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Abstract

Ionic channels and semiconductor devices use atomic scale structures
to control macroscopic flows from one reservoir to another. The one-
dimensional steady-state Poisson-Nernst-Planck (PNP) system is a useful
representation of these devices but experience shows that describing the
reservoirs as boundary conditions is difficult. We study the PNP system
for two types of ions with three regions of piece-wise constant permanent
charge, assuming the Debye number is large, because the electric field
is so strong compared to diffusion. Reservoirs are represented by the
outer regions with permanent charge zero. If the reciprocal of the Debye
number is viewed as a singular parameter, the PNP system can be treated
as a singularly perturbed system that has two limiting systems: inner
and outer systems (termed fast and slow systems in geometric singular
perturbation theory). A complete set of integrals for the inner system
is presented that provides information for boundary and internal layers.
Application of the exchange lemma from geometric singular perturbation
theory gives rise to the existence and (local) uniqueness of the solution
of the singular boundary value problem near each singular orbit. A set
of simultaneous equations appears in the construction of singular orbits.
Multiple solutions of such equations in this or similar problems might
explain a variety of multiple valued phenomena seen in biological channels,
for example, some forms of gating, and be involved in other more complex
behaviors, for example some kinds of active transport.
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1 Introduction

Electrodiffusion, the diffusion and migration of electric charge, plays a central
role in a wide range of our technology and science ([55, 11, 56, 14, 15, 70, 42]):
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semiconductor technology controls the migration and diffusion of quasi-particles
of charge in transistors and integrated circuits ([78, 64, 72]), chemical sciences
deal with charged molecules in water ([11, 20, 8, 27, 9, 10]), all of biology occurs
in plasmas of ions and charged organic molecules in water ([2, 16, 34, 75]). It is
no coincidence that the physics of electrodiffusion is of such general importance:
systems of moving charge have a richness of behavior that can be sometimes
easily controlled by boundary conditions ([70, 72]), and the goal of technology
(and much of physical science) is to control systems to allow useful behavior.

Control is important to the medical and biological sciences as well. Medicine
seeks to control disease and help life. Evolution controls life by selecting those
organisms that successfully reproduce. Organisms control their internal en-
vironment and external behavior to make reproduction possible, often using
electrodiffusion for the mechanism of control ([75, 34]). Whatever the reason, it
is a fact that nearly all biology occurs in ultrafiltrates of blood called plasmas,
in which ions move much as they move in gaseous plasmas, or as quasi-particles
move in semiconductors ([22, 23, 24, 25]). The pun between the medical and
physical meanings of ‘plasma’ is useful, and surprisingly precise.

In semiconductor and biological devices, macroscopic flows of charges are
driven through tiny (atomic scale) channels that link one macroscopic reservoir
to another. The reservoirs are macroscopic regions in which the concentration of
charges is nearly constant (because the dimensions of the reservoirs are macro-
scopic and so the total number of charges is hardly changed by the flows) and
electrical potentials are nearly constant too. The electrical resistance of the
macroscopic region is so small that only a tiny electrical potential gradient is
needed to drive significant flow of charge in the reservoir. The electric field
is strong throughout these systems and only a few charges (ions) are needed
to create significant electrical potentials, compared to the enormous number of
ions (1023, Avogadro’s number) needed to create chemical potentials (and dif-
fusion). That is why the Debye number is so large (see below). Semiconductors
and evolution take advantage of the strength of the electric field. Engineers
and biophysicists control flow by setting the electric potential at the boundaries
called terminals, contacts, or baths.

The flow through the atomic scale channel is affected by other variables be-
sides the applied boundary potentials, namely, by the shape of the pore in the
channel (through which permanently charged ions flow) and the distribution of
permanent and induced (i.e., polarization) charge on the wall of the channel
as well as the mobility of ions ([51, 26, 17, 41, 33]). A precise description and
understanding of flow on an atomic scale is daunting. Enormous numbers of
variables are needed to describe atomic scale trajectories that have a funda-
mental time scale 10−16 sec and length scale 10−10 m compared to biological
function that is typically much slower than 10−5 sec. It is not clear what to do
with this number of variables and trajectories even if they could be computed
accurately, or with known inaccuracies.

We are fortunate that description on the atomic time scale is unnecessary.
What is needed in fact is a reduced description that focuses attention on the
properties that control function in technology and biology. This reduced descrip-
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tion needs to describe channel structure on the atomic scale of distance, in all
likelihood, but it needs to describe flows and reservoirs only on the macroscopic
scale.

Reduced descriptions of this type are familiar in engineering where they are
called device equations. Semiconductor manufacturers produce the device be-
haviors they need by choosing particular structures of permanent charge, using
as little atomic structure as possible, so cost is minimized. Device behaviors
are described by device equations. It is device equations that we seek as we try
to understand and control ion channels (and molecular machines of biology in
general).

Device equations are most useful when they predict complex behaviors real-
istically while using only a few parameters with fixed values (that do not need
to be changed to describe the complex behaviors). Fortunately, electrodiffusion
allows rich behavior with simple device equations and a fixed set of parameters.
Remarkably, the diverse (technologically important) behavior of transistors can
be described by simple conservation laws and constitutive relations, the Poisson-
Nernst-Planck (PNP) equations using fixed values of parameters. A single tran-
sistor can behave as many different devices, each with its own device equation,
and this rich behavior can be described quite well by the PNP equations with a
fixed set of parameters. Different values of the boundary potentials (i.e., power
supply voltages) move the solution of the equations into different domains, each
with its own device equation.

The PNP system of equations have been analyzed mathematically to some
extent, but they have been simulated and computed to a much larger extent
([18, 6, 16, 39, 51, 4, 3, 69, 37, 38, 41, 68, 21, 32, 57, 58, 1, 13, 71, 67, 30, 31,
44, 7]). Computational and experimental experience with a variety of PNP like
systems shows that the existing mathematical analysis is unsatisfactory. It is
clear from these simulations that macroscopic reservoirs must be included in the
mathematical formulation to describe the actual behavior of channels (or useful
transistors) ([62, 33, 32, 12, 61, 59, 60, 35, 30]). Macroscopic boundary condi-
tions that describe such reservoirs introduce boundary layers of concentration
and charge. If those boundary layers reach into the part of the device perform-
ing atomic control they dramatically affect its behavior. Boundary layers of
charge are particularly likely to create artifacts over long distances because the
electric field spreads a long way. Indeed, transistors, channels, transporters and
receptors are actually built so the contacts, electrodes, and control systems that
maintain the reservoirs are quite distant and distinct from the channel.

In this paper, we construct and analyze the minimal model that includes
reservoirs and channels and start the study of its mathematical properties. We
begin with simple setups and conditions using geometric singular perturbation
theory to extract powerful results. In particular, we consider three regions, two
of which are reservoirs, and one of which is the narrow channel (with perma-
nent charge, i.e., doping). And we consider only two species of current carriers.
Nonetheless, we find quite complex behavior showing clearly that the reser-
voirs are inextricably linked to the channel, and cannot be replaced by simple
boundary conditions. We find general properties of the system and hints that
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somewhat more complicated systems (with several regions of permanent charge
of different density and/or sign) carrying multiple ionic species (with different
valence, i.e., with different permanent charge on each type of ion) may have
quite rich behavior. Such rich behavior is apparent in biology where channels
switch (‘gate’) between different values of current (one value nearly zero) and
where transporters couple the flow of different types of ions in an extremely
important, quite robust, but nearly unknown way.

The rest of paper is organized as follows. In Section 2, we begin with a de-
scription of a three dimensional PNP system as the model for ion flow through
an ion channel and discuss a one-dimensional reduction as the maximal radius
of cross-sections of the channel approaching zero. We then identify the problem
to be studied in this paper: steady-states of boundary value problems of the
one-dimensional PNP system. In Section 3, we cast our problem in the language
of geometric singular perturbation theory. By introducing new dependent vari-
ables, we write the PNP system as a singularly perturbed system of first order
equations. Making use of the inner and outer limiting systems, we then con-
struct singular orbits for the PNP boundary value problem. In Section 4, we
apply geometric singular perturbation theory to show that, for small ε > 0,
there is a true solution shadowing each singular orbit. We conclude the paper
by a general remark in Section 5.

2 Three-dimensional model PNP system and a
one-dimensional reduction

We now briefly describe the model PNP system of equations. As discussed
above, the key features of an ion channel are the shape of its pore and the
distribution of the permanent charge along its interior wall. As a first approxi-
mation, we consider a special ion channel modeled by

Ωµ = {(x, y, z) : 0 < x < 1, y2 + z2 < g2(x, µ)},

where g is a smooth function satisfying

g(x, 0) = 0 and g0(x) =
∂g

∂µ
(x, 0) > 0 for x ∈ [0, 1].

The small parameter µ measures the maximal radius of cross-sections of the
channel. The boundary ∂Ωµ of Ωµ consists of three portions:

Lµ ={(x, y, z) ∈ ∂Ωµ : x = 0},
Rµ ={(x, y, z) ∈ ∂Ωµ : x = 1},
Mµ ={(x, y, z) ∈ ∂Ωµ : y2 + z2 = g2(x, µ)}.

Here, Lµ and Rµ are viewed as the two ends of the reservoirs and Mµ the wall
of the channel and the reservoirs.
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Then the model employed for flow through the channel is the PNP system
(see [5] for a derivation from Boltzmann transport equation; see [69] for a deriva-
tion including correlations from coupled Langevin-Poisson equations; see [11] p.
773, eq. 26.64 for the classical description of the system at thermodynamic
equilibrium, when all fluxes are zero.)

∆φ =− λ(
n∑

i=1

αici + Q),

∂ci

∂t
=Di∇ · (∇ci + αici∇φ),

(1)

where φ is the electric potential; ci’s are the concentrations of the n species,
αi’s are the valences, i.e., charge on one ion; Di’s are the diffusion constants; λ
is the Debye number; and Q is the distribution of the permanent charge along
the interior wall of the channel.

As mentioned in the introduction, the concentrations of the ions and the
electrical potential in the reservoirs are nearly constants, and the wall of the
channel is assumed to be perfectly insulated. We thus assume the following
boundary conditions

φ|Lµ
= ν0, φ|Rµ

= 0, ci|Lµ
= Li, ci|Rµ

= Ri,

∂φ

∂n
|Mµ

=
∂ck

∂n
|Mµ

= 0,
(2)

where ν0, Li, Ri are constants, and n is the outward unit normal vector to Mµ.
We remark that, typically in the reservoirs, one imposes electro-neutrality

conditions: αL1 − βL2 = 0 and αR1 − βR2 = 0. In this case, there will be no
boundary layers at the two ends although there will be internal layers where
the permanent charge Q jumps. For mathematical interest, we use the slightly
more general boundary conditions.

