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1 Introduction

Ion channels are proteins embedded in the lipid membrane of biological cells.

They interact in a complex way with their environment and are responsible for

finely regulating the flux of ionic charge across the membrane. For instance, the

generation and transmission of potentials in nerves and muscles, as well as the

hormone release from endocrine cells, are believed to be mechanisms governed

by the transport of ionic charge through these protein “gates” [1].

Since the demonstration in 1976 [2] of a reliable experimental methodology

for the detection of currents flowing through individual ion channels, several

refinements of the experimental setup have been successfully applied to a va-

riety of membrane and cell configurations, both in vivo and in vitro [3]. The

extraordinary progress of those experimental techniques triggered an increasing

theoretical effort aimed at the understanding of the role of ion channels in the

physiology of complex biological systems, and, more generally, their influence

on the electrical equilibrium between the cells and their environment. Besides

the purely theoretical aspect, important pharmacological advances have arisen

from improved knowledge of ion channels [4]. Furthermore, from an engineering

viewpoint, ion channels are being envisioned as a key component in a new gen-

eration of biosensors that integrate the selectivity and extreme sensitivity of ion

channels with the processing capabilities of modern microelectronics [5, 6, 7].

The appeal of the many possible applications of ion channels is only one

part of the complete story. The interest of the computer modeling community

has also been triggered by several concomitant events: 1) the availability of

reliable protein structural data, 2) the capability of producing mutants by re-

programming the genetic sequence of bacteria, 3) the availability of reproducible

experimental data on the electrophysiology of individual channels, and 4) the

availability of adequate computational machinery (hardware and software) for

the realistic modeling and simulation of ion channels in their environment. All

these contributions occurred more or less simultaneously during the last decade,

and produced a rather unusual synergy among experimentalists, theoreticians,
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and computational scientists who combined their efforts in order to relate the

structure of ion channels to their function.

A peculiar aspect of the research on ion channels is that it frequently in-

volves researchers working in traditionally different disciplines. The solid-state

electronics community, for example, is well aware of the fact that traditional

scaling – i.e., the reduction of the feature-size of transistors needed to increase

the performance of integrated circuits [8] – will soon be inadequate to satisfy

the requirements of emerging technologies [9]. A natural solution is to increase

the complexity rather than the speed of the basic components, and much can

be learned from ion channels, which are extremely specialized and miniaturized

low power devices. Transistors are definitely faster than ion channels, but the

advantage due to their operational speed is compensated by the complexity of

the operations performed by ion channels. It appears clear that the full under-

standing of ion channel properties will allow for either the modification of their

design for novel applications, or for manufacturing analogous structures capable

of emulating their functionality.

This chapter is intended to be an introduction to the numerical techniques

used for the simulation of charge transport through ion channels. The com-

plexity and the size of the systems to be simulated will be stressed throughout

the entire chapter, as well as the potential for the practical applications of ion

channels in several fields. We firmly believe that the computer simulation of ion

channels is not just a “large scale” problem that will be progressively solved as

computer performance naturally evolves. High performance computing is only

one component of the solution, and much work is needed for devising and in-

tegrating adequate physical models and algorithmic approaches. Therefore, ion

channel simulation is a good example of the assertion that “computers do not

solve problems, people do” [10].

In addition to the introduction, this chapter consists of four main sections

and some concluding remarks. First, a description of the computational meth-

ods used to model the electrostatic framework of ion channels is given, including

a discussion of the boundary conditions traditionally used. A rather detailed
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description of efficient algorithms for the solution of Poisson’s equation in real

space is supplied for representing the long-range electrostatics of ion channel

systems. This approach has been identified as a possible improvement of the

force-field models used in particle-based simulation (molecular and Brownian

dynamics) [11, 12], but its popularity is low because it has been limited to sim-

ple test problems. The two following sections are devoted to the various models

of ionic charge transport through the channels. In particular, a classification

of continuum and particle-based methods is provided, and a discussion of their

modeling capabilities is presented. The need for a hierarchy of numerical ap-

proaches needed to model the behavior of the systems of interest at different

time and space scales is discussed in the penultimate section. The last section is

devoted to problems that are still open, and to the future direction of research

on the numerical simulation of biological ion channels. For reasons of space,

this chapter focuses mainly on the numerical methods used to directly model

charge transport in biological ion channels. However, it should be noted that a

great deal of information on these systems and their properties is obtained with

other techniques such as quantum chemistry (or structural ab initio) methods

and by stochastic sampling approaches for the analysis of trajectories in the

phase-space (Monte Carlo methods).

