It has
been used to study charge transport in electron devices for
over four decades [44.46--49]: however, its application 1o
ion transport in clectrolytes is new. Several other groups
have developed 3D coarse-grained particle based codes
for simulating transport in ion channels [26.34-43,79].
Unlike BioMOCA however. these codes use Brownian
Dynamics o describe 1on transport. The key advantage
that the transport Monte-Carlo approach holds over
Brownian Dynamics is the flexibility o use different ion—
water scattering models in different regions of the channel
environment. In the limit of high friction both approaches
should give the same result. The most conspicuous
difference between the charge carriers in semiconductor
devices and those of electrolytes is the physical size of the
charge. Unlike clectrons, the size of the ions cannot be
ignored in ion channels systems. since the dimensions of
the channel pore are often comparable to that of the ions.
Betore embarking on a full-scale 1on channel simulation.
tt1s tmportant to first check that both the P*M scheme and
the ion--ion interaction are implemented correctly in
BioMOCA. For this purpose we have benchmarked
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BioMOCA against the well-established EMC simulation
method by comparing the ion—ion pair correlation
functions g(r) for several model electrolytes under
cquilibrium conditions computed using both approaches.
The EMC method has been widely used to describe the
propertics of ensembles of hard spheres and is described
below and in further detail in Refs. {29.80].

The pair correlation function provides a quantitative
description of the microscopic structure of matter and can
be used (o derive macroscopic thermodynamic properties
of the system, such as pressure and density [52-54]. 1t is
therefore seen as a suitable first measure to validate the
BMTC mcthodology for electrolytes. The pair corrclation
function g(ry is detined as

L

where V= LX L XL is the system volume, N, is the
number of particles, r; is the distance between particles i
and j, and the angular brackets denote a time average.
Since both EMC and BMTC simulation methods provide
particle coordinates in real space. g(r) is readily computed
by simply counting the number of particles Nyir, Ar)
found in a spherical shell of radius r and thickness Ar.
centered at cach particle.

L™ Nitr, Ar)

M Lak=1

gt = Tt

where the time average is performed explicitly over M
time-steps.

We now consider three generic electrolytes under bulk
cquilibrium conditions. consisting of two ionic specics
that interact via the Coulomb potential and an additional
ion-ion pairwise Lennard-Jones 6-12 potential. The
latter represents the ionic core repulsion that prevents ions
from overlapping or coalescing which would clearly be
unphysical. The Lennard-Jones interaction is modified to
retain only the short-range repulsive component, as
described by Equation (10), and illustrated in figure 3

\ 12 N
) a, T, N Al
dey ((,) - (,) > +en g <2 oy

0 ryj > 2! {’rr{,

Upatry)

(10)

where gy is the Lennard-Jones encrgy paramceter and oy =
(; + o7) /2 s the average of the individual Lennard-Jones
distance parameters for particles i and j. For the results
presented here we set gy = kg7 and T = 298.15K.
EMC simulations involve sampling the phase space of a
system in thermodynamic equilibrium. For the EMC
results presented here, the canonical (NVT) ensemble was
used. Particles are distributed randomly in the phase space
of a fixed volume and periodic boundary conditions are
imposed to mimic bulk conditions. The pair correlation
function is computed by attempting to alter the system
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Figure 3. Magnitied view of the ion-ion pairwise Lennard-Jones 612
potential, shifted and truncated to include only the short-range repulsive
component which prevents ions from coalescing.

configuration. Each EMC step involves displacing a single
ion randomly in the simulation volume. The change is
accepted with probability exp(—AU /kgT) where AU is
the energy cost of the change. determined from the
Coulomb and Lennard-Jones interaction potentials. The
long-range component of the Coulomb interaction was
determined in Fourier Space using an Ewald sum and the
Lennard-Jones interaction was determined directly in real
space. Water was treated as a dielectric continuum using a
permittivity ey = 80. Each EMC simulation was run long
enough to yield a relatively smooth function g(r), sampled
at every iteration in discrete bins of width 4 = 0.3 A. CPU
requirements on a single processor SGI Origin2000
(250 MHz R1Ok) were of the order of a few hours.

We consider first a simple monovalent clectrolyte of
two oppositely charged ion species having o. = o =
3A, at a concentration of 1 M. Ton—water scattering rates
were chosen based on the masses of Na™ and Cl7 ions, and
the diffusion coefficients of Na' in bulk water [81].
vielding A, = 813X 107 s "andA =3527x10Ms 1
In order to model bulk-like conditions using BioMOCA,
we consider a closed system (i.e. 1ons are reflected off all
domain boundaries) sufficiently large to minimize edge
effects associated with the finite domain and mixed
Dirichlet/Neumann boundary conditions. To avoid skew-
ing of the pair correlation function by the finite domain
used in BioMOCA., 26 replica domains are placed directly
adjacent to the primary domain. Of the 27 particles
(original particle plus 26 replicas) only the one that lies
within a distance £/2 of the center of the shell is counted in
Eq. (9. The domain thus consists of a cube of side-length
L= 192A. discretized into 48 X 48 X 48 cells. with
mesh spacing A = 4 A. For a monovalent solution at a
concentration of 1M these domain dimensions vield a
total 1on population of 8524, By contrast, since the EMC
simulations cmploy periodic boundary conditions, cdge
cffects are not problematic, thus permitting the use of
smaller domains (L = 69.251 /"\) and hence a much
smaller 1on population of only 400,