In [54], for n = 2 with Q = 0, we obtained the following limiting one-
dimensional PNP system as µ → 0,

1
g2
0

∂

∂x

(
g2
0

∂

∂x
φ

)
= −λ(α1c1 + α2c2),

∂c1

∂t
=

D1

g2
0

∂

∂x

(
g2
0

∂

∂x
c1 + α1c1g

2
0

∂

∂x
φ

)
,

∂c2

∂t
=

D2

g2
0

∂

∂x

(
g2
0

∂

∂x
c2 + α2c2g

2
0

∂

∂x
φ

)
,

(3)

on x ∈ (0, 1) with the boundary conditions

φ(t, 0) = ν0, φ(t, 1) = 0, ci(t, 0) = Li, ci(t, 1) = Ri. (4)

In particular, we showed that the attractors Aµ of (1) and (2) are upper-semi-
continuous at µ = 0 to the attractor A0 of (3) and (4). One-dimensional PNP
systems of the form (3) also arise in treatments based on the density functional
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theory of statistical mechanics [32]. The motivation for such a mathematical
treatment is that, first of all, the one-dimensional system is much simpler; sec-
ondly, if the one-dimensional limiting system is structurally stable (i.e. if the
global dynamics are robust), then the dynamics for the system on the three-
dimensional domain with small µ is essentially the same as that of the limiting
one-dimensional system. There is a well established framework for verification
of structural stability although it is by no means trivial. A key step is to under-
stand the behavior of the steady-state of the limiting one-dimensional system.

In the light of above result and discussion, we will then study steady-states
of the one-dimensional PNP system for two species of current carriers with
valences α > 0 and −β < 0 including now a permanent charge:

ε2h−1(x)
d

dx

(
h(x)

d

dx
φ

)
= −(αc1 − βc2 + Q(x)),

dJi

dx
= 0,

h(x)
dc1

dx
+ αc1h(x)

dφ

dx
= −J1,

h(x)
dc2

dx
− βc2h(x)

dφ

dx
= −J2,

(5)

with the boundary conditions

φ(0) = ν0, ci(0) = Li; φ(1) = 0, ci(1) = Ri. (6)

Here Ji is the total flux of the i-th ion, Q(x) is the permanent charge along the
channel, h(x) = g2

0(x), and ε is related to λ via λ = ε−2.
Many mathematical papers have been written about the existence and unique-

ness of solutions of the boundary value problems and numerical algorithms have
been developed to approximate solutions even for high dimensional systems
(see [40, 43, 63, 45] etc.). Under the assumption that ε � 1, the problem
can be viewed as a singular perturbation one. In particular, for α = β = 1,
h(x) = 1 and Q(x) = 0, the boundary value problem for the one-dimensional
PNP system (5) was studied in [7] using the method of matched asymptotic
expansions as well as numerical simulations, which provide a good quantita-
tive understanding of the problem with one region without permanent charge.
In [53], assuming ε � 1 but for general α, β, h(x) = 1 and Q(x) = 0, the bound-
ary value problem was treated using geometric theory for singularly perturbed
problems (see [28, 46, 48, 52] etc.).

We use the geometric framework in paper [53] to investigate PNP systems
with multiple regions of permanent charge and with multiple ions. A major
difference of the model studied in this paper from those previously studied is
the inclusion of multiple regions of permanent charge. The focus will be on
the simple case of two ions and two reservoirs (i.e., two regions without perma-
nent charge). The idea is to construct singular orbits for the boundary value
problem and apply geometric singular perturbation theory to obtain, for ε > 0
small, solutions near singular orbits. Issues of the existence and multiplicity
of singular orbits are reduced to the properties of a set of non-linear algebraic
equations (43). To our surprise, for the simple case we study, multiple solutions
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for the boundary value problem are shown to exist. This contrasts to what was
suspected in some early works (see, for example, [65, 66]) which expressed the
(entirely reasonable) opinion that multiple solutions cannot occur for the sim-
ple structure of permanent charge considered here. The set of equations (43)
governs the multiplicity of solutions to the boundary value problem. We will
thoroughly examine the set of algebraic equations in the future.

3 A dynamical system framework and a con-
struction of singular orbits

We will rewrite the PNP system into a standard form for singularly perturbed
systems and convert the boundary value problem to a connecting problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇,
and τ = x. System (5) becomes

εφ̇ =u, εu̇ = βc2 − αc1 −Q(τ)− ε
h′(τ)
h(τ)

u,

εċ1 =− αc1u− εh−1(τ)J1,

εċ2 =βc2u− εh−1(τ)J2,

J̇1 =J̇2 = 0, τ̇ = 1.

(7)

We will treat system (7) as a dynamical system of phase space R7 with state
variables (φ, u, c1, c2, J1, J2, τ). The introduction of the extra state variable
τ = x and the τ -equation seems to add complications to the problem but this
has a great advantage that we will explain shortly.

For ε > 0, the re-scaling x = εξ of the independent variable x gives rise to
an equivalent system

φ′ =u, u′ = βc2 − αc1 −Q(τ)− ε
h′(τ)
h(τ)

u,

c′1 =− αc1u− εh−1(τ)J1,

c′2 =βc2u− εh−1(τ)J2,

J ′1 =J ′2 = 0, τ ′ = ε,

(8)

where prime denotes the derivative with respect to the variable ξ.
For ε > 0, systems (7) and (8) have exactly the same phase portrait. But

their limits at ε = 0 are different and, very often, the two limiting systems
provide complementary information on state variables. Therefore, the main task
of singularly perturbed problems is to patch the limiting information together to
form a solution for the entire ε > 0 system. In terms of asymptotic expansions,
system (7) and its limit at ε = 0 will be used to study outer or regular layer
solutions. We will call this system the outer system and its limit at ε = 0 the
outer limit system. System (8) and its limit at ε = 0 will be used to study
inner or singular layer solutions and we call the system the inner system and
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its limit system at ε = 0 the inner limit system. By a singular orbit, we
will mean a continuous and piece-wise smooth curve in R7 that is a union of
a finitely many orbits of the outer limit system or inner limit system. In the
theory of geometric singular perturbations, viewing the independent variables x
and ξ as slow and fast time variables, the outer system is called the slow system,
the inner system is called the fast system, and a singular orbit will be a union
of slow and fast orbits.

Let BL and BR be the subsets of the phase space R7 defined by

BL ={(ν0, u, L1, L2, J1, J2, 0) ∈ R7 : arbitrary u, J1, J2}, (9)

BR ={(0, u,R1, R2, J1, J2, 1) ∈ R7 : arbitrary u, J1, J2}. (10)

Then the boundary value problem is equivalent to a connecting problem, namely,
finding a solution of (7) or (8) from BL to BR. To see this, suppose that
(φ, u, c1, c2, J1, J2, τ) is an orbit starting at a point on BL and ending at a point
on BR. Due to the definitions of BL and BR, the starting point automatically
has x = τ = 0 with the assigned values for φ, c1 and c2 at x = 0, and the ending
point has x = τ = 1 with the assigned values for φ, c1 and c2 at x = 1. This
solution (φ, u, c1, c2, J1, J2, τ) satisfies the boundary condition automatically.
Most importantly, when we arbitrarily re-scale the independent variable x, the
phase portrait will remain the same. Therefore, in searching for a solution from
BL to BR, we can apply any re-scaling of the independent variable x, even a re-
scaling that depends on each individual solution. (We will use a re-scaling that
is different for each solution when we derive the system (34) from system (33)).
This is the significant advantage of introducing τ = x and τ̇ = 1 promised
earlier. The idea of converting a boundary value problem to a connecting one
is now rather standard in applied dynamical systems.

In this paper, we will consider the case where the outer regions are reservoirs
and the permanent charge is constant along the channel; that is,

Q(x) =

 0, for 0 < x < a,
Q, for a < x < b,
0, for b < x < 1,

where Q is a constant. The intervals [0, a] and [b, 1] are the reservoirs and the
interval [a, b] is the channel.

We will be interested in solutions of the connecting problem for system (7)
or (8) from BL to BR defined in (9) and (10). In view of the jump of Q at x = a
and x = b, the best one can hope is that the solution is continuous and piece-wise
differentiable. We therefore require our solutions to be continuous and piece-wise
differentiable. The continuity of u implies that φ, c1 and c2 are differentiable.
Our requirement is motivated by two considerations: (i) the dissipation present
in the full PNP system (that includes time evolution) improves the regularity
of solutions; in particular, the attractor contains regular solutions. Steady-
state solutions, being in the attractor, should have the regularity imposed; (ii)
if the requirement is relaxed, say, only requiring φ, c1, c2 to be piece-wise
differentiable, then one can pre-assign any value for (φ, c1, c2) at any partition
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points 0 < x1 < x2 < · · · < xk < 1 and construct solutions over each subinterval
and piece them together to create a solution over [0, 1] with the pre-assigned
values for (φ, c1, c2) at the partition points. (This assertion follows from the
work in [7, 53]). It is clear that the only relevant solutions are those in which
φ, c1, c2 are differentiable.

Our construction of a solution involves two main steps: the first step is to
construct a singular orbit to the connecting problem and the second step is
to apply geometric singular perturbation theory to show that there is a unique
solution near the singular orbit, for ε > 0 and small. Here we will give a detailed
explanation for the first step and leave the explanation of the second step to
Section 4.

To construct a singular orbit, we first construct a singular orbit on each sub-
interval [0, a], [a, b] and [b, 1]. The reason to split the interval [0, 1] into three
sub-intervals is simply because the permanent charge Q(x) has jumps at x = a
and x = b. To be able to construct a singular orbit on each sub-interval, we
need to pre-assign the values of φ, c1 and c2 at x = a and x = b. Suppose, for
the moment, φ = φa, c1 = ca

1 and c2 = ca
2 at x = a, and φ = φb, c1 = cb

1, c2 = cb
2

at x = b. Those six unknown values

φa, ca
1 , ca

2 ; φb, cb
1, cb

2 (11)

will be determined along our construction of a singular orbit on the whole in-
terval [0, 1].

1. On the left sub-interval [0, a] where Q = 0 or there is no permanent
charge, we construct a singular orbit for the boundary value problem with
(φ, c1, c2, τ) being

(ν0, L1, L2, 0) at x = 0 and (φa, ca
1 , ca

2 , a) at x = a.

The orbit consists of two boundary layers Γ0
l and Γa

l , and one regular layer
Λl. In particular, given (φa, ca

1 , ca
2), the flux densities J l

1, J l
2 and the value

ul(a) are uniquely determined (see Section 3.1).

2. On the middle sub-interval [a, b], we construct a singular orbit for the
boundary value problem with (φ, c1, c2, τ) being

(φa, ca
1 , ca

2 , a) at x = a and (φb, cb
1, c

b
2, b) at x = b.