The remaining part of the introduction will be devoted to the description of

the simulative environment required to model the operation of ion channels.

1.1 System Components

Ion channels interact strongly with their environment. From a microscopic

viewpoint, these proteins cross the lipid bilayer that forms the cell membrane,

and are exposed to the electrochemically different environments found inside

and outside the cell. They are designed to react in a highly specialized way

to specific stimuli – mechanical, chemical, or electrical – and to express their

function by regulating the ionic flux across the cell membrane. For this reason,

any simulative approach meant to model ion channels must account in some
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way for the combined behavior of the protein channel, the membrane, and the

aqueous solution containing the ionic species of interest. Additionally, a way to

represent a specific stimulus must be devised, in order to model the transient

behavior of the channels as a function of the “external” perturbation.

1.1.1 The Protein

Because of the highly specialized functions they perform, ion channels are classi-

fied into different families. These families are based upon the ions those channels

selectively allow to flow into and out of the cell. This functional classification [1]

has been adopted as a result of the early electrophysiologic experiments on ion

channels, and its success is due to the strict relation between the structure of

the channels and their function. It should be noted that several channels that

allow the diffusive flow of non-ionized substances across the membrane exist,

an example of which are the mechano-sensitive channels regulating the bacte-

rial cytoplasmic pressure by responding to membrane tension [13]. Most of the

basic models discussed in this chapter apply to these diffusive channels as well.

Most of the membrane proteins contain α-helices and β-sheets connected in

structures of varying complexity. Within a specific structure, some helices cross

the membrane from one side to the other, while other segments of the protein

are confined in a more limited region. The amino-acid sequences are structured

in such a way that one or more pores are formed inside the protein, that are

large enough to allow for ionic flow. The protein structure is flexible and, in

many cases, the functionality of ion channels is achieved by structural changes

occurring in specific locations of the amino acid sequence.

From the functional viewpoint, we will discuss mainly the operations of ion

channels in relation to the following three properties: permeation, which is the

property of allowing ions to cross the strong dielectric barrier due to the cell

membrane; selectivity, which is the capability of discriminating between the

ionic species flowing through the channel structure; and gating, which is the

capability of modulating the flux through the channel in response to an exter-
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nal stimulus. It is important to note that gating occurs on a time scale several

order of magnitude longer than the typical transit time of one ion though the

channel pore. This is a critical aspect of these systems that must be accounted

for in the simulation: the crucial physics occurs on distances measured in a few

angstroms and starts on a femtosecond time scale, while the resulting physio-

logical functionality is expressed in milliseconds and on distances measured in

microns. The ability to relate the ultrafast microscopic processes occurring in

channel proteins to their slow physiological expression is the challenge of ion

channels simulation.

The structural features of some channels will be presented briefly in the

remaining part of this introduction. This discussion is not meant to offer a

classification of ion channels, but rather some key features of notable structures

that are used as examples in this chapter. The three channels we now describe

are: Gramicidin A, potassium channels and finally porins.

Gramicidin A Gramicidin A (gA) is a small 15-residue antibiotic peptide

formed as a dimer in a head-to-head (HH) or a double-helical (DH) conforma-

tion [14]. Because of its simplicity and reduced dimensions, the gA structure

has been studied extensively and simulated as a model for ion channels [15, 16,

17, 18, 19], and has emerged as a benchmark for simulation approaches [20,

21, 22, 23, 24]. The structure exposes its hydrophobic sidechains to the lipid

membrane that embeds the protein. The molecular structure of gA has been

known for three decades [25], and has been recently resolved with NMR spec-

troscopy [26, 27]. The relation of the structure seen spectroscopically to that

in membranes which conducts ions is being investigated [28]. Figure 1 shows

the gA backbone structure perpendicular to the pore and a top view along the

backbone structure showing the hydrophobic sidechains for the (a) DH [29] and

(b) HH [30] conformations. The interaction of the protein with the lipid bi-

layer (hydrophobic matching) has been modeled quantitatively [31, 32] and

measured experimentally [33], as has its properties of water transport [14, 34].