Cation-—-cation g.,...(r), anion-aniong () and cation—
anion g, .. (r) pair correlation functions computed for
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Figure 4. ¢ (r), goufr) and g, ) pair correlation functions
computed from EMC and BioMOCA simulations for a 1 M solution of
a stmple monovalent clectrolyte consisting of two oppositely charge ion
species of equal size o, = o = 3 A, Solid lines indicate EMC results.
BIoMOCA results computed using (i) L == 192 A, 48 X 48 x 48 cells,
A = 4 A are shown by dashed lines and (i) £ == 96 A, 24 x 24 x 24
cells, A == 4 A by dotted lines.

the system described above are shown in figure 4. The
dashed line indicates BioMOCA results while the solid line
shows EMC results. The comparison between the two
different approaches is excellent. For this result the
BioMOCA simulation was run for 2.1 ns. using an ion
integration time-step of 1015, After a 100 ps equilibrating
period the pair correlation functions were sampled cvery
1 ps. into discrete bins of width & = 0.3 A. Long-range
electrostatic fields, obtained from the solution of Poisson’s
cquation (Particle-Mesh). were updated every 10 time-
steps (100 £s) while the short-range component (Particle—
Particle) was updated every time-step. The CPU require-
ments for these parameters amount (o roughly 22h on an
Intel 2.4 GHz processor. Using a smaller domain can
drastically reduce the run-times; however, as mentioned
above, since BioMOCA does not use periodic boundary
conditions, the smaller the domain size the more the system
departs from bulk-like conditions. To see this effect we
halved the side-length of the box while keeping the mesh
spacing the same, thereby reducing the number of grid
points and ion population by a factor of &, and performed
the same simulation. Although the run-time is now reduced
1o =80 min. the pair correlation functions, also shown in
figure 4 by the dotted line, are slightly degraded.

Figures 5 and 6 show the pair correlation functions
computed on domain of side-length L = 192 A. discre-
tized into 48 X 48 X 48 cells, with mesh spacing A =
4 A for 1 M solutions of (i) a divalent electrolyte described
by: o = 0 = 3.0A, 4 = 42,z = 1 (hgure 5) and
(i) a monovalent electrolyte of dissimilar ion sizes.
described by: o = ]‘9/?\., o = 3.602A, r. =4l z = ]
(figure 6). All other simulation parameters including
scatlering rate remain the same as above. The agreement
with EMC simulations is again excellent, lending
confidence in the ability of BioMOCA to handle
multivalent solutions of different ionic species.
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Figure 5. ¢ (r). g4.(r) and g, () pair correlation functions
computed from EMC (solid lines) and BioMOCA (dashed lines)
simulations for a 1 M solution of a divalent electrolyte consisting of two
equally sized ion species described by: oy = . = 30A, 2. = +2,
oo =L

3.1 Computational issues

Repeatedly solving Poisson’s equation in real space
currently presents the main computational bottleneck in
the BioMOCA simulations. For the 48 X 48 X 48 grid
used in figurce 4, roughly 32% of the total CPU is
consumed by the solution of Poisson’s equation. Howcever,
with such a large domain (L = 192 A) the number of jons
is so great (== 8500) that the magnitude of this botleneck
is somewhat masked by other tasks that scale with the
number of particles, e.g. integrating trajectories (= 269)
and computing short-range forces (=27%). In actual
BioMOCA ion channel simulations the number of ions is
typically less than 100 and the fraction of time spent
solving Poisson’s equation can be as much as 85%. Since
the CPU cost of the Poisson solution scales almost linearly
with the total number of grid points. there is clear
motivation to use the coarsest possible mesh. In this

9,40

BioMOCA

g,.(n

J |
0%0 5.0 10.0 150 20.0

r{A)

Figure 00 ¢ (i gy o) and gy () pair correlation Tunctions
compuited  from EMC (solid linesy and BioMOCA (dashed  lines)
simulations for a 1M solution of & monovalent electrolyvie of dissimilar
stzed jons described by o 19A o 362A



160 TA. wan der Straaten ¢t al,

section, we illustrate this issue by rewrning to the 1M
monovalent solution consisting of two equally sized ion
= 3A). and re-computing the pair
correlation functions on a smaller cubic domain of side-
length L = 96 A, using the following progressively
coarser meshes: (1) 48 X 48 X 48 1 A = 2 A, (2) 24 X 24 X
240 A=4A (3) 12X 12X 12: A=8A. (h) 6X06X6:
A=10A and (5) 3X3x3: A=32A. For the three
finest meshes (A =2A, A=4A and A = 8 A). the pair
correlation functions were computed both with (P*M) and
without (PM) the correction for the truncation of the short-
range component by the mesh.

Agreement between the pair correlation {unctions
computed with P'M scheme was excellent across the first
four mesh L(mhg,llldll()ﬂs(A “2A A =4A A= 8Aand
A = 16 A), with some distortion observed on the coarsest
mesh (A = 32 A) where, due to the grid points being so
few, the application of mixed Dirichlet/Neumann bound-
ary conditions starts to perturb both the global solution of
Poisson’s equation and the local correction term E™'
creating non-bulk-like conditions. Due to space restric-
tions we do not show these results. Figure 7, however,
compares the pair correlation functions computed with
only the PM scheme against a base case computed with the
P'M scheme on the A = 2 A mesh. The corresponding
run-times for each 2.1 ns simulation are plotted in figure 8.
Open symbols indicating results obtained using the PM
scheme and closed symbols indicating those obtained with
the P*M scheme.