The orbit consists of two boundary layers Γa
m and Γb

m, and one regular
layer Λm. In particular, given (φa, ca

1 , ca
2) and (φb, cb

1, c
b
2), the flux densities

Jm
1 , Jm

2 and the values um(a) and um(b) are uniquely determined (see
Section 3.2).

3. On the right sub-interval [b, 1], we construct a singular orbit for the bound-
ary value problem with (φ, c1, c2, τ) being

(φb, cb
1, c

b
2, b) at x = b and (0, R1, R2, 1) at x = 1.
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The orbit again consists of two boundary layers Γb
r and Γ1

r, and one regular
layer Λr. In particular, given (φb, cb

1, c
b
2), the flux densities Jr

1 , Jr
2 and the

value ur(b) are uniquely determined (see Section 3.3).

4. Finally, for a singular orbit on the whole interval [0, 1], we require that

J l
1 = Jm

1 = Jr
1 , J l

2 = Jm
2 = Jr

2 , ul(a) = um(a), um(b) = ur(b).

This consists of six conditions. The number of conditions is exactly the
same as the number of unknown values in (11) (see Section 3.4).

The qualitative properties of these six equations and conditions are of great
importance. It turns out that they can have multiple solutions. Different
solutions yield different amounts of current for otherwise identical condi-
tions, suggesting that each level might correspond to a different functional
state of a transporter, or a different gating state of a channel. Indeed, it
seems likely that more complex systems than those considered here would
be described by similar systems of equations with multiple solutions. Inter-
esting and very important properties of channels and transporters—each
corresponding to a quite distinct device with a quite distinct input output
relation and device equation—might arise this way in systems including
Ca2+ or in systems with multiple regions of non-zero permanent charge,
or in systems with branched, Y-shaped, or adjacent interacting channels.

Remark 3.1. We called Γa
l , Γa

m, Γb
m and Γb

r boundary layers because, relative to
each subintervals, they are boundary layers. But, relative to the whole interval
[0, 1], they should be termed as internal layers.

3.1 Singular orbit on [0, a] where Q(x) = 0.

We consider the case with zero permanent charge on the sub-interval [0, a] be-
cause [0, a] is viewed as one of the reservoirs. The non-zero Q over the sub-
interval [a, b] will affect the solution on [0, a] and on [b, 1]. This effect will show
up when we impose matching conditions on φa, ca

1 and ca
2 to construct the

singular orbit over the whole interval [0, 1].
Following the discussion above, we set φ(a) = φa, c1(a) = ca

1 and c2(a) = ca
2 ,

where φa, ca
i are unknown values to be determined later on. Now let

Ba = {(φa, u, ca
1 , ca

2 , J1, J2, a) ∈ R7 : u, Ji arbitrary}.

In this part, we will construct a singular orbit that connects BL to Ba. Two
boundary layers will be constructed in §2.1.1 followed by the construction of the
regular layer in §2.1.2. The permanent charge Q is zero in both constructions.

If we set ε = 0 in system (7) with Q(x) = 0, we get the outer limit system
and, in particular, u = 0 and αc1 = βc2. The set

Zl = {u = 0, αc1 = βc2}

will be called the outer manifold. In the theory of geometric singular pertur-
bations, Zl is called the slow manifold because if x and ξ are viewed as time
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variables, the evolution on Zl is characterized by the time variable ξ, which is
slow.

Remark 3.2. In systems (7) and (8), there appear to be 4 fast equations and 3
slow equations. Typically, one would expect a 3-dimensional slow manifold. But,
in this specific problem, the slow manifold is 5-dimensional. This fact indicates
some degeneracy of the slow flow which is reflected in Sections 3.1.2 and 3.2.2.
The Exchange Lemma applied in the proof of Theorem 4.1 in Section 4 is still
valid. In fact, it applies to singular perturbation problems of more general forms
than standard ones (see, e.g., [47] p. 562, Remark 1).

B L

B

W  (      )u Z

W  (      )s Z

a

a

l

l

Γ
Γl

a

Λ l

ML

M a
l

0

ω(       )M L α(      )lM a

Zl

α c −β c1 2

u

0
l

Figure 1: Schematic picture of the singular orbit (solid curves) on [0, a]: one
left boundary layer Γ0

l , one regular layer Λl, and one right boundary layer Γa
l .

The geometric method for a construction of singular orbits on each sub-
intervals [0, a], [a, b] and [b, 1] is the same. Let us explain the approach for
constructing the singular orbit that connects BL to Ba on [0, a] (see Figure 1).
Generally, the outer manifold Zl will not intersect BL and Ba. Since every
outer or regular layer orbit lies entirely on the outer manifold Zl, it will not
intersect BL and Ba, that is, it cannot satisfy the boundary conditions. Two
boundary or inner layers need to be introduced to connect boundaries BL and
Ba with the outer layer solution on Zl. These boundary layers should satisfy
the inner limit system. The boundary layer orbit Γ0

l at x = 0 will connect BL

to Zl. It must lie on the stable manifold W s(Zl); that is, it belongs to the
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intersection ML ∩ W s(Zl) where ML is the collection of orbits starting from
points on BL. Similarly, the boundary layer Γa

l at x = a will connect Zl to
Ba and it must lie on the unstable manifold Wu(Zl), that is, it belongs to the
intersection Ma

l ∩Wu(Zl), where Ma
l is the collection of orbits starting from

points on Ba
l .

The first step in the construction examines the stability of the outer man-
ifold Zl by linearizing along Zl. (Zl is the set of equilibria of the inner limit
system.) It turns out that the outer manifold Zl has a stable manifold W s(Zl)
and an unstable manifold Wu(Zl). The next step is to check whether W s(Zl)
intersects BL and whether Wu(Zl) intersects Ba. This requires concrete knowl-
edge of the global behavior of W s(Zl) and Wu(Zl) and the information from
the linearization is not enough. Neither is abstract dynamical systems theory
(since the inner limit system is non-linear). Luckily, we discovered a complete
set of integrals for the inner limit system (see Proposition 3.2). The set of
integrals reflects the intrinsic mathematical structure of this particular elec-
trodiffusion system, the channel problem. This mathematical special structure
implies particular specific physical and chemical properties of the ion channel.
It is irresistible, albeit speculative, to suspect that the special mathematical
structure produces biologically important properties of the channel. In that
sense, the mathematical structure of the problem provides one possible ‘device
equation’ for the channel system.

It is this set of integrals in Proposition 3.2 that allows us to give a complete,
global description of the inner limit dynamics; in particular, we are able to
establish the intersections ML ∩ W s(Zl) and Ma

l ∩ Wu(Zl) required and we
are also able to identify the so-called ω-limit set ω(ML ∩W s(Zl)) and the α-
limit set α(Ma

l ∩ Wu(Zl)) of the intersections. The intersections give the set
of candidates for the boundary layers (consisting of two parameter families of
inner orbits parameterized by J1 and J2). The foot points ω(ML ∩ W s(Zl))
and α(Ma

l ∩Wu(Zl)) (each parameterized by J1 and J2 also) on Zl provide the
(reduced) boundary conditions for the outer solutions. It turns out there is only
one outer orbit Λl that connects ω(ML ∩W s(Zl)) to α(Ma

l ∩Wu(Zl)) and also
determines the pair (J1, J2) uniquely. The desired singular orbit connecting BL

to Ba on [0, a] is formed by this outer orbit Λl together with the two boundary
layers Γ0

l and Γa
l that are uniquely determined by the pair (J1, J2).

We remind the reader that the singular orbit to be constructed on this sub-
interval with zero permanent charge will not be complete until the unknowns
in (11) are determined through matching conditions implicitly posed by the
permanent charge Q on the whole interval [0, 1] including the channel region
where the permanent charge is not zero. The entire system is coupled and must
be solved together, suggesting the source of difficulties with earlier treatments,
that tried to replace the reservoirs with boundary conditions. The importance
of the coupling of different intervals suggests that the shapes of antechambers
commonly found in biological channels may be important to their function. It
is interesting that synthetic nanochannels acquire some properties of biological
channels when they are built with antechambers of specific shape ([73, 74]).
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3.1.1 Inner dynamics on [0, a]: boundary layers or inner solutions

We start with the examination of boundary layers on the interval [0, a] where
Q = 0. These will be studied using the inner limit system obtained by setting
ε = 0 in (8):

φ′ =u, u′ = βc2 − αc1,

c′1 =− αc1u,

c′2 =βc2u,

J ′1 =J ′2 = 0, τ ′ = 0.

(12)

This inner limit system describes what a chemist would call (thermodynamic)
equilibrium. The reader should be warned that the word “equilibrium” is used
widely, albeit informally, in computational electronics to describe a system not
at thermodynamic equilibrium, namely a system in which the distribution of
velocities is a displaced Maxwellian, with displacement given by the flux (in ap-
propriate units). Only when the flux of every species is zero is the ‘equilibrium’
of computational electronics a thermodynamic equilibrium.

The set of equilibria of (12), that is, the set of points at which the vector
field of (12) vanishes, is precisely Zl = {u = 0, αc1 = βc2}. The linearization at
points (φ, 0, c1, c2, J1, J2, τ) ∈ Zl is

0 1 0 0 0 0 0
0 0 −α β 0 0 0
0 −αc1 0 0 0 0 0
0 βc2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

This linearization is similar to the Green-Kubo expansion used by physical
chemists to describe a nonequilibrium system close to equilibrium ([11, 50, 77,
79]). Of course, such a linearization is only useful around some specific (operat-
ing) point; here the thermodynamic operating point with zero fluxes. To study
nonlinear behavior far from the thermodynamic operating point, one must do
a linearization around other points, at which fluxes are not zero. Such analyses
have not been attempted, as far as we know for the PNP system, or in physical
chemistry in general, perhaps because the locations and properties of operating
points other than the thermodynamic one are hard to specify simply. Lineariza-
tion around general non-equilibrium operating points is a crucial method in
electrical engineering and has been used to design nonlinear circuits since the
invention of electron valves—i.e., vaccuum tubes—in the 1930’s.

The linearized system has five zero eigenvalues whose generalized eigen-space
is the tangent space of the five dimensional outer manifold Zl of equilibria. The
two other eigenvalues are ±

√
(α + β)αc1 6= 0 whose eigenvectors are not tangent

to Zl. In this sense, Zl is called normally hyperbolic. The theory of normally
hyperbolic invariant manifolds (e.g. [28]) states that,
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(i) there is a 6-dimensional stable manifold W s(Zl) of Zl that consists of
points approaching Zl in forward time;

(ii) there is a 6-dimensional unstable manifold Wu(Zl) of Zl that consists of
points approaching Zl in backward time;

(iii) Zl as well as W s(Zl) and Wu(Zl) persist for ε > 0 small; that is, for ε > 0
small, there exist invariant manifolds Zε

l , W s(Zε
l ) and Wu(Zε

l ) close to
their counterparts.