Concerning gating, characteristically fast (sub-millisecond) closure events, called
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flickers, have been attributed to either conformational changes (lateral shifts of

the monomers [35]) triggered by the breaking of the hydrogen bonds joining the

dimer in the HH configuration, or by undulations of the bilayer that modify

the conductive state of the protein [36]. Novel experimental techniques, such as

patch-clamp fluorescence microscopy [37], are being devised for detailed obser-

vation of the conformational changes of this simple structure. From a charge

transport viewpoint, gA selects monovalent cations and its conductivity depends

on both the membrane conformation and the ionic concentration surrounding

it [38].

(a)

(b)

backbone

backbone

hydrophobic
sidechain

hydrophobic
sidechain

monomers

monomers

Figure 1: Atomic structure of a (a) double-helical (1mic.pdb [29])and (b) head-
to-head (1mag.pdb [30]) conformation of Gramicidin A. The pictures to the left
show the backbone representation perpendicular to the pore. The pictures to
the right show a view parallel to the channel that includes the hydrophobic
sidechains. The pictures were generated with VMD [39].

Potassium channels Potassium channel, or K-channels are present in nearly

all cells [1], and play a key role in stabilizing the membrane potential in excitable
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cells. They are therefore crucial for the electrical functionality of the nervous

system. They are characterized by an extreme selectivity (their permeability

for K+ is thousands of times larger than that of the smaller Na+ ions), and by a

high diffusivity (comparable to bulk water). The molecular structure of several

K-channels has been disclosed by means of X-ray spectroscopy. In particular,

a 3.2 Å resolution mapping of the pH-dependent bacterial KcsA channel was

performed by Doyle et al. [40], and a higher resolution (2.0 Å) structure has

been subsequently disclosed by the same group [41]. The structure of the ligand-

gated MthK channel, which opens in response to intracellular Ca2+ [42] has also

been determined, and the structure of the voltage-gated [43] KvAP channel has

been published recently [44]. Together with accurate structural data, several

hypotheses about the functionality of these ion channels have been formulated.

The three K-channels listed above are tetrameric assemblies with sub-units

sharing the same signature amino acid sequence TXGYGD of the selectivity

filter. Also common is the topology of the ionic permeation channel, composed

of two transmembrane helices (inner and outer helix) per sub-unit. The two

transmembrane helices are joined by a pore sequence constructed with a shorter

pore helix plus the selectivity filter segment.

The KcsA channel is characterized by this simple two transmembrane ar-

chitecture (see [40], and the left side of Fig. 2), and its activation has been

attributed to pH-dependent translations and rotations of the two transmem-

brane helices [45]. Because of its relative simplicity, KcsA has been simulated

extensively with a variety of approaches, and, like gA, it too can be considered

a benchmark system for simulation codes [38].

The MthK channel has an additional large gating ring below the membrane-

spanning pore (right side of Fig. 2, the gating ring is not included). The

gating ring is responsible for converting the free energy of intracellular Ca2+

into mechanical work that pulls apart the helices of the transmembrane pore

and opens it to allow potassium permeation [42]. Finally, the sequence of the

voltage-dependent KvAP channel shows six transmembrane helices: the same

two hydrophobic segments of KcsA and MthK (segments S5 and S6) and four
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Figure 2: Two sub-units of the KcsA (left) and MthK (right) potassium channels
embedded in an explicit POPC lipid bilayer. The atoms lining the selectivity
filter are represented as spheres to show the individual “cages” which represent
the binding sites of K+ ions. The KcsA and MthK structures are obtained from
the protein database codes 1bl8.pdb [40] and 1lnq.pdb [42], respectively

additional helices (S1-S4) that constitute the voltage-activated gate. A section

of S3 (S3b) and S4 define a mobile “voltage-sensor paddle” [44]. Recent exper-

iments [46] suggested that, due to the presence of charged amino acids in S4,

the channel undergoes a dramatic conformational change in the presence of an

adequate transmembrane voltage: the “paddle” rotates more or less rigidly and

crosses most of the lipid membrane pulling open the pore made by the helices

S5 and S6. This interpretation of the gating mechanism of MthK is currently

under intense investigation (see for example [47]).