Firstly. uumpalmﬂ run-times for the two simulations
(PM vs. P’M) pcriormcd on the finest grid (A = 2A)
demonstrates that the P'M scheme adds litde il any
computational overhead, a result that is hardly surprising,
since the short-range correction term is rarely invoked
when the mesh spacing is smaller than the ion diameter
tA <7 o p). The strong short-range repulsive interaction in

species (o, = .

cquation (10) ensures that the event of two ions occupying
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Figure 7. ¢ g

(r) and ¢ (r) puair correlation tunctions for a
M omonovalent electrolyte described by o, = o 30A compured
from BioMOCA using the PM scheme on progressively coarser meshes:
A= 2A A = d A and A 8 A, compared to the base case computed on

ad - 2A mesh using the P'M scheme.
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Figure 8. CPU time as a function of mesh spacing for the pair
correlation function calculations in figure 7.

the same or neighboring mesh cells at the same time is
extremely unlikely. Therefore, truncation of short-range
clectrostatic forces by the mesh. which only becomes
critical at inter-particle distances »r = 1.5A, is not
problematic and, as shown in figure 7, the pair correlation
functions computed on the A = 2A grid with the P’M
scheme (solid line) and with the PM scheme (dashed line)
are indistinguishable. If ions are present at high
concentrations. say greater than I M, one might expect
greater sensitivity to the estimation of short range
clectrostatic forces. )
When the mesh spacing is doubled from A =2A to
A=4A, the run-time is reduced 5-fold. However, as
figure 7 shows, the truncation of the short-range Coulomb
forces by the mesh is now apparent in the pair correlation
functions computed using only the PM scheme (dotted
line). which are noticeably distorted. The correct pair
correlation function was cffectively recovered with
negligible overhead using the P*M scheme. The dramatic
speed-up obscerved when the grid spacing is increased
from A = 2A and A = 4 A saturates at A = § A because
the work involved with computing the pair correlation
function and the particle transport now dominates the
computational load. The
unacceptable as evidenced by the severe distortion of the
pair correlation function. The increase in g, (r) and
g .(r), and decrease in g.-(r) at short interaction
distances (7 = 3A to r = 6 A) indicates that the clectro-
static Interaction is grossly underestimated by the particle-
Again. the original pair corrclation
functions were recovered by using the P*M scheme, albeit
which increases

force truncation is clearly

mesh  scheme.
with some computational overhead.
dramatically with further increases in mesh spacing. As
the mesh becomes coarser the sive of the short-range
domain {(r, = 1.58). and hence the number of particles
residing therein, also increases. As a result the overhead of
directly computing the short-range Coulomb forces far
outweighs any speed-up up obtained from reducing
the number of grid points, as clearly tllustrated by the CPU
time required for the extreme case of A = 32 A,
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3.2 Relaxing the frequency of Poisson updates

In addition to reducing the number of grid points,
substantial reduction in the computational load can be
achieved by rclaxing the time interval between successive
solutions for the electrostatic field. Ton transport in
clectrolyte is highly collisional and under bulk cquili-
brium conditions 10n transport is largely diffusive [3]. The
ion root-mean-square displacement scales with time as
K. = (6D0)! _where D is the diffusion coefticient |82].
Over a time scale of Ips the ion diffusion fength in a
typical bulk electrolyte is about 1 A. Therefore. in a
realistic picture of transport that is damped by water. the
charge configuration changes relatively slowly and the
frequency of field updates can be relaxed without
appreciably perturbing the pair correlation function.
Carcful benchmarking is necessary to determine the
optimal frequency for tield updates and that benchmarking
needs to be done for the range of ions and concentrations
and conditions of interest. Figure 9(a) shows the anion—
anion and cation-anion pair correlation functions for a
I M monovalent solution. computed using progressively
longer time intervals between solutions of Poisson’s
cquation. As shown, the time between Poisson updates can
be relaxed to a tew picoseconds before any significant
distortion in the pair correlation function is evident. Also
shown in figure 9(h) are cation—cation and cation—anion
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correlation functions computed for a 1 M nonovalent electrolyte of ions
consisting of two equally sized ion species. Top: 2 (r) and g, (9
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Figure 10, CPU time as a function of AT o, for the pair correlation
function caleulations in figure 9.

pair correlation functions computed using ion—-water
scattering rates reduced by a factor of 100, with the EMC
result included for comparison. Since the lower scattering
rate allows the ions to diffuse much further over the same
time scale. Poisson’s equation needs to be resolved much
more frequently. The corresponding run-times for cach
simulation are shown in figure 10. Again we observe the
speed-up saturating beyond a certain point. in this case at
Poisson update intervals of 1 ps. because particle transport
and pair correlation calculations start to dominate the
workload.

The results in figure 9 were computed using the P*M
scheme on a A=2A mesh. Similar benchmark
calculations performed on a A = 4 A mesh indicate that
the time between Poisson updates can be relaxed out even
further before the pair correlation function becomes
compromised. This stands to reason since the time scale
over which the charge distribution on the mesh changes
appreciably is longer on the coarser mesh. It should also
be noted that although the results in figure 9 suggest that
Poisson’s equation can be solved relatively infrequently
with respect to the 1on trajectory integration time-step, this
result has only been validated for equilibrium conditions.
lon channel systems are far from equilibrium. having
regions of very high fixed charge with very little
Coulombic screening. In such high-field regions ion
transport is unlikely to be completely diffusive and
transport coefticients are not necessarily the same as for
bulk conditions. We therefore caution against relaxing the
time interval between solving Poisson without frst
performing benchmark simulations.