What this result suggests is that, for a singular orbit connecting BL to Ba, the
boundary layer at x = 0 must lie in ML ∩W s(Zl) and the boundary layer at
x = a must lie in Ma

l ∩Wu(Zl), where ML is the collection of orbits from BL

in forward time under the flow of system (12) and Ma
l is the collection of orbits

from Ba in backward time under the flow of system (12). This is precisely what
we will show.

Definition 3.1. A function H : Rn → R is called an integral of system d
dtz =

f(z), z ∈ Rn, if d
dt [H(z(t))] = 0 whenever z(t) is a solution.

For a system on Rn, if there are (n − 1) (independent) integrals, then any
orbits can be theoretically determined by the intersections of (n− 1) level sets
of the integrals.

Proposition 3.2. System (12) has the following six integrals,

H1 =eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1
2
u2,

H4 =J1, H5 = J2, H6 = τ.

Proof. It can be verified directly.

The reader seeking physical insight is reminded that α is the valence (i.e.,
charge) of the ions with number density c1; (−β) is the charge of the ions with
number density c2, u = εφ̇, τ = x; and ε is the Debye length.

These integrals allow one to completely understand the boundary layers
(at x = 0, a) and characterize landing points of boundary layers on the outer
manifold Zl. The information on landing points is crucial because it provides
the boundary conditions that allow the regular layer to connect boundary layers.

Corollary 3.3. (i) Let φ = φL be the unique solution of

αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0; that is φL = ν0 −
1

α + β
ln

βL2

αL1
,

and
cL
1 =

1
α

(αL1)
β

α+β (βL2)
α

α+β , cL
2 =

1
β

(αL1)
β

α+β (βL2)
α

α+β .
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The stable manifold W s(Zl) intersects BL transversally at points with

u0 =[sgn(φL − ν0)]
√

2(L1 + L2)− 2(L1eα(ν0−φL) + L2e−β(ν0−φL))

=[sgn(αL1 − βL2)]

√
2
(

L1 + L2 −
α + β

αβ
(αL1)

β
α+β (βL2)

α
α+β

)
,

(13)

and arbitrary Ji’s, where sgn is the sign function (see Fig 1).
Let φ = φa,l be the unique solution of

αca
1eα(φa−φ) − βca

2e−β(φa−φ) = 0; that is φa,l = φa − 1
α + β

ln
βca

2

αca
1

,

and
ca,l
1 =

1
α

(αca
1)

β
α+β (βca

2)
α

α+β , ca,l
2 =

1
β

(αca
1)

β
α+β (βca

2)
α

α+β .

The unstable manifold Wu(Zl) intersects Ba transversally at points with

ul(a) =[sgn(φa − φa,l)]
√

2(ca
1 + ca

2)− 2(ca
1eα(φa−φa,l) + ca

2e−β(φa−φa,l))

=[sgn(βca
2 − αca

1)]

√
2
(

ca
1 + ca

2 −
α + β

αβ
(αca

1)
β

α+β (βca
2)

α
α+β

)
,

(14)

and arbitrary Ji’s (see Fig 1).
(ii) Potential boundary layers Γ0

l at x = 0 are determined up to (J1, J2) as
follows: the φ-component satisfies the Hamiltonian system

φ′′ + αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0,

together with φ(0) = ν0 and φ(ξ) → φL as ξ →∞; u(ξ) = φ′(ξ),

c1(ξ) = L1e
α(ν0−φ(ξ)), c2(ξ) = L2e

−β(ν0−φ(ξ)).

Similarly, potential boundary layers Γa
l at x = a are determined in the fol-

lowing way: the φ-component satisfies the Hamiltonian system

φ′′ + αca
1eα(φa−φ) − βca

2e−β(φa−φ) = 0,

together with φ(0) = φa and φ(ξ) → φa,l as ξ → −∞, u(ξ) = φ′(ξ),

c1(ξ) = ca
1eα(φa−φ(ξ)), c2(ξ) = ca

2e−β(φa−φ(ξ)).

(iii) Let NL = ML ∩W s(Zl) and Na
l = Ma

l ∩Wu(Zl). Then,

ω(NL) =
{(

φL, 0, cL
1 , cL

2 , J1, J2, 0
)

: all J1, J2

}
,

α(Na
l ) =

{(
φa,l, 0, ca,l

1 , ca,l
2 , J1, J2, a

)
: all J1, J2

}
,

where φL, cL
1 , cL

2 , φa,l, ca,l
1 , and ca,l

2 are given explicitly as in part (i).

15

Accepted for Publication
Sept 27, 2006

SIAM
Journal of Mathematical Analysis



φ
φ

φ = u

u

u

0

0

’

ν0 0ν

sgn(     )=sgn(          )u0 φ −ν0

L

L

W  (     )φLuW  (     )φLs

Figure 2: The stable manifold W s(φL) of the equilibrium (φL, 0) is the solid
curve and the unstable manifold Wu(φL) is the dashed curve. The left branch
of W s(φL) has positive u-coordinates and the right branch has negative u-
coordinates; that is, if (φ, u) ∈ W s(φL), then sign[u] = sign[φL − φ].

Proof. We provide a proof for the first part that is related to the boundary layer
on the left in each statements.

Let z(ξ) = (φ(ξ), u(ξ), c1(ξ), c2(ξ), J1(ξ), J2(ξ), τ(ξ)) be a solution of system
(12) with z(0) ∈ BL and z(ξ) ∈ W s(Zl). Then, Ji(ξ) = Ji, τ(ξ) = 0 for
all ξ, z(ξ) → z(∞) = (φL, 0, cL

1 , cL
2 , J1, J2, 0) ∈ Zl for some φL and cL

i with
αcL

1 = βcL
2 , and

φ(0) = ν0, c1(0) = L1, c2(0) = L2.

Using the integrals H1 and H2, we have

eαφc1 = eαν0L1, e−βφc2 = e−βν0L2.

Therefore,

c1 = L1e
α(ν0−φ), c2 = L2e

−β(ν0−φ). (15)

Taking the limit as ξ →∞, we have

cL
1 = L1e

α(ν0−φL), cL
2 = L2e

−β(ν0−φL).

In view of the relation αcL
1 = βcL

2 , one has

αL1e
α(ν0−φL) = βL2e

−β(ν0−φL) or φL = ν0 −
1

α + β
ln

βL2

αL1
.
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Hence,

cL
1 =

1
α

(αL1)
β

α+β (βL2)
α

α+β , cL
2 =

1
β

(αL1)
β

α+β (βL2)
α

α+β .

Since φ′′ = βc2−αc1, (15) implies that φ satisfies the Hamiltonian equation

φ′′ + αL1e
α(ν0−φ) − βL2e

−β(ν0−φ) = 0

with φ(0) = ν0 and φ(ξ) → φL as ξ →∞. The Hamiltonian is

H(φ, u) =
u2

2
− L1e

α(ν0−φ) + L2e
−β(ν0−φ).

In terms of φ and u = φ′, the equation becomes

φ′ = u, u′ = βL2e
−β(ν0−φ) − αL1e

α(ν0−φ). (16)

The Hamiltonian system has a unique equilibrium (φL, 0) with φL given above.
If W s(φL) is the stable manifold of (φL, 0), then it is the restriction of W s(Zl) to
the (φ, u)-plane. In order to have (ν0, u0) ∈ W s(φL) (see Figure 2), H(φL, 0) =
H(ν0, u0) and one has the expression for u0 in (13). To determine the sign of u0,
note that the left branch of the stable manifold W s(φL) lies above the φ-axis
and hence that ν0 < φL implies u0 > 0; similarly, if ν0 > φL, then u0 < 0.

Remark 3.3. We claim that the quantities under the square root in the displays
(13) and (14) are non-negative. In fact, quite interestingly, the non-negativeness
is equivalent to the Young’s Inequality

ap

p
+

bq

q
≥ ab for a, b ≥ 0,

1
p

+
1
q

= 1; “ = ” holds if and only if ap = bq.

Take (13) for example. If we set

a = (αL1)
β

α+β , b = (βL2)
α

α+β , p =
α + β

β
, q =

α + β

α
,

then

L1 + L2 −
α + β

αβ
(αL1)

β
α+β (βL2)

α
α+β =

α + β

αβ

(
ap

p
+

bq

q
− ab

)
.

Thus, the quantity is always non-negative and it is zero if and only if αL1 =
βL2.

3.1.2 Outer dynamics on [0, a]: regular layers or outer solutions

We now construct regular layers or outer solutions on Zl that connect ω(NL)
to α(Na

l ). We find that the outer flow on Zl is itself a singular perturbation
problem. To see this, we zoom in on an O(ε)-neighborhood of Zl by blowing
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up the u and αc1 − βc2 coordinates; that is, we make a scaling u = εp and
βc2 − αc1 = εq. System (7) becomes

φ̇ =p, εṗ = q − ε
h′(τ)
h(τ)

p,

εq̇ =(α(α + β)c1 + εβq)p− h−1(τ)(βJ2 − αJ1),

ċ1 =− αc1p− h−1(τ)J1,

J̇i =0, τ̇ = 1,

(17)

which is indeed a singular perturbation problem due to the factor ε in front of
ṗ and q̇. Its limit, as ε → 0, is

φ̇ =p, 0 = q,

0 =α(α + β)c1p− h−1(τ)(βJ2 − αJ1),

ċ1 =− αc1p− h−1(τ)J1,

J̇i =0, τ̇ = 1,

(18)

For this system, the outer manifold is

Sl =
{

p =
βJ2 − αJ1

α(α + β)h(τ)c1
, q = 0

}
.

The outer limit dynamics on Sl is

φ̇ =
βJ2 − αJ1

α(α + β)h(τ)c1
,

ċ1 =− β(J1 + J2)
(α + β)h(τ)

,

J̇i =0, τ̇ = 1.

(19)

Remark 3.4. Following the suggestion of one of the referees, we give a sketch of
an alternative and more standard way of deriving the outer limit dynamics (19).

Introduce q̂ = βc2 − αc1. In terms of the variables (φ, u, q̂, c1, Ji, τ), sys-
tem (8) (with Q = 0) becomes

φ′ =u, u′ = q̂ − ε
h′(τ)
h(τ)

u,

q̂′ =(α(α + β)c1 + βq̂)u− εh−1(τ)(βJ2 − αJ1),

c′1 =− αc1u− εh−1(τ)J1,

J ′i =0, τ ′ = ε.