The permeation path of K-channels shows a very irregular (but highly func-

tional) profile [38]: a hydrated ion moves (outward) initially through the in-

tracellular gate made by the tips of the inner helices, enters a large central

cavity (that probably favors monovalent cations over intracellular polyvalent

cations [48]) filled with tens of water molecules, and then crosses the extremely

narrow (angstrom size) selectivity filter where its solvation is at least partially

due to carbonyl oxygen atoms rather than water [41]. A potassium ion therefore

changes its hydration configuration during the journey, and travels an electro-
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statically irregular pathway to exit the cell. K-channels are engineered in such

a way that this process is extremely fast and highly K-selective.

Porins Porins are the first channels for which an atomic crystal structure was

available [1]. These proteins function as ion channels with high conductivity

and relatively low selectivity [38]. Because of the availability of experimental

data [49], porins have been used extensively to build and test simulation meth-

ods for ion channels. Many mutants of the bacterial trimer OmpF have been

synthesized and modeled [50]. The permeation process has been simulated with

different molecular dynamics approaches [51, 52]. OmpF is a relatively large

polypeptide made of three monomers composed of 340 amino acid each. The

monomer is a hollow β-barrel structure formed by 16 antiparallel β-strands.

The structure has eight loops (L1-L8) that form the water-filled pore. Loop

L3 folds inside the barrel and generates a structural constriction that reduces

the lumen of the pore to a diameter of approximately 6 Å. A top view of the

three monomers of OmpF (protein database code 2omf.pdb [53]) is shown in

Fig. 3 (right), where the L3 loops are represented by the large shaded cylinders.

The OmpF crystal structure embedded in an explicit lipid membrane is also

shown on the left side of Fig. 3. The charge distribution in the proximity of the

constriction and all over the length of the pore, plays a crucial role in the per-

meation properties of OmpF. Furthermore, the close proximity of negative and

positive charges within the constriction zone generates an intense electric field

that interacts with ions and determines the channel conductivity. The ionization

state of the residues in the pore changes with the pH of the solution, suggesting

that OmpF may function as a pH-gated channel in some conditions. The role

of the conformational changes due to molecular flexibility (particularly for the

L3 loop) is still an open question for the understanding of the functionality of

OmpF.

The electrical properties of OmpF have been measured for long times, both

with patch-clamp techniques and on planar lipid membranes [49]. A high-

resolution electrostatic mapping of the trimer was obtained with atomic probe
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microscopy [54], while a systematic electrostatic modeling of the pore lumen

has been performed by two groups [51, 50] who did not limit their study to the

wild protein, but comparatively analyzed several mutants. The electrostatic

landscape of OmpF is a typical example of how the balance between strong in-

teractions finely tunes the properties of a channel. Ionic trajectories have been

simulated both with Brownian and molecular dynamics simulation codes [52],

and the role of ion-ion interaction within the pore has been stressed as being

important.

Figure 3: The OmpF porin channel (left) embedded in an explicit POPC mem-
brane, and (right) the corresponding top view of the OmpF. The L3 loop
in the constriction zone of the three monomers is represented by the large
shaded cylinder. The structure has been obtained from the protein database
(2ompf.pdb) [53] and the plot has been rendered with VMD [39].