4. Simulation of the Gramicidin ion channel

We now return to the original motivation behind the
development of the BioMOCA  code—to develop a
feasible alternative to Molecular Dynamics for the
simulation of 1on transport through protein channels. In
this section, we present a full-scale BioMOCA simulation
of ion transport through the gramicidin A (gA) ton channel
embedded in a liptd membrane. The gramicidin molecule
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consists of 15 amino acids folded into a helical structure.
When two gramicidin molecules align end-to-end o
create a dimer, a narrow channel approximately 25 A long

and 4 A in diameter is formed, allowing the conduction of

small monovalent cations. Because of its small and
relatively simple structure and the case with which it can
be synthesized, gramicidin has been well studied
[58,61,62]. both cxperimentally [55.56.59.60,84.88.89]
and theoretically [11,59.72]. and is a popular model
channel on which to develop a prototype channel
simulation {11,17,18,21.22.40,57.63,64,72]. There exist
several published  structures for gramicidin. For this
particular work we used the 1 MAG.pdb structure
determined via solid-state NMR by Ketchem er al. [83].
The partial charges residing on the protein atoms are taken
from the GROMOS force field.Y A 2D slice through the
3D BioMOCA representation of the channel system is
shown in figure 2. The sensitivity to the chosen structure
and force field is great and is the subject of much
discussion [57].

As discussed carlicr, due to the size and conformation of

the gramicidin channel, the motion of water molecules
inside the channel pore is very restricted and this has led to
a lack of understanding regarding some of the physical
constants that characterize the channel in the simulation,
c.g. dielectric and diffusion coefficients. Further insight
into these issues may be anticipated from MD simulations.
However, for the present work the three distinet regions—
lipid, protein and clectrolyte (baths and channel pore)—
were assigned dielectric coefficients of & = 2, 20 and 80,
respectively. Since run-times are dominated by the
repeated  solution of Poisson’s equation. we  have
cmployed a dual mesh system in which the region
accessible to ions is defined on a fine A = 0.5 A mesh
while the ficlds are solved on a coarser A = | A mesh.
This allows for manageable run-times while still retaining
as much structural detail as possible. For the results
presented here. we used a Poisson mesh of 25 X 25 x 74
grid points and a steric mesh of 49 X 49 X 103 grid
points. creating a domain 73 A in length and 24 A in height
and width. Since steric effects are only important in the
region containing the protein and lipid. the steric mesh can
be a sub-domain of the whole simulation domain.
Several simulations of Na® and Cl  transport were
performed using  scattering rates  determined  from
published 1on diffusion cocfficients measured in bulk
clectrolyte [81]. The scaltering rates arc high, A, =
831057 and A= =346 x 107 <71 necessitating
small time-steps of 1045, Tt should be noted that while
these scattering rates are correct for bulk clectrolyte, the
appropriate values to use inside the channel environment
is still an open question. MD simulations can provide
detailed trajectory information from which space-depen-
dent diffusion coefticients can be extracted; however, the
values thus obtained contain contributions from  both
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Figure 11, Distribution of ion residence times (trajectory duration)
accumulated from 16 separate simulations of average duration 162 ns
(total simulation time == 2.6 ps).

ion—water and ion-—protein scattering events. In Bio-
MOCA the two interactions arc handled separately, with
ion—water interactions modeled as thermalizing scattering
events and ion-protein steric interactions modeled as
hard-wall diffusive reflections, and it is not clear how to
extract the jon—water scattering componcent from the total
diffusion coefficient obtained from MD simulations.
Therefore, for the present work we have used bulk
diffusion coefficients inside the pore region. The high
scattering rates have some advantageous effects also.
As discussed in the previous section, since the ions diffusc
very slowly. the charge distribution on the coarser mesh
does not change appreciably during one time-step.
allowing the frequency with which Poisson’s equation is
solved to be relaxed. For this work we solve Poisson’s
cquation cvery 100 time-steps (1 ps), in addition to
whenever an 1on cnters or leaves the system. The latter
condition leads to Poisson’s equation being solved much
more  frequently than 1ps. With these numerical
parameters and mesh configurations the CPU require-
ments are fairly modest: approximately 24 CPU hours on a
Pentium HI (1 GHz) for 50-60ns of simulation time.
RAM requirements are less than 100 MB.

One of the main computational problems facing
particle-based simulations of ion conduction in protein
channel systems is the fact that for most ion channels. 1on
trajectories that successtully cross the membrane through
the channel pore arc extremely rare cvents. Thus,
computing channe! conductance directly by counting ion
crossings involves tracking a huge numbcr of trajectories.
most of which never go anywhere near the mouth of the
channel. This issue i1s most clearly illustrated in figures 11
and 12, which show respectively. the distribution of ion
residence times (i.e. duration of trajectory) and the
distribution of trajectory lifetimes for those 1ons that
successfully  crossed the channel. obtained from 16
separate simulations of average duration [62ns. Lach
simulation was performed with the same  parameters:
250 mV bias applicd at the right-hand-side contact, 1M
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Figure 120 Distribution of residence times for ions that successfully
crossed the channel, accumulated from 16 separate simulations lasting
between 147 and {82 ns. The top half of the figure shows the amount of
time spent in the bath regions between the contact and membrane while
the lower halt shows the amount of time spent inside the channel.