(20)

For ε = 0, the set {u = q̂ = 0} is a normally hyperbolic invariant manifold
consisting of equilibria. By Fenichel’s Theory, the manifold persists for ε > 0
small and is given by

u = εA(φ, c1, Ji, τ) + O(ε2), q̂ = εB(φ, c1, Ji, τ) + O(ε2).
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Using the invariance of the manifold and substituting the above expressions for
u and q̂ into system (20), one obtains

B = O(ε), A =
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε).

System (20) on the perturbed invariant manifold can be obtained by substituting
the expression of u and q̂ with the approximations of A and B above. It reads,

φ′ =ε
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε2),

c′1 =− ε
β(J1 + J2)
(α + β)h(τ)

+ O(ε2),

J ′i =0, τ ′ = ε.

(21)

The corresponding outer dynamics is

φ̇ =
βJ2 − αJ1

α(α + β)h(τ)c1
+ O(ε),

ċ1 =− β(J1 + J2)
(α + β)h(τ)

+ O(ε),

J̇i =0, τ̇ = 1.

(22)

Its limiting dynamics at ε = 0 is exactly system (19).
The outer limit dynamics (33) in Section 3.2.2 can also be derived this way.

The solution of (19) with the initial condition (φL, cL
1 , J1, J2, 0) that corre-

sponds to the point (φL, 0, cL
1 , cL

2 , J1, J2, 0) ∈ ω(NL) is

τ(x) =x, c1(x) = cL
1 −

β(J1 + J2)
α + β

∫ x

0

h−1(s)ds,

φ(x) =φL +
βJ2 − αJ1

α(α + β)

∫ x

0

h−1(s)c−1
1 (s)ds

=φL − βJ2 − αJ1

αβ(J1 + J2)

∫ x

0

ċ1(s)
c1(s)

ds [(19) is used here]

=φL − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(x)
cL
1

.

Recall that we are looking for solutions that belong to α(Na
l ) when τ = a.

Evaluating the solution at τ = x = a, we have

ca,l
1 =cL

1 −
β(J1 + J2)

α + β

∫ a

0

h−1(s)ds,

φa,l =φL − βJ2 − αJ1

αβ(J1 + J2)
ln

ca,l
1

cL
1

;

19

Accepted for Publication
Sept 27, 2006

SIAM
Journal of Mathematical Analysis



in particular,

J1 =
(cL

1 − ca,l
1 )∫ a

0
h−1(s)ds

(
1 +

α(φL − φa,l)

ln cL
1 − ln ca,l

1

)
,

J2 =
(cL

2 − ca,l
2 )∫ a

0
h−1(s)ds

(
1− β(φL − φa,l)

ln cL
2 − ln ca,l

2

)
.

(23)

We have used the relations αcL
1 = βcL

2 and αca,l
1 = βca,l

2 to get this more
symmetric form for J2.

The regular layer Λl is given by

φ(x) =φL − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(x)
cL
1

,

u(x) =0, αc1(x) = βc2(x),

c1(x) =cL
1 −

β(J1 + J2)
α + β

∫ x

0

h−1(s)ds,

τ(x) =x

(24)

with J1 and J2 determined by (23).
To summarize, for given values (φa, ca

1 , ca
2), we have constructed a unique

singular orbit on the left sub-interval [0, a] that connects BL to Ba. It consists
of two boundary layer orbits Γ0

l from the point (ν0, u0, L1, L2, J1, J2, 0) ∈ BL

to the point (φL, 0, cL
1 , cL

2 , J1, J2, 0) ∈ ω(NL) ⊂ Zl and Γa
l from the point

(φa,l, 0, ca,l
1 , ca,l

2 , J1, J2, a) ∈ α(Na
l ) ⊂ Zl to the point (φa, ul(a), ca

1 , ca
2 , J1, J2, a) ∈

Ba, and a regular layer Λl on Zl that connects the two foot points (φL, 0, cL
1 , cL

2 , J1, J2, 0) ∈
ω(NL) and (φa,l, 0, ca,l

1 , ca,l
2 , J1, J2, a) ∈ α(Na

l ) of the two boundary layers.

3.2 Singular orbits on [a, b] with Q(x) = Q.

We now construct a singular orbit on the sub-interval [a, b] viewed as channel
where the permanent charge Q(x) = Q is a non-zero constant. The construction
is nearly the same as that for singular orbits on [0, a].

We set φ(b) = φb, c1(b) = cb
1 and c2(b) = cb

2 where φb, cb
i are unknowns to

be determined later. Let

Bb = {(φb, u, cb
1, c

b
2, J1, J2, b) ∈ R7 : arbitrary u, J1, J2}.

The singular orbit to be constructed will be a connecting orbit from Ba to Bb

over [a, b].

3.2.1 Inner dynamics on [a, b]: boundary layers or inner solutions

By setting ε = 0 in system (7) with Q(x) = Q, we get u = 0 and αc1 +Q = βc2.
The outer manifold is

Zm = {u = 0, αc1 + Q = βc2}.
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In terms of ξ, we obtain the inner system of (7)

φ′ =u, u′ = βc2 − αc1 −Q− ε
h′(τ)
h(τ)

u,

c′1 =− αc1u− εh−1(τ)J1,

c′2 =βc2u− εh−1(τ)J2,

J ′1 =J ′2 = 0, τ ′ = ε,

(25)

The limiting system at ε = 0 is

φ′ =u, u′ = βc2 − αc1 −Q,

c′1 =− αc1u,

c′2 =βc2u,

J ′1 =J ′2 = 0, τ ′ = 0.

(26)

The set of equilibria of (26) is precisely Zm and Zm is normally hyperbolic with
a 6-dimensional stable manifold W s(Zm) and a 6-dimensional unstable manifold
Wu(Zm). The manifolds Zm, W s(Zm) and W s(Zm) persist for ε > 0 small.

Proposition 3.4. (i) System (26) has the following six integrals,

H1 =eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1
2
u2 −Qφ,

H4 =J1, H5 = J2, H6 = τ.

(ii) Let φ = φa,m be the unique solution of

αca
1eα(φa−φ) − βca

2e−β(φa−φ) + Q = 0, (27)

and
ca,m
1 = eα(φa−φa,m)ca

1 , ca,m
2 = e−β(φa−φa,m)ca

2 .

The stable manifold W s(Zm) intersects Ba transversally at points with

um(a) = [sgn(φa,m−φa)]
√

2ca
1(1− eα(φa−φa,m)) + 2ca

2(1− e−β(φa−φa,m))− 2Q(φa − φa,m).
(28)

and arbitrary Ji’s.
Let φ = φb,m be the unique solution of

αcb
1e

α(φb−φ) − βcb
2e
−β(φb−φ) + Q = 0, (29)

and
cb,m
1 = eα(φb−φb,m)cb

1, cb,m
2 = e−β(φb−φb,m)cb

2.

The unstable manifold Wu(Zm) intersects Bb transversally at points with

um(b) = [sgn(φb−φb,m)]
√

2cb
1(1− eα(φb−φb,m)) + 2cb

2(1− e−β(φb−φb,m))− 2Q(φb − φb,m).
(30)
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and arbitrary Ji’s.
(iii) Potential boundary layers Γa

m at x = a can be determined in the follow-
ing way: the φ-component satisfies the Hamiltonian system

φ′′ + αca
1eα(φa−φ) − βca

2e−β(φa−φ) + Q = 0,

together with φ(0) = φa and φ(ξ) → φa,m as ξ →∞, u(ξ) = φ′(ξ), and

c1(ξ) = ca
1eα(φa−φ(ξ)), c2(ξ) = ca

2e−β(φa−φ(ξ)).

Similarly, potential boundary layers Γb
m at x = b can be determined in the

following way: the φ-component satisfies the Hamiltonian system

φ′′ + αcb
1e

α(φb−φ) − βcb
2e
−β(φb−φ) + Q = 0,

together with φ(0) = φb and φ(ξ) → φb,m as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = cb
1e

α(φb−φ(ξ)), c2(ξ) = cb
2e
−β(φb−φ(ξ)).

(iv) Let Na
m = Ma

m ∩W s(Zm) and N b
m = M b

m ∩Wu(Zm) where Ma
m is the

collection of orbits from Ba in forward time under the flow (26) and M b
m is the

collection of orbits from Bb in backward time under the flow (26). Then,

ω(Na
m) = {(φa,m, 0, ca,m

1 , ca,m
2 , J1, J2, a) : all Ji} ,

α(N b
m) =

{(
φb,m, 0, cb,m

1 , cb,m
2 , J1, J2, b

)
: all Ji

}
.

Remark 3.5. To show that the quantity under the square root in the display
(28) is non-negative, we assume ca

1 > 0 and ca
2 > 0 for the moment and let

f(x) = ca
1 + ca

2 − ca
1eα(φa−x) − ca

2e−β(φa−x) −Q(φa − x).

Then,
f ′(x) = αca

1eα(φa−x) − βca
2e−β(φa−x) + Q

and
f ′′(x) = −α2ca

1eα(φa−x) − β2ca
2e−β(φa−x) < 0.

Therefore f(x) is concave downward. Note that f ′(x) → +∞ as x → −∞ and
f ′(x) → −∞ as x → +∞. Hence, f(x) has a unique critical point and it must
have a global maximum at this critical point. Since x = φa

m is the critical point,
we have

f(φa
m) ≥ f(φa) = 0.

By continuity, we have f(φa
m) ≥ 0 even if ca

1 = 0 and/or ca
2 = 0. Similarly, the

quantity under the square root in the display (30) is non-negative.
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3.2.2 Outer dynamics on [a, b]: regular layers or outer solutions

We now study the flow in the vicinity of the outer manifold Zm. Following the
treatment of the outer flow on Zl in Section 3.1.2 (see also Remark 3.4), we
make a scaling u = εp and βc2 − αc1 −Q = εq. System (7) becomes

φ̇ =p, εṗ = q − ε
h′(τ)
h(τ)

p,

εq̇ =((α + β)αc1 + βQ + εβq)p− h−1(τ)(βJ2 − αJ1),

ċ1 =− αc1p− h−1(τ)J1,

J̇1 =J̇2 = 0, τ̇ = 1.

(31)

Its limit, as ε → 0, is

φ̇ =p, 0 = q,

0 =((α + β)αc1 + βQ)p− h−1(τ)(βJ2 − αJ1),

ċ1 =− αc1p− h−1(τ)J1,

J̇i =0, τ̇ = 1,

(32)

For this system, the outer manifold is

Sm =
{

p =
βJ2 − αJ1

h(τ)((α + β)αc1 + βQ)
, q = 0

}
.