1.1.2 The Membrane

The cell membrane is made of amphipathic molecules consisting of one polar,

hydrophilic head and one (or two) nonpolar, hydrophobic tails [55]. In an aque-

ous environment the lipid molecules spontaneously aggregate into conformations

that minimize the interaction between water molecules and the hydrophobic tails

of the lipids. One configuration that is energetically favorable is that where the

lipid bilayer [56], composed of two parallel sheets of lipid molecules, is oriented

in such a way that the molecular heads are in contact with the aqueous solution

and the tails are inside the membrane thickness. Under conditions of normal
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cell function, the lipid is an extremely stable two-dimensional structure that

rapidly reassembles itself if disturbed or broken.

The three main classes of lipids present in cell membranes are phospho-

lipids, glycolipids and cholesterol [57]. Phospholipids are the most abundant of

the biological membrane lipids and are assembled from fatty acids, alcohol and

phosphate. The hydrophilic head is composed of an alcohol (such as choline)

joined through a phosphate to either glycerol or sphingosine. Fatty acid hy-

drocarbon chains are attached to the lipid molecule through the glycerol or

sphingosine and constitute the hydrophobic tails. The phospholipids based on

glycerol are called phosphoglycerides while those based on sphingosine are called

sphingolipids. The phosphatidylcholine (POPC) molecule, shown in Fig. 4 is

the most common phosphoglyceride in biological cells [57], and is characterized

by a choline molecule attached to the phosphate at the hydrophilic head. Addi-

tionally, one of the hydrocarbon tails is fully saturated while the other contains

several unsaturated bonds, creating the tail kinks shown in Fig. 4. The fluidity,

or lateral diffusion of lipid molecules within the bilayer, depends on the length

and saturation of the hydrocarbon tails. A cross section of a lipid bilayer formed

with POPC molecules is shown in Fig. 5. Long hydrocarbon chains increase the

“drag” on a lipid while unsaturated bonds improve the lipid mobility due to

the reduction of the overall packing density. The phospholipid sphingomyelin

is distinguished from POPC by a long hydrocarbon chain of sphingosine which

substitutes for one of the fatty acids in the hydrophobic tails.

The second class of lipids are glycolipids. They are structurally similar to

sphingomyelin except they contain sugar residues, such as glucose or galactose,

instead of the phosphate-alcohol group in the hydrophilic head. The sugar

residues in glycolipids are always oriented on the extracellular side of the mem-

brane and form part of the carbohydrate coating that surrounds most animal

cells.

Cholesterol is a steroid that has a different structure than either phospho-

lipids or glycolipids. The body is constructed primarily of four hydrocarbon

rings. The polar head is formed by a hydroxyl group attached at one end while
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Figure 4: The head group of the lipid molecule phosphatidylcholin is composed
by a choline, a phosphate and a glycerol, while the hydrophobic tails are formed
from two fatty acid chains. The atomic coordinates of the lipid molecule are
from the work of Tieleman et al. [58], and the plot is rendered with VMD [39].

a long saturated hydorphobic hydrocarbon tail is attached to the other end of

the ring system. The steroid rings form a rigid planar structure that reduces the

fluidity of the plasma membrane. In animal cells, cholesterol molecules are lo-

cated between the phospholipids, filling the spaces from the kinked unsaturated

bonds of the hydrocarbon tails thus making the lipid more rigid.

The precise composition of the lipid membrane in biological cells is inher-

ently complex, and varies depending on both the species and type of cell. In

addition, the local distribution of the lipid molecules within a single bilayer

can be highly disordered, and, the two corresponding monolayers are gener-

ally asymmetric [55]. The inclusion of transmembrane structures, such as ion

channel proteins and polymers, further complicates the picture. The extremely

heterogeneous nature of the bilayer combined with the flexibility and polariz-

ability of the lipid molecules makes the study of membranes in real biological

systems a formidable task, both from the experimental and the computational

viewpoint.
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Figure 5: Cross section of a membrane composed of phosphatydylcholine
molecules. The graphic rendering has been obtained with VMD [39].

Because of the fluctuations of the flexible biological membranes, the struc-

tural characterization of lipid bilayers is an arduous task when atomic details

are sought [59]. Indeed, structural information about the membrane thicknesses,

such as the hydrophobic thickness and head group separation, as well as the lipid

density, are very difficult to quantify. This results in a large uncertainty in the

experimentally determined structural parameters of lipid bilayers found in the

literature. For example, values of the average area per phospholipid molecule

measured in a single lipid system can vary by nearly 30 Å2 [59].