NaCl in cach electrolyte bath. The cumulative duration of
all the simulations was approximately 2.6 ps. Figure 12
also shows the breakdown of how much time was spent in

cach bath (top) as well as inside the channel itself

(bottom). As figure 11 shows, less than 12% of the Na*
ions remain in the bath longer than 100 ps and fewer than
3% remain longer than 1 ns. On the other hand, from figure
12, we see that those ions that do make it across the
channel typically remain in the system for a few
nanoscconds, most of which is spent diffusing in the
baths. The system is so highly collisional that ions
typically require on the order of several hundred
picosceonds to diffuse from the contact region to within
=~5A of the cdge of the membrane. and another several
hundred picoseconds to actually enter the mouth of the
channel. Furthermore. of those ions that do reach the
vicinity of the membrane, only a very few actually go
anywhere near the pore, as indicated by tigure 13, which
shows the distribution of the maximum distance from the
contact that the ion reached during its trajectory. Fewer
than 4% of the ions ever get within a few Angstroms of the
lipid membrane, and the sharp peaks approximately
23-25 A from the contacts indicate that most those ions
do not actually enter the channel.
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Figure 130 Distribution of the furthest distance from the contact reached
by all 1ons during = 2.6 ps of towal simutation thne,

The question then remains how one can reliably estimate
the channel current in the simulation. For small systems
like the gramicidin channel, which draws currents of the
order of aonly few pA. the brute force approach of counting
the number of ions crossing the channel requires simulation
times of the order of several microseconds in order to yield
reliable statistics. With the resources currently available a
single simulation lasting S ps could take a few months.
However, if we restrict ourselves to simulations of stcady-
state current, where any transient behavior is strictly
numetrical in nature, we can employ the principle of time
parallelization to distribute the total simulation time T3
across several processors, with each processor simulating a
smaller window of time 75™, subject to the following two
conditions: T3 must be much greater than the initial
transicnt in cach simulation, and long enough to observe
a statistically acceptable number of ions crossing the
channel. For the gramicidin simulation conditions cited
above the latter requirement necessitates 7™ = several
hundred nanoseconds. while the system initial transient is
typically much less than I ns. Combining the statistics from
each independent simulation significantly reduces the
variance in the estimated channel current, with a speed-up
and variance reduction determined by (7373
To demonstrate this approach we performed a gramicidin
simulation of total duration 4.3 ps distributed across 16
Intel processors (1 GHz) with T;i"’ ranging from 235-
300 ns, using the same physical parameters as cited above,
viz., 250 mV bias applicd at the right-hand-side contact and
1 M NaClin each clectrolyte bath. The total wall clock time
required was approximately 120h. Figure 14 shows the
histogram of Na! currents estimated from each simulation.
Combining the statistics from each simulation gives an
estimated current of 3.85 = 0.97 pA which is comparable
with the current measured experimentally under similar
conditions. Single-channel current-voltage measurements
of gramicidin in | M NaCl yield currents at approximately
2.5 pA under an applied bias of 200mV [84]. The mean
value of 3.85 = 0.97 pA corresponds 1o 7.2 = 1.8 Na”
crossings per 300ns.
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Channel current (pA)
Figure 14, Histogram of Na' currents estimated from 16 separate
simulations of duration ranging from 235 to 300 ns, totaling 4.3 ps. The
mean value of 3.85 # 0.97 pA comesponds o 7 I8 Na’ crossings
per 300 ns of simulation time.
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During the total 4.3 ws of simulation time 104 Na™ ions
were observed to cross the channel. all in the direction
consistent with the applied bias. i.e. from the right-hand-
side bath to the left-hand-side bath, whereas no Cl - ion
crossings were observed whatsoever. This result can be
casily explained by considering the size of the C17 ion
(ionic radius = 1.8 A) which is almost as large as the pore
cross-section itsell (radius = 2 A). making it nearly
impossible for the Cl1™ ion o enter the channel. To
check this assertion, we artificially set the Cl ionic radius
to the same value as the Na ™ ion (0.95 \) and ran several
additional simulations under otherwise identical con-
ditions. During a total of 2 us of simulation 50Na™ ions
crossed the channel. while 9 reduced radius Cl7 jons
crossed the channel in the opposite direction, thus
constituting approximately 15% of the total channel
current. However. when we reverse the situation and set

(a)

both Na* and C1' radii to 1.8 A no ions of either species
were observed to cross the channel. This therefore
indicates that although ionic size is the main reason that
gramicidin blocks Cl  ions. electrostatic factors also
contribute to the selectivity. This will be discussed further
in the following section.

In Figures. 15-17. we show the Na® concentration
(Agure 15). CI7 concentration (figure 16) and potential
(figurc 17), averaged over the entire 4.3 ps of simulation
time. on a 2D slice cutting through the center of the
channel. The channel geometry can be seen more
distinetly in panel (a), while the 3D image in panel (b)
gives a clearer picture of the spatial variations in
concentration and potential. The corresponding 1D line
plots, constructed from the 3D ion concentration data by
averaging over the plane perpendicular to the channel. and
extracted from the 3D potential data along the center of

log([Na+]) [M]

-3

Pigure 150 Nao concentration averaged over 4.3 ps of simulation time. on o 213 slice cutting through the center of the chunuel. AU dimensions are in

Aungstroms and concentration is plotted in Moles/Litre (M) on a logarithmic scale. with the indices indicated alongside the colour bar. All values below
4

10" are shown at the same level.
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Figure 16
svides are identical to those in figure 15,

the channel, are shown in figure 18. The main points o
note are as follows: The average concentration of both
species in the baths remains flat at =1 M demonstrating
that the contact region model is properly implemented.
Inside the narrow pore region the Na™ concentration drops
by more than an order of magnitude while C1 is excluded
altogether. Because the channel presents a severe bottle-
neck for Na* ion conduction. almost all the applied
potential drops across the channel/membrane with only a
negligible drop across the baths so that the channel acts
essentially as a resistor.