The outer limit dynamics on Sm is governed by system (32), which reads

φ̇ =
βJ2 − αJ1

h(τ)((α + β)αc1 + βQ)
,

ċ1 =− (βJ2 − αJ1)αc1

h(τ)((α + β)αc1 + βQ)
− h−1(τ)J1

=− αβ(J1 + J2)c1 + βQJ1

h(τ)((α + β)αc1 + βQ)
,

J̇i =0, τ̇ = 1.

(33)

Since h(τ) > 0 and βc2 = αc1 +Q > 0, system (33) has the same phase por-
trait as that of the following system obtained by multiplying h(τ)((α+β)αc1 +
βQ) on the right-hand-side of system (33). (Here we see the reason why τ = x
and τ̇ = 1 were introduced into the analysis, see (7).)

d

dy
φ =βJ2 − αJ1,

d

dy
c1 =− αβ(J1 + J2)c1 − βQJ1,

d

dy
Ji =0,

d

dy
τ = h(τ)((α + β)αc1 + βQ).

(34)
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The solution with the initial condition (φa,m, ca,m
1 , J1, J2, a) that corresponds

to the point (φa,m, 0, ca,m
1 , ca,m

2 , J1, J2, a) ∈ ω(Na
m) is

φ(y) =φa,m + (βJ2 − αJ1)y,

c1(y) =e−αβ(J1+J2)yca,m
1 − QJ1

α(J1 + J2)

(
1− e−αβ(J1+J2)y

)
,∫ τ

a

h−1(s)ds = (α + β)α
∫ y

0

c1ds + βQy

=
(α + β)ca,m

1

β(J1 + J2)

(
1− e−αβ(J1+J2)y

)
− (α + β)QJ1

J1 + J2

(
y − 1

αβ(J1 + J2)

(
1− e−αβ(J1+J2)y

))
+ βQy.

(35)

We are looking for solutions to reach α(N b
m), that is, whenever τ(y) = b, we

require φ(y) = φb,m and c1(y) = cb,m
1 . Assume τ(y0) = b for some y0 > 0. Then,

φ(y0) = φb,m and c1(y0) = cb,m
1 , and hence,

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m
1 = e−αβ(J1+J2)y0ca,m

1 − QJ1

α(J1 + J2)

(
1− e−αβ(J1+J2)y0

)
,∫ b

a

h−1(s)ds =
(α + β)ca,m

1

β(J1 + J2)

(
1− e−αβ(J1+J2)y0

)
− (α + β)QJ1

J1 + J2

(
y0 −

1
αβ(J1 + J2)

(
1− e−αβ(J1+J2)y0

))
+ βQy0.

(36)

System (36) is equivalent to

φb,m =φa,m + (βJ2 − αJ1)y0,

cb,m
1 =e−αβ(J1+J2)y0ca,m

1 − QJ1

α(J1 + J2)

(
1− e−αβ(J1+J2)y0

)
,

J1 + J2 =
α(α + β)(ca,m

1 − cb,m
1 )− αβQ(φa,m − φb,m)

αβ
∫ b

a
h−1(s)ds

.

(37)

Therefore, the outer or regular layer solution Λm on [a, b] is given by (35)
with J1 and J2 determined by (37). Together with the boundary layers Γa

m and
Γb

m in statement (iii) of Proposition 3.4, this gives the singular orbit on the
interval [a, b].

3.3 Singular orbits on [b, 1] with Q(x) = 0.

The construction of singular orbits on [b, 1] is virtually identical to the construc-
tion of singular orbits on [0, a] in Section 3.1. We will only state the results for
later use.
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3.3.1 Inner dynamics on [b, 1]: boundary layers or inner solutions

The inner limit system is

φ′ =u, u′ = βc2 − αc1,

c′1 =− αc1u,

c′2 =βc2u,

J ′1 =J ′2 = 0, τ ′ = 0.

(38)

The outer manifold is
Zr = {u = 0, αc1 = βc2}.

It consists of equilibria of system (38) and is normally hyperbolic with a 6-
dimensional stable manifold W s(Zr) and a 6-dimensional unstable manifold
Wu(Zr). Concerning the boundary layers, we have

Proposition 3.5. (i) System (38) has the following six integrals,

H1 =eαφc1, H2 = e−βφc2, H3 = c1 + c2 −
1
2
u2,

H4 =J1, H5 = J2, H6 = τ.

(ii) Let φ = φb,r be the unique solution of

αcb
1e

α(φb−φ) − βcb
2e
−β(φb−φ) = 0 that is φb,r = φb − 1

α + β
ln

βcb
2

αcb
1

,

and
cb,r
1 =

1
α

(αcb
1)

β
α+β (βcb

2)
α

α+β , cb,r
2 =

1
β

(αcb
1)

β
α+β (βcb

2)
α

α+β .

The stable manifold W s(Zr) intersects Bb transversally at points with

ur(b) =[sgn(αcb
1 − βcb

2)]

√
2
(

cb
1 + cb

2 −
α + β

αβ
(αcb

1)
β

α+β (βcb
2)

α
α+β

)
, (39)

and arbitrary Ji’s.
Let φ = φR be the unique solution of

αR1e
−αφ − βR2e

βφ = 0 that is φR = − 1
α + β

ln
βR2

αR1
,

and
cR
1 =

1
α

(αR1)
β

α+β (βR2)
α

α+β , cR
2 =

1
β

(αR1)
β

α+β (βR2)
α

α+β .

The unstable manifold Wu(Zr) intersects BR transversally at points with

u1 =[sgn(βR2 − αR1)]

√
2
(

R1 + R2 −
α + β

αβ
(αR1)

β
α+β (βR2)

α
α+β

)
, (40)
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and arbitrary Ji’s.
(iii) Potential boundary layers Γb

r at x = b can be determined in the following
way: the φ-component satisfies the Hamiltonian system

φ′′ + αcb
1e

α(φb−φ) − βcb
2e
−β(φb−φ) = 0,

together with φ(0) = φb and φ(ξ) → φb,r as ξ →∞, u(ξ) = φ′(ξ), and

c1(ξ) = cb
1e

α(φb−φ(ξ)), c2(ξ) = cb
2e
−β(φb−φ(ξ)).

Similarly, potential boundary layers Γ1
r at x = 1 can be determined in the

following way: the φ-component satisfies the Hamiltonian system

φ′′ + αR1e
−αφ − βR2e

βφ = 0,

together with φ(0) = 0 and φ(ξ) → φR as ξ → −∞, u(ξ) = φ′(ξ), and

c1(ξ) = R1e
−αφ(ξ), c2(ξ) = R2e

βφ(ξ).

(iv) Let N b
r = M b

r ∩ W s(Zr) and NR = MR ∩ Wu(Zr) where M b
r is the

collection of orbits from Bb in forward time under the flow (38) and MR is the
collection of orbits from BR in backward time under the flow (38). Then,

ω(N b
r ) =

{(
φb,r, 0, cb,r

1 , cb,r
2 , J1, J2, b

)
: all Ji

}
,

α(NR) =
{(

φR, 0, cR
1 , cR

2 , J1, J2, 1
)

: all Ji

}
.

3.3.2 Outer dynamics on [b, 1]: regular layers or outer solutions

We now examine existence of regular layers or outer solutions that connect
ω(N b

r ) to α(NR). Following exactly the same analysis as in Section 3.1.2, we
find that the outer limit dynamics is

φ̇ =
βJ2 − αJ1

(α + β)αh(τ)c1
,

ċ1 =− β(J1 + J2)
(α + β)h(τ)

,

J̇i =0, τ̇ = 1,

(41)

and the outer solution Λr on [b, 1] with the initial condition (φb,r, cb,r
1 , J1, J2, b)

that corresponds to the point (φb,r, 0cb,r
1 , cb,r

2 , J1, J2, b) ∈ ω(N b
r ) is given by

φ(ξ) =φb,r − βJ2 − αJ1

αβ(J1 + J2)
ln

c1(ξ)

cb,r
1

,

u(ξ) =0, αc1(ξ) = βc2(ξ),

c1(ξ) =cb,r
1 − β(J1 + J2)

α + β

∫ ξ

b

h−1(s)ds,

τ(ξ) =ξ.
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The outer solution Λr reaches the point (φR, 0, cR
1 , cR

2 , J1, J2, 1) ∈ α(NR) if and
only if

J1 =
cb,r
1 − cR

1∫ 1

b
h−1(s)ds

(
1 +

α(φb,r − φR)

ln cb,r
1 − ln cR

1

)
,

J2 =
cb,r
2 − cR

2∫ 1

b
h−1(s)ds

(
1− β(φb,r − φR)

ln cb,r
2 − ln cR

2

)
.

(42)

The outer solution Λr together with the inner solutions Γb
r and Γ1

r in state-
ment (iii) of Proposition 3.5 gives the singular orbit on [b, 1].

3.4 Matching and singular orbits on [0, 1].

B L

0

BR

1a b

Γ Γ

Γ Γ

Γ

Λ

Λ

Γ

l
a

a
m

m

m

r
r

b

b

u

α c1−βc2

Z m

Λ l

Z l Z r

τ

0

1

l

r

Figure 3: Schematic picture of the singular orbit (solid curves): left boundary
layer Γ0

l , right boundary layer Γ1
r, four internal layers Γa

l , Γa
m, Γb

m and Γb
r, and

three regular layers Λl, Λm and Λr.

A singular orbit on the whole interval [0, 1] will be the union of the singular
orbits constructed on each sub-intervals. The matching conditions are: ul(a) =
um(a), um(b) = ur(b), and J1 and J2 have to be the same on all sub-intervals;
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that is, from formulas (14), (23), (27), (28), (29), (30), (37), (39), and (42),

αca
1eα(φa−φa,m) − βca

2e−β(φa−φa,m) + Q = 0,

αcb
1e

α(φb−φb,m) − βcb
2e
−β(φb−φb,m) + Q = 0,

α + β

β
ca,l
1 = ca

1eα(φa−φa,m) + ca
2e−β(φa−φa,m) + Q(φa − φa,m),

α + β

β
cb,r
1 = cb

1e
α(φb−φb,m) + cb

2e
−β(φb−φb,m) + Q(φb − φb,m),

J1 =
(cL

1 − ca,l
1 )∫ a

0
h−1(s)ds

(
1 +

α(φL − φa,l)

ln cL
1 − ln ca,l

1

)

=
cb,r
1 − cR

1∫ 1

b
h−1(s)ds

(
1 +

α(φb,r − φR)

ln cb,r
1 − ln cR

1

)
,

J2 =
(cL

2 − ca,l
2 )∫ a

0
h−1(s)ds

(
1− β(φL − φa,l)

ln cL
2 − ln ca,l

2

)

=
cb,r
2 − cR

2∫ 1

b
h−1(s)ds

(
1− β(φb,r − φR)

ln cb,r
2 − ln cR

2

)
,

φb,m = φa,m + (βJ2 − αJ1)y0,

cb,m
1 = e−αβ(J1+J2)y0ca,m

1 − QJ1

α(J1 + J2)

(
1− e−αβ(J1+J2)y0

)
,

J1 + J2 =
α(α + β)(ca,m

1 − cb,m
1 )− αβQ(φa,m − φb,m)

αβ
∫ b

a
h−1(s)ds

,

(43)

where

cL
1 =

1
α

(αL1)
β

α+β (βL2)
α

α+β , cL
2 =

1
β

(αL1)
β

α+β (βL2)
α

α+β ,

ca,l
1 =

1
α

(αca
1)

β
α+β (βca

2)
α

α+β , ca,l
2 =

1
β

(αca
1)

β
α+β (βca

2)
α

α+β ,

cb,r
1 =

1
α

(αcb
1)

β
α+β (βcb

2)
α

α+β , cb,r
2 =

1
β

(αcb
1)

β
α+β (βcb

2)
α

α+β ,

ca,m
1 =eα(φa−φa,m)ca

1 , cb,m
1 = eα(φb−φb,m)cb

1.