The simulation of lipid bilayers provides a method for probing microscopic

details of the lipid system, and relates those details to the macroscopic behav-

ior observed experimentally [56, 60]. The molecular dynamics approach is the

most popular choice for membrane simulation, because it provides information

about the spatial and temporal evolution of both single species phospholipid

membranes [61, 62], and multi-lipid systems [63, 64, 65]. For example, molecu-

lar dynamics allowed for the characterization of phospholipid bilayers in terms

of their interaction with water, and revealed that the orientation of the water

molecules compensated for the fluctuations in the lipid head group, resulting in

an almost constant membrane dipole potential [61, 66].
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Although molecular dynamics is arguably the most accurate simulation tech-

nique, the characteristic relaxation times of the lipid system are generally orders

of magnitude larger than the time that is needed to obtain statistically signifi-

cant results [67, 62]. Also, the space scale over which the lipids self-organize can

exceed the size of the computational domain that can be realistically simulated

with extant molecular dynamics techniques.

1.1.3 The Aqueous Environment

Aqueous solutions under biologically relevant conditions are composed primar-

ily of water molecules; water therefore plays a primary role in many chemical

and physical processes [68]. Water is a highly polar molecule due to its bent

configuration. A spatial separation exists between the internal positive and

negative charges in the electrically neutral molecule, giving rise to a strong,

permanent electric polarization field [69]. Furthermore, the separation between

internal charges makes it possible for the oxygen atom of one water molecule

to bond electrostatically to the hydrogen atoms in neighboring molecules. This

hydrogen bonding facilitates the formation of relatively large domains of wa-

ter molecules into lattice-type structures [69] analogous to crystalline ice. This

cluster configuration of liquid water is not static and domains are continually

formed and disassociated.

Ions in aqueous solution alter the structure of water in such a way that

the water molecules will orient themselves around the charged ions with the

appropriate polar side of the water pointing toward the ion, and creating one or

more hydration shells. The water in the hydration shell now behaves differently

than the bulk water in the sense that its dynamics is correlated with the ionic

motion.

Aqueous solutions confined in regions of molecular dimensions, such as the

narrow pores of ion channels, exhibit different properties than bulk ionic solu-

tions, and one way to characterize the microscopic properties of ion channels

is to identify these differences [38]. Confinement in small regions restricts the
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translational and rotational motion of the water molecules, and creates a greater

degree of order. Simulations revealed a consequently strong decrease of the dif-

fusion coefficient in small water-filled cavities. In addition to the effects of the

physical confinement, a significant electrostatic interaction is also present be-

tween the water molecules and the cavity walls. In the case of porin channels,

for example, the internal transverse electric field is so high that the cavity re-

gion is no longer a linear dielectric medium. [38]. Polar groups in the pore lining

interact with the water molecules in the hydration shell of ions as they traverse

the pore, and this interaction may play a direct role in the selectivity properties

of protein channels [38, 70].

Although not rigorously correct, the approximation of water as a struc-

tureless homogeneous continuum dielectric medium is used by many simulative

methodologies. Both Brownian dynamics (see the section entitled Implicit Sol-

vation: Brownian Dynamics) and electrodiffusive approaches (see the section

on Flux-Based Simulation) include the water in the electrostatic picture as a

continuous dielectric background with polarizability appropriately tuned inside

the channel pore. These “implicit water” models are able to reproduce activity

coefficients for a variety of bulk systems [71, 72, 73] as well as the conductivity

behavior of ions through channels [22]. Obviously, care must be taken when

applying these techniques to model ion transport in channels where individual

water molecules play a crucial role [23], such as within the extremely narrow

selectivity filter of potassium channels.

1.1.4 Representing the Full System

The definition of the system to be simulated, as well as the choice of the de-

tails in its representation, are crucial for the simulation of ionic transport in

protein channel systems. Several components, including the channel itself, can

be represented implicitly, that is through some macroscopic properties repre-

sentative of their effects on the simulative landscape, or explicitly, that is with

a microscopic, atomic-scale, resolution that is governed by fundamental laws.
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The model used for the computational representation depends on the specific

questions to be addressed [74].