S. Selectivity of the Gramicidin channel:
some considerations

Asdiscussed carlier in this paper, the issuc of what values to
assign to the dielectric coefficients of the channel protein

-3

Cl o concentration averaged over 4.3 s of simulation time. on a 2D slice cutting through the center of the channel. All dimensions and

and interior of the pore, and indeed the actual definition of
the diclectric coefficient in the context of ion channel
simulations. is presently unresolved. In the previous
scetion, we presented results of a full-scale BioMOCA
simulation of the gramicidin channel, using e, = 20 for the
dielectric coefficients in the protein and &4, = 80 in the
channel pore, values which are arguably too high [69]. and
a distribution of fixed charge on the protein taken from the
GROMOS force field. With these assumptions the absolute
exclusion of CI' ions from the pore could be explained
from simple steric considerations. Further simulations also
demonstrated that Cl
radit are reduced to the same size as Na™: however the Cl

currentis still much lower than the Na * current, indicating
additional factors also play a role in gramicidin’s

ions will enter the channel if their

selectivity, Adding weight o this argument is the
experimental observation that gA only conducts small
monovalent cations. an aspect that cannot be explained by
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(b)

Potential [V]

Figure 17, Electrostatic potential averaged over 4.3 ps of simulation time, on a 2D slice cutting through the center of the channel. All dimensions are in

Angstroms.

. . - . .2 X .
ion size. Gramicidin does not conduct Ca” ions, for

example, despite the fact that at 0.99 A the ionic radius of

Ca™ is only marginally greater than that of Na™.
Recently it has been proposed by Nadler er al. [63] and
Edwards ¢f al. [64] that the mechanism allowing gA o
sclectively conduct small monovalent cations while at the
same tme blocking anions and divalent cations lies in the
permanent charge being distributed over the protein in
such a way that it creates a potential energy well that
counteracts the DBF—the force exerted on a charge as it
approaches a boundary between two regions of differing
diclectric coetticient, due to the image charge induced on

the other side of the boundary. The sign and magnitude of

the DBF depend on the relative values of the diclectrie
coefficients in the two regions as well as on geometric
factors. and the magnitude scales as the square of the
magnitude of the point charge. For the gramicidin
channel/membrane system considered here, any point

charge attempting to move from the bath to the channel
pore along the central axis of the channel will experience a
repulsive DBF, even though it never actually crosses any
dielectric boundary. The 3D nature of the dielectric
boundary between protein and aqueous regions causes the
DBF arising from the induced charge in the protein to
always have a component along the axis of the channel.
creating a potential energy barrier for all ion species
attempting to traverse the channel regardless of the sign of
the charge. Due to the double charge on divalent ions this
barrier is much higher than for monovalent ions.

Both Nadler ¢f «f. 163] and Edwards er al. [64] argue
that for monovalent cations the energy barrier arising from
the DBF is almost cancelled by a potential cnergy well
created by the permanent charge on the protein. while for
anions and divalent cations the sum of the two
contributions results in an msurmountable cnergy barrier
that prevents conduction. Although this hypothesis was
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Concentration [M]

Potential {V]
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Frgure 18, 1D profiles of ime-averaged Na ' and C1 concentration and
potential. constructed from the 31 jon concentration data by averaging
over the plane perpendicular to the channcl. and extracted from the 3D
potential data along the center of the channel.

arrived at by considering the potential energy profiles for
single point charges moving along the axis of the channel,
thereby ignoring the possibility of Coulombic shielding
from other ions ncar the channel, it is reasonable to expect
clectrostatics to also play a role in gramicidin’s selectivity.
[n this section, we continue this line of inquiry, and
demonstrate that the potential energy profile for a single
on attempting to cross the channel is exquisitely sensitive
to the particular choice of dielectric coefficients and
partial charges, the values of which are not known with
any degree of certainty.

Figure 19 shows the net potential energy profiles for
a single point charge Na™ (solid line) and a single
point charge Cl (dashed line) ion, as they cach pass
separately through the center of the same gramicidin
channel system described in the previous section (see
figure 2), derived from the 1 MAG.pdb structure and

the GROMOS force tield. The lipid, protein and
6
GROMOS charges
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g B boundary
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Frgure 190 Net potental energy protiles for a single point charge Na '
Gsolid liney and a single point charge Cl dashed line) ion. passing
separately through the center of the gA channel system. Partial charges
tuke from the GROMOS force field. The lipid. protein and electrolyte
diclectric coelficients were assigned values of & = 2, 20 and 80,
Individual contributions from the partial charges tdotted tiney and DBE
(dush-dot Tiney are also shown,

electrolyte diclectric coefficients were assigned values
of £=2. 20 and 80. respectively and Poisson’s

contributions from the partial charges and DBF are also
indicated respectively by the dotted and dash-dot lincs.
Both ions experience the same barrier of = 4.7kgT due
to the DBE. Howcever. for Na™ this barrier is partially
cancelled by the double potential well roughly 1.54kgT
deep created by the permanent charges on the protein,
resulting in a net potential encrgy barrier = 3.84AgT,
while for Cl the permanent charges present an
additional barrier which adds to the diclectric barrier
resulting in a net potential energy barrier roughly
5.5kgT high. Nonectheless, as demonstrated by the
BioMOCA simulations in the previous scction, these
relatively moderate potential energy barriers can be
overcome to permit ion conduction if a sutficiently high
bias (e.g. 250mV = 9.7kgT) is applied across the
system. Indecd, if ion size effects are disregarded (c.g.
by setting the Cl radius equal to the Na* radius) then
the partial selectivity observed in the BioMOCA
simulations (only 15% of the total current is carried
by Cl” ions) may be attributed to the tact that the Cl
jon faces a higher barrier than Na* ions.