Recall that h(x) = g2
0(x) where g0(x) is the radius of the cross-section of the

channel at x, Q is the concentration of the permanent charge over the interval
[a, b], (φa, ca

1 , ca
2) and (φb, cb

1, c
b
2) are the unknown values pre-assigned at x = a

and x = b, J1 and J2 are the unknown values for the flux densities of the two
types of ions.

There are also three auxiliary unknowns φa,m, φb,m and y0 in the set of
equations (43). Total number of unknowns in (43) is eleven which matches the
total number of equations.
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A qualitative important question is whether the set of nonlinear equations
(43) has a unique solution. Next, we will consider a special case and demonstrate
that (43) can have multiple solutions.

3.4.1 α = β = 1, and a = 1/3, b = 2/3 and h = 1

We now consider a special case where α = β = 1. It turns out the nonlinear
system of algebraic equations (43) in eleven unknowns can be reduced to a single
algebraic equation with only one unknown. Further restrictions that a = 1/3,
b = 2/3 and h = 1 will be posted later on merely for simplicity.

Set ca
1ca

2 = A2, cb
1c

b
2 = B2, L1L2 = L2, R1R2 = R2, and Q = 2Q0. From the

first two equations in (43), one has

φa − φa,m = ln

√
Q2

0 + A2 −Q0

ca
1

,

φb − φb,m = ln

√
Q2

0 + B2 −Q0

cb
1

.

System (43) becomes

A =
√

Q2
0 + A2 + Q0 ln

√
Q2

0 + A2 −Q0

ca
1

,

B =
√

Q2
0 + B2 + Q0 ln

√
Q2

0 + B2 −Q0

cb
1

,

J1 =
L−A∫ a

0
h−1(s)ds

· ν0 − φa + lnL1 − ln ca
1

lnL− lnA

=
B −R∫ 1

b
h−1(s)ds

· φb + ln cb
1 − lnR1

lnB − lnR
,

J2 =
L−A∫ a

0
h−1(s)ds

(
2− ν0 − φa + lnL1 − ln ca

1

lnL− lnA

)
=

B −R∫ 1

b
h−1(s)ds

(
2− φb + ln cb

1 − lnR1

lnB − lnR

)
,

(J2 − J1)y0 =φb − φa + ln
cb
1(
√

Q2
0 + A2 −Q0)

ca
1(
√

Q2
0 + B2 −Q0)

,

J1 + J2 =
2(
√

Q2
0 + A2 −

√
Q2

0 + B2)− 2Q0(J1 − J2)y0∫ b

a
h−1(s)ds

,√
Q2

0 + B2 −Q0 =e−(J1+J2)y0(
√

Q2
0 + A2 −Q0)

− 2Q0J1

J1 + J2

(
1− e−(J1+J2)y0

)
,

(44)
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Add the J1 and J2 equations in (44) to get

J1 + J2 = 2
L−A∫ a

0
h−1

= 2
B −R∫ 1

b
h−1

, hence, B =

∫ 1

b
h−1∫ a

0
h−1

(L−A) + R.

The first two equations in (44) give

ca
1 =(

√
Q2

0 + A2 −Q0) exp{
√

Q2
0 + A2 −A

Q0
},

cb
1 =(

√
Q2

0 + B2 −Q0) exp{
√

Q2
0 + B2 −B

Q0
}.

(45)

The first two equations together with (J2 − J1)y0 and J1 + J2 equations give

J1 + J2 = 2
L−A∫ a

0
h−1

= 2
B −R∫ 1

b
h−1

= 2
A−B −Q0(φa − φb)∫ b

a
h−1

.

Hence,

J1 + J2 = 2
L−R−Q0(φa − φb)∫ 1

0
h−1

,

φb − φa =
(L−A)

∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

, (46)

and

(J2 − J1)y0 =φb − φa − ln

√
Q2

0 + B2 −Q0

cb
1

+ ln

√
Q2

0 + A2 −Q0

ca
1

=
(L−A)

∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

+ ln
(
√

Q2
0 + A2 −Q0)cb

1

(
√

Q2
0 + B2 −Q0)ca

1

=
(L−A)

∫ b

a
h−1

Q0

∫ a

0
h−1

+

√
Q2

0 + B2 −
√

Q2
0 + A2

Q0
.

Using
L−A∫ a

0
h−1

=
B −R∫ 1

b
h−1

and the second equality in the J1 equation in (44), one has

ν0 − φa + lnL1 − ln ca
1

lnL− lnA
=

φb + ln cb
1 − lnR1

lnB − lnR
.

Hence,

φb + ln cb
1 − lnR1

lnB − lnR
=

ν0 + φb − φa + ln(L1c
b
1)− ln(R1c

a
1)

ln(BL)− ln(AR)
.
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The latter together with (46) and (45) gives

φb =
ln B

R

ln BL
AR

(
ν0 + ln

L1c
b
1

R1ca
1

+
(L−A)

∫ 1

0
h−1 − (L−R)

∫ a

0
h−1

Q0

∫ a

0
h−1

)
+ ln

R1

cb
1

=
ln B

R

ln BL
AR

(
ν0 + ln

L1(
√

Q2
0 + B2 −Q0)

R1(
√

Q2
0 + A2 −Q0)

+

√
Q2

0 + B2 −
√

Q2
0 + A2

Q0
+

+
(L−A)

∫ b

a
h−1

Q0

∫ a

0
h−1

)
+ lnR1 − ln(

√
Q2

0 + B2 −Q0)−
√

Q2
0 + B2 −B

Q0
.

Note that all the variables in (44) can be expressed in terms of A. Substi-
tuting into the last equation in (44) we will get an equation F (A) = 0 in the
variable A only. The expression of F (A) is complicated but can be explicitly
given.

We now suppose further that a = 1/3, b = 2/3 and h = 1. Then,

B = L + R−A, J1 + J2 = 6(L−A), (47)

ca
1 = (

√
Q2

0 + A2 −Q0) exp{
√

Q2
0 + A2 −A

Q0
},

cb
1 = (

√
Q2

0 + B2 −Q0) exp{
√

Q2
0 + B2 −B

Q0
},

φb − φa =
2L + R− 3A

Q0
,

φb =
ln B

R

ln BL
AR

(
ν0 + ln

L1(
√

Q2
0 + B2 −Q0)

R1(
√

Q2
0 + A2 −Q0)

+

√
Q2

0 + B2 −
√

Q2
0 + A2 + L−A

Q0

)

+ lnR1 − ln(
√

Q2
0 + B2 −Q0)−

√
Q2

0 + B2 −B

Q0
.

J2 − J1 =6(L−A)− 6(L−A)
ln BL

AR

(
ν0 + ln

L1(
√

Q2
0 + B2 −Q0)

R1(
√

Q2
0 + A2 −Q0)

)

− 6(L−A)(
√

Q2
0 + B2 −

√
Q2

0 + A2 + L−A)
Q0 ln BL

AR

,

(J2 − J1)y0 =

√
Q2

0 + B2 −
√

Q2
0 + A2 + L−A

Q0
.

The final equation involving the only unknown A is F (A) = 0 where

F (A) =eK(A)

(√
Q2

0 + A2 − Q0(J2 − J1)
6(L−A)

)
+

Q0(J2 − J1)
6(L−A)

−
√

Q2
0 + B2,

(48)
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where

K(A) = −6(L−A)

√
Q2

0 + B2 −
√

Q2
0 + A2 + L−A

Q0(J2 − J1)
,

B = L + R−A and J2 − J1 is given above.
To summarize, for the special case where

α = β = 1, a = 1/3, b = 2/3, h = 1,

the set of non-linear algebraic equations is equivalent to F (A) = 0 where F (A)
is given in (48). The formula F (A), although terribly complicated, involves only
one unknown A =

√
ca
1ca

2 . Other parameters in F (A) are L1, L =
√

L1L2, R1,
R =

√
R1R2, ν0 and Q0.

For L = L1 = 2, R = R1 = 3, Q = 2Q0 = 2 and ν0 = −20, we find,
numerically, two solutions of F (A) = 0: A1 = 0.6858357 and A2 = 2 ( the latter
is a removable singularity of the functions F (A), Ji’s, φb and φa).

Once a feasible value for A is determined, all the unknowns will be deter-
mined. We then get a singular orbit that consists of nine pieces Γ0

l ∪ Λl ∪ Γa
l ∪

Γa
m ∪ Λm ∪ Γb

m ∪ Γb
r ∪ Λr ∪ Γ1

r (see Figure 3).

4 Main Results and Numerical Simulations

Any solution of the set of algebraic equations determines a singular orbit for the
connecting problem. Once a singular orbit is constructed, we apply geometric
singular perturbation theory to show that, for ε > 0 small, there is a unique
solution that is close to the singular orbit. Before giving the precise statement
of our result and its proof, let us explain the ideas behind it.

Let Γ0
l ∪ Λl ∪ Γa

l ∪ Γa
m ∪ Λm ∪ Γb

m ∪ Γb
r ∪ Λr ∪ Γ1

r be a singular orbit to the
connecting problem (7) associated to BL and BR. For ε > 0 small, let ML(ε) be
the forward trace of BL under the flow of system (7) or equivalently system (8).
To establish the existence of a unique solution to the boundary value problem
near the singular orbit, we will show that ML(ε) intersects BR transversally in
a neighborhood of the singular orbit.