For instance, an implicit membrane model greatly reduces the computational

burden, and is appropriate in many cases because the lipid-protein interaction

is often only important for protein stability and insertion [75]. In addition,

the time scale of the charge transport process across the membrane is usually

much longer than the time scale of the lipid fluctuations, so the motion of the

charge is influenced primarily by the membrane through its dielectric rather than

dynamics properties. Within the implicit bilayer representation, the membrane

is treated as an impermeable slab of either a homogeneous dielectric material,

or as a slab with a low dielectric constant in the region of the nonpolar tails

and a higher effective dielectric constant in the region where the charged head

groups of the lipids reside [76, 53].

When the interaction between membrane and protein channels becomes sig-

nificant at the atomic level, an explicit representation of the molecules forming

the lipid bilayer and protein channels must be built and modeled in such a way

that the mechanical, chemical, and electrostatic properties of the system are

modeled with appropriate detail. Two basics techniques generally have been

used to build a channel/membrane system with atomic resolution. One ap-

proach consists of seeding the bilayer by placing individual pre-equilibrated lipid

molecules in appropriately chosen locations around the protein structure [77, 52];

the membrane is then grown by attaching other lipid molecules to those previ-

ously connected to the channel. The second technique consists of generating a

protein-shaped cavity in the center of a previously equilibrated lipid bilayer and

inserting the transmembrane protein channel into the cavity.

In both approaches a series of equilibration steps based on energy minimiza-

tion [78] is used to obtain the final configuration of the lipid/protein system. In

the latter case, the process does not affect the initial lipid configuration signifi-

cantly outside the cavity region, and the final configuration of the lipid/protein

system will be very close to the equilibrium structure, thus making it an attrac-

tive computational choice.
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Several methods to generate a cavity in a lipid bilayer exist. The simplest

approach is to remove a cylindrical section of lipid molecules [79] and insert the

protein channel into that void. Because lipids are removed in molecular units,

the boundary region between the lipid tails and the cylindrical hole tends to be

rough. Therefore, many equilibration steps may be required after the protein is

inserted, resulting in an unacceptably slow convergence, or in a possibly wrong,

unstable, or metastable configuration. An improved approach consists of using

a weak cylindrical repulsive force [80] to slowly create the cavity, rather than

removing the lipids located inside the region of the cavity. This approach has

the benefit of creating a smoother surface at the boundary of the lipid/protein

interface. However, the techniques based on approximating the protein molec-

ular surface with a cylinder can result in a difficult equilibration process when

non-cylindrical proteins are inserted into the cavity. To address this problem, an

arbitrary shaped cavity is obtained by superimposing an atom-size three dimen-

sional grid over the system built by imposing the protein on the lipid patch [79].

All lipid molecules that intersect grid cells containing protein atoms are then

removed. Energy minimization steps are then used to further refine the position

of the lipids’ atoms. Alternatively, a smooth membrane/protein interface with

arbitrary geometry can be obtained by applying a weak radial force to create

the cavity. In this case, the van der Waals surface [81] of the protein is generated

and superimposed on a preequilibrated lipid patch [82]. The lipid atoms inside

the van der Waals surface experience an outward radial force, that pushes them

out of the cavity. This process is repeated until the hole exactly matches the

outer van der Waals surface of the protein.

1.2 Time and Space Scale

After choosing an adequate model for each different component of the system

and integrating them into a final atomistic model that will be simulated, an

important issue is the selection of a discretization scheme to implement the

computer representation of the ion channel and its environment. Within the

18



framework of a computer experiment [83], the adjective realistic is strictly re-

lated to the phenomena one wants to study, and to the resolution required to

reproduce those phenomena. The basic idea for modeling many-body systems

is to build a set of rules that apply to each component and let the system evolve

dynamically. Ensemble and time averages are then computed to obtain observ-

ables that are compared with experiment to validate the model. A characteristic

of ion channel systems is that the measurable quantities of direct biological inter-

est evolve in times up to 12 orders of magnitude larger than the smallest atomic

or molecular relaxation times (milliseconds versus femtoseconds). In compar-

ison, solid state many-body systems collectively relax in a faster fashion, and

the difference between the microscopic (simulated) and macroscopic (measured)

dynamics is four or five order of magnitudes. Extremely slow events, such as

charge carrier recombination in semiconductor crystals, also exist in solid state

systems, but they can be accounted for in a relatively easy way.