Although the potential energy profiles in figure 19 are
consistent with the channel favoring cation over anion
conduction, they do not support the explanation of
gramicidin’s complete exclusion of anions suggested by
Nadler er al. [63] and Edwards er al. [64]. The net
potential energy profiles presented in [63] show a similar
barrier to Na™ conduction (= 5AgT) but a much higher
(= 12.5kg7T) barrier for ClI7 conduction, while those
presented in Ref. [64] indicate a shallow potential double
well roughly 1.5 kg7 deep for Na' and a huge barrier for
Cl ™ about 24 43T high. However both groups assumed a
value of g, = 2 for the dielectric coefficient of protein
rather than the higher value of g, = 20 used here. As
discussed earlier the appropriate value to use for the
protein dielectric depends critically on the specific
channel model employed. The more physics that is
explicitly included in the model then the lower the
diclectric coefficient required. For coarse-grained particle
models. such as BioMOCA, the use of g, = 2 is arguably
0o low but &, = 20 is also probably unrcalistically high.
For the sake of comparison however we now consider a
lower value of &, = 2. In this casc, as shown in figure 20,
the diclectric barrier created by the protein increases to
= | 2kgT while the potential well due to the permanent
charges on the protein is only = 4 £y T. The resulting net
potential energy profiles are now much greater for both
Na' (== 9kgTyand Cl (= 15kgT).. In this situation, we
can expect the channel conductivity to be much lower and
indeed during a total simulation time of 2 ps only 5 Na”
fons were observed to cross the channel under a 250 mV
bias which amounts to negligible current (204 pA). In
order to facilitate conduction of cither species a
substantially higher applied bias (=500 mV) would be
required to overcome such high energy barriers. Almost
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Figure 200 Net potential encrgy profiles for a single point charge Na

(solid Timey and a single point charge C1 (dashed line) ion. passing
separately through the center of the gA channel system. Partial charges
take trom the GROMOS torce field. The lipid. protein and clectrolyte
dielectne coeflicients were assigned values of & = 2.2 and S0. Individual
contributions from the partial charges and DBF are shown by the dotted
and dash-dot hines, respectively,

all lipid bilayers will break down under such high
voltages. Gramicidin conductance and selectivity cannot
be explained using this combination of force fields and
dielectric coefficients. We therefore now turn our attention
to the permanent charge distributions used in ecach study.
There exists in the literature several different force ficlds
that parameterize the distribution of permanent charge on
rach amino acid. The partial charges used by Nadler er al.
[63] were taken from the OPLS force field {85,86], while
Edwards et al. 164} employed the PARAM22 version of
the CHARMM force field [87]. On the other hand all
the results presented here thus far were computed using
partial charges from the GROMOS force field.§ To
lustrate the sensitivity of the energy landscape inside the
channet to the charge distribution on the protein we
replaced the GROMOS charges with those from the
CHARMM force field and recomputed the potential
profiles, again using &, = 2 in the protein. As shown in
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Figure 210 Net potential energy profiles for a single point charge Na”

eolid liney and a single point charge C1 - (dashed line) 1on. passing
separately through the center of the ¢A chaonnel system. Partiad churges
take from the CHARMM foree field. The lipid. protein and clectrolyte
diclectnie coefficients were assigned values ol & = 2. 2 and 80, Individual
contributions from the partial charges (dotted line) and DBF (dash-dot
hined are also showi,

figure 21, the height of the DBF barrier does not alter
appreciably, since the dielectric boundary is almost the
same in both cases. The slight difference (= 14gT)
between the two dielectric barrier profiles is the result of a
small difference between the Poisson meshes used in each
case. However, the potential well due to the CHARMM
charges is now = 10kg7T deep compared o the = 4kgT
produced by the GROMOS charges. which lowers the total
barrier for Na™ to = 1 kgT at the same time increasing the
Cl  barrier 10 = 20 kgT. These potential energy profiles
are now consistent with the picture of selectivity suggested
by both Edwards er al. [64] and Nadler et al. [63].
Comparing the potential energy protfiles computed
using GROMOS partial charges (figure 20) and
CHARMM partial charges (figure 21) demonstrates
clearly that although gA is charge neutral overall,
differences in the way the permancnt charge is actually
distributed over the protein can lead to dramatically
different potential energy profiles for both Na™ and Cl
ions. and consequently different conclusions regarding
channel selectivity and conductance. The main differences
between the GROMOS and CHARMM partial charges
reside in the charge distribution on the peptide backbone,
which line the channel pore, and the side-chains of the
Tryptophan (TRP) amino acid groups. Each gramicidin
monomer has four TRP groups located near the entrance
of the channel which are known to play an important role
in the channel’s conductance properties. Mutation
experiments that involve replacing TRP residues with
various other groups having different permanent dipole
moments have shown gA conductivity to be very sensitive
to strength and orientation of the side-chain dipole
moments at those specific locations in the protein
[84,88.89]. Specifically, substitutions that lowered the
overall dipole moment in those locations were found to
lower the channel conductivity scveral-fold. These
findings are consistent with the simulation results reported
here. In the CHARMM partial charge set the dipole
moments of the carbonyl and NH bonds in the peptide
bonds, and the TRP side-chains are significantly stronger
than those of the GROMOS force tield. Full 3D
simulations lasting 2 ps performed with the CHARMM
charges yielded Na™ currents that were more than an order
of magnitude greater than those computed using the
GROMOS charges. Nonetheless, with the assumption of
e == 2 for the dielectric coefticient in the protein and lipid,
and & = 80 for the diclectric coefticient in the clectrolyte
bath and inside the channel pore, neither set of partial
charges could yield currents that were comparable to
experiment. As discussed carlier. a value of g, == 2 for the
diclectric coefficient in the protein is arguably too low,
while assuming the value for bulk water (&, = 80) inside
the pore is clearly unrcalistically high. It has been
proposed that by using &, = 5 for the dielectric coetticient
in the protein it may be possible to encompass the
contribution of conformational changes to the protein’s
[67]. Following this suggestion
we computed potential energy profiles with g, == 5 in