Roughly speaking, the evolution of ML(ε) from x = 0 to x = 1 undergoes
nine stages with each stage guiding by one of the nine pieces of the singular
orbit (see Figure 3):

(l1). Along Γ0
l : Since BL intersects W s(Zl) transversally, ML(ε) will first follow

the orbit Γ0
l towards the vicinity of Zl under the inner limit flow (12) near

x = 0;

(l2). Along Λl: Once ML(ε) gets close to Zl, the outer limit flow (19) takes
over, and ML(ε) will then follow the outer flow on Zl or Sl along the orbit
Λl towards the hypersurface {x = a};

(l3). Along Γa
l : Near but before {x = a}, ML(ε) will leave the vicinity of Zl,

follow the orbit Γa
l under the inner limit flow (12) near x = a, and hit the

hypersurface {x = a};
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(m1). Along Γa
m: Upon hitting the hypersurface {x = a}, the flow switches to

the inner limit flow (26) with Q(x) = Q. ML(ε) then follows Γa
m towards

the vicinity of Zm;

(m2). Along Λm: Once ML(ε) gets close to Zm, the outer limit flow (33) takes
over, and ML(ε) will then follow the outer flow on Zm or Sm along the
orbit Λm towards the hypersurface {x = b};

(m3). Along Γb
m: Near but before {x = b}, ML(ε) will leave the vicinity of Zm,

follow the orbit Γb
m under the inner limit flow (26) near x = b, and hit the

hypersurface {x = b};

(r1). Along Γb
r: Upon hitting the hypersurface {x = b}, the flow switches to

the inner limit flow (38) with Q(x) = 0. ML(ε) then follows Γb
r towards

the vicinity of Zr;

(r2). Along Λr: Once ML(ε) gets close to Zr, the outer limit flow (41) takes
over, and ML(ε) will then follow the outer flow on Zr or Sr along the orbit
Λr towards the hypersurface {x = 1};

(r3). Along Γ1
r: Near but before {x = 1}, ML(ε) will leave the vicinity of Zr,

follow the orbit Γ1
r under the inner limit flow (38) near x = 1. If it hits

BR then we get our solution.

The main task is to justify the above description of the stages that ML(ε)
undergoes. The Exchange Lemma—see, for example, [48, 46, 47, 52, 53]—of
geometric singular perturbation theory is a result that precisely characterizes the
configuration of ML(ε) during its evolution through the above stages. To apply
this abstract theory, one only needs to verify certain transversality conditions
of some limiting objects.

We now state our results and provide a proof using the geometric singular
perturbation theory described above.

Theorem 4.1. Let Γ0
l ∪Λl∪Γa

l ∪Γa
m∪Λm∪Γb

m∪Γb
r∪Λr∪Γ1

r be a singular orbit
to the connecting problem (7) associated to BL and BR. Then, for ε > 0 small,
the boundary value problem (5) and (6) has a unique continuous and piece-wise
smooth solution near the singular orbit.

Proof. For ε > 0 small, choose δ > 0 small. Let

BL(δ) = {(ν0, u, L1, L2, J1, J2, 0) : |u− u0| < δ, |Ji − J0
i | < δ}

and let ML(ε) be the forward trace of BL(δ) under the flow of system (7) or
equivalently system (8). To prove the theorem, we need to show that ML(ε)
intersects BR transversally in a neighborhood of the singular orbit. Indeed, if we
let MR(ε) be the backward trace of BR near the singular orbit, then ML(ε) and
MR(ε) intersect transversally too. The transversality implies that dim(ML(ε)∩
MR(ε)) = dim ML(ε) + dim MR(ε)− 7 = 1. Therefore, the intersection ML(ε)∩
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MR(ε) consists of precisely one solution to the boundary value problem and the
solution is near the singular orbit.

To establish the transversal intersection of ML(ε) with BR near the singular
orbit, we apply the Exchange Lemma successively along the stages described
above. The first application of the Exchange Lemma verifies the descriptions
for stages (l1), (l2) and (l3); the second one for stages (m1), (m2) and (m3);
and the last application verifies the descriptions for stages (r1), (r2) and (r3).

Note that dim BL(δ) = 3. Since the fast flow is not tangent to BL(δ), one
has dim ML(ε) = 4. The transversality of the intersection BL∩W s(Zl) along Γ0

l

implies the transversality of the intersection ML(0) ∩W s(Zl). The Exchange
Lemma implies that ML(ε) will first follow Γ0

l toward NL ⊂ Zl, then follow
NL ·x in the vicinity of Λl toward x = a, and leave the vicinity of Zl. And upon
exit, ML(ε) is C1 O(ε)-close to Wu(NL × (a− δ, a)) in the vicinity of Γa

l .
Denote the intersection of Wu(NL × (a− δ, a)) with {x = a} by I(a). Then

I(a) intersects W s(Zm) transversally for the flow (26). Let K(a) be the forward
trace of I(a) under (25). The Exchange Lemma implies that ML(ε) will first
follow K(a) in the vicinity of Γa

m toward Na
m ⊂ Zm, then follow Na

m · x in the
vicinity of Λm toward x = b, and leave the vicinity of Zm. And upon exit,
ML(ε) is C1 O(ε)-close to Wu(Na

m × (b− δ, b)) in the vicinity of Γb
m.

Denote the intersection of Wu(Na
m × (b− δ, b)) with {x = b} by I(b). Then

I(b) intersects W s(Zr) transversally for the flow (38). Let K(b) be the forward
trace of I(b) under the full system. The Exchange Lemma implies that ML(ε)
will first follow K(b) in the vicinity of Γb

r toward N b
r ⊂ Zr, then follow N b

r ·x in
the vicinity of Λr toward x = 1, leave the vicinity of Zr, and upon exit ML(ε)
is C1 O(ε)-close to Wu(NR × (1− δ, 1)) in the vicinity of Γ1

r.
In summary, after three applications of the Exchange Lemma, we determine

that ML(ε) is C1 O(ε)-close to Wu(NR × (1− δ, 1)) in the vicinity of Γ1
r. Since

Wu(NR × (1− δ, 1)) intersects BR transversally along Γ1
r, we have shown that

ML(ε) intersects BR transversally. The proof is complete.

Numerical simulations are performed for A1 = 0.6858357 and A2 = 2 (see
Figures 4 and 5). The following properties of the two solutions are predicted
from the analytical results and can be observed from the numerical simulations:

(i) For both A1 and A2, approximately c2(x) − c1(x) = Q(x) for x ∈ (0, 1)
except around x = 1/3 and x = 2/3 – the jumping points of Q.

(ii) For A2 = L, J1 + J2 = 0 from (47). As a consequence of (19) and (41),
c1(x) = c2(x) = L = 2 for x ∈ (0, 1/3) and c1(x) = c2(x) = R = 3 for x ∈
(2/3, 1). The decreasing behavior of c1(x) = c2(x) for x ∈ (0, 1/3)∪(2/3, 1)
can be also predicted from that of singular orbit corresponding to A1.

(iii) There is a significant difference between the two solutions for A1 6= L and
A2 = L: the solution for A1 has two internal layers with limit orbits Γa

l

and Γa
m at x = a = 1/3 that match at a point on Ba (see Fig. 3); the

solution for A2 has only one internal layer Γa
l = Γa

m at x = 1/3. This
analytical consequence is not clearly shown in the figures but is indicated
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by the different behaviors of the φ-component: for A1, with the extra
transition through Ba, the layers near x = 1/3 are smoother than the
one layer for A2. The same remarks is true for the two solutions near
x = b = 2/3.
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Numerical solution for A=0.6858357, ν
0
=−20, L=2, R=3, Q=2, ε=0.02

Figure 4: φ (stars), c1 (solid curve) and c2 (dashed curve) for A1 = 0.6858357
with L1 = L2 = 2, R1 = R2 = 3, Q = 2Q0 = 2, ν0 = −20, and ε = 0.02.

5 Remarks

The defining equation F (A) = 0 in (48) that determines multiplicity of steady-
states of PNP system should be investigated thoroughly. This could be studied
using bifurcation theory of dynamical systems and numerical tools (e.g. AUTO)
due to the presence of multiple parameters (Li, Ri, ν0, Q, etc. should be viewed
as perturbation parameters). Another important problem is the stability of each
solution in the full time evolution PNP system. Both multiplicity and stability
have important biological consequences for ion channels. Single channels are in
fact often defined in the laboratory by their characteristic current signal which
switches from one nearly zero level (‘the closed channel’) to another non-zero
level (‘the open channel’) in a random telegraph signal, with brief incomplete
spiky interruptions. Different types of channels perform their functions by con-
trolling the open probability and/or mean duration of the stochastic signal.
These gating phenomena are central to the biological function of channels and
are almost always explained by saying the channel changes shape (‘conforma-
tion’) when it switches current level. Another explanation could be that the
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Figure 5: φ (stars), c1 (solid curve) and c2 (dashed curve) for A2 = 2 with
L1 = L2 = 2, R1 = R2 = 3, Q = 2Q0 = 2, ν0 = −20, and ε = 0.02.

steady-state solutions of the PNP equations themselves have multiple solutions,
and the different current levels correspond to those different solutions. Because
the actual current data is stochastic, it is not clear whether the “open channel”
state is stationary or not. Indeed, the open probability and/or duration of the
open state might be stochastic representations of the instability of the PNP
equations. Ion channels also act (in many cases) as if they have two spatially
distinct gates, one of which is normally open and the other normally closed. The
opening and closing processes of these gates do not overlap in ion channels so
there is always a time when both gates are open, and current flows through the
channel. The stability properties of the equations may determine many of these
gating properties. It is hard to see how the stability properties of the equations
(and underlying physics) could not be involved to some significant extent, even
if that gating is modulated by other processes and involves additional physics, or
conformational changes. Finally, there are a vitally important class of ‘channel’
proteins in which the two gates open and close in ping pong fashion, so current
can never flow right through the channel pore. These channels form mediated
transporters of the greatest biological importance. It is hard to imagine that the
stability of multiple solutions of the PNP equations (and the underlying physics)
are not involved in the correlated gating properties of transporters, even if that
gating is modulated by other processes and involves additional physics, or even
conformational changes.

Clearly our methods will be challenged when we try to extend them to other
geometries of channels, multiple regions with nonzero permanent charges, and
the even more important problems of three or more ions of different charge
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(e.g., Na+, Ca2+, Cl−). The depletion layers that then occur allow the wide
diversity of devices (from amplifier, to limiter, to multiplier, etc.) that can be
built from a single PNP transistor, and that can be described by numerical
solutions of the PNP equations ([70, 36, 42, 29, 72, 35]). An alarming diversity
of treatments must arise from any perturbation analysis of PNP systems because
such a diversity of real devices actually exist and are built on that (physical and
intellectual) substrate! Existing mathematical analysis of the PNP equations
will need to be extended to show how those different devices can be built on one
substrate. That is to say, analysis is needed to show how different devices arise
from different values of the boundary potential but just one set of differential
equations (and boundary equations), with one set of parameters (other than
boundary potentials). Many useful applications in the design of channels and
semiconductors depend on this analysis.
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