diclectric response
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the protein and eq, = 20 inside the pore, and found the
DBF barricr increased to roughly 40437, Although the
calculation assumed an unphysical step function transition
in the dielectric coetficient going from bath to pore, it does
drive home the point that a thorough handle on the
structural, electrostatic and dielectric properties of the gA
protein channel system are required before any quantitat-
ively meaningful statements about 1on conduction and
selectivity can be made. Furthermore, we have invesu-
gated only two of many factors that influence channel
behaviour wiz., dielectric coetficients and partial charges.
There are numerous other physical factors that will
undoubtedly affect the channel behaviour e.g. diffusion
coefficients. dehydration energies, some of which are
beyond the scope of the present generation of coarse-
grained particle models.

6. Discussion

We have introduced BioMOCA, a 3D ion channel
simulator based on the Boltzmann Transport Monte
Carlo/particle—particle - particle-mesh  (BTMC/P*M)
methodologies as an alternative (o the computationally
intensive Molecular Dynamics approach for simulating
ion transport through protein channels. The model retains
the essential particle nature of the ions but treats water,
protein and membrane as a continuum. thus enabling
simulation times to extend to several microseconds, well
beyond the present Himit of MD simulations. In addition,
unlike almost all MD simulations, the BioMOCA
stmulator does not employ periodic boundary conditions,
making it eminently suitable for simulating 1on transport
in generalized device structures.

Before embarking on full-scale ion channel simulations
we first demonstrated the validity of the BTMC/P*M
methodology for electrolytes by using BioMOCA o
compute the ion—ion pair correlation function for several
model electrolytes under bulk equilibrium conditions and
comparing the results to benchmark calculations per-
formed using the well-established EMC methodology. The
latter approach is computationally very efficient but,
through its assumption of equilibrium conditions, s
limited to providing information on the system configu-
ration. The excellent agreement between the two
approaches lends confidence in our implementation of
the short-range ion-—ion interactions algorithm in
BioMOCA. We have also shown that the computational
performance of BIoMOCA can be dramatically improved
if the P'M scheme is implemented carefully. This has
extremely important implications for realistic simulations
of computationally large systems such as those encoun-
tered in ton channel systems with physically realistic
clectrolyte baths. A good compromise must be achieved in
the choice of mesh size so that the overhead of evaluating
the Coulomb forces explicitly on a short-range domain for
cach particle does not outweigh the speed-up achieved
from using a coarser mesh for the particle-mesh scheme.

The P*M scheme is currently implemented in such a way
that while the distance over which the modified
Lennard-Jones ion—ion interaction is included is greater
than the range over which the particle —particle Coulomb
interaction is calculated explicitly, the overhead associated
with searching for ions in the latter domain is negligible.
For regions near equilibrium we have also shown that if
the ion—-water scattering rate is sufficiently high the
charge configuration changes sufficiently slowly to relax
the timme interval between successive solutions of Poisson’s
equation to several picoseconds without any noticeable
change to the pair correlation function.

Preliminary simulations of Na™ uansport through the
gramicidin A channel yielded currents that compare
reasonably well with experimental measurements given
the level of approximations inherent in the model. In
addition. the absolute exclusion of CI™ from the channel
pore could be explained from steric considerations alone.
These results were however obtained using specific values
for the ion diffusion coefficients inside the channel pore,
partial charges residing on the protein and dielectric
coefficients in the protein, lipid and channel pore, none of
which arc known with any degree of certainty. Not
surprisingly, the potential energy profiles computed for
single point charges passing through the center of the
channel were found to vary dramatically depending on the
value assigned to the diclectric coefficients in the protein.
Decreasing the latter from g, = 20 o g, = 2 leads 10 a
substantial increase in the potential energy barrier for
Na*. and a correspondingly large drop in the computed
current. Likewise, potential energy profiles and channel
currents were found to be extremely sensitive to the choice
of force field. For example. using partial charges taken
from the CHARMM/PARAM22 force field yielded Na*
currents that were more than order of magnitude greater
than those obtained using partial charges from the
GROMOS force field. Until reliable values are available
for the aforementioned physical quantities, we advocate
treating them as tunable parameters, bearing in mind that
any conclusions regarding channel behavior derived from
simulations must be interpreted strictly within the
framework of assumptions upon which the simulation is
based.

Finally, while an implicit water modcl appears o be
sufficient in the bath regions, it may not be appropriate in
the narrow gA pore where single-filing effects almost
undoubtedly influence ion dynamics and the dielectric
cocflicient 1s difficult to detine. Molecular Dynamics
simulations may provide crucial insight in this region, and
indeed a hybrid BTMC/P*M-MD approach, in which
implicit water electrolyte baths are bridged to a Molecular
Dynamics model of the channel pore. may wecll be
required if one is seriously pursuing a quantitatively
realistic simulation of channel behavior. Nonctheless, in
its present incarnation the BioMOCA simulator is a
promising predictive tool for studying conduction through
ionic channels on a timescale relevant to experimental
obscrvations.
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