The atomistic representation of a fully hydrated membrane/channel system

requires an extremely large number of atoms distributed irregularly on a large

computational domain. As an example, consider a K-channel embedded in a

POPC membrane as depicted in Fig. 2. The diameter of the selectivity filter in

the protein is a few angstroms, and the ionic transit inside the channel occurs

in about a microsecond. The selectivity itself is a process that depends on

the electrodynamic reaction of the atoms forming the selectivity filter to the

electrical and polarization fields due to ions and water inside the filter itself.

Given the extremely small distances between the charged components of the

system, one expects an extremely rapid relaxation (about ten femtoseconds) that

changes the dielectric environment inside the filter. So one needs to simulate

the system for a few nanoseconds with a resolution of a few femtoseconds in

order to observe the transit of one individual ion across the entire structure.

Analogously, the channel functionality depends on structural characteristics

that extend over a large distance. The interaction of the channel with the mem-

brane is sometimes crucial, both from the structural and electrostatic viewpoint.

Furthermore, the structural changes involved in gating are the result of, or are
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involved directly in, the interaction of the outer protein segments with the mem-

brane. All these facts necessitate the representation of a relatively large system

that has to be resolved with angstrom-size accuracy.

Because of the problems related to simulating a large system for a long

time with an extremely high resolution, a crucial issue is related to the number

of atoms or groups of atoms needed to represent such a system. Indeed, if

a brute-force atom-based method is used, the number of individual particles

to be simulated is extremely large. In principle, the atomistic representation

of a whole protein and of a sufficiently large patch of membrane requires the

modeling of at least tens of thousands of particles subjected to a constrained

non-local dynamics. Solvation effects must also be accounted for to correctly

model both the ion dynamics and the structural properties of the whole system.

Biological solutions are typically 0.2 Molar salt but approximatively 55 Molar

water. This implies the need for a water model and, consequently, the dramatic

increase of the size of the system being simulated.

1.3 Experiments

As previously mentioned, a decisive contribution to the understanding of ion

channels has been supplied from experiments. The electrical activity of individ-

ual channels is measured both in vivo and in vitro under various conditions [3].

While the description of experimental setup for channels recording is beyond the

scope of this chapter, an important aspect concerning the relevance of the exper-

iments done on channels and their connection with computer modeling should

be stressed. Current experiments are not limited to a “simple” observation and

characterization of natural channels, but allow for the study of man-made, de-

signed proteins. This capability of building mutant channels by substituting

amino acids into the sequence of the natural (or wild) proteins is important for

the functional characterization of ion channels, and for the realization of novel

macromolecules with specific tunable properties. The need for a strict integra-

tion of computational structural chemistry with protein engineering is clear, as
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well as the need for efficient and reliable computational tools that can direct

the experimental work and, at the same time, be validated by it.

2 Electrostatics

The channel-membrane-solution system is characterized by an inhomogeneous

charge distribution that conditionally allows mobile ions to cross the strong di-

electric barrier [84] imposed by the membrane. Therefore, an accurate represen-

tation of the electrostatic forces acting on each component is needed understand

the influence of the system’s structural properties on its function.

The force fields used by scientists for simulations have been developed with

distinct traditions, each appropriate for its own use. In computational chemistry,

interest has been in bulk properties of solutions and proteins, in the thermody-

namic limit in which boundary conditions do not appear explicitly and where

equilibrium (i.e., zero flux of all species) is present. The thermodynamic limit

of computational chemistry implies a spatial uniformity of bulk properties that

can be analyzed with periodic boundary conditions [85] if the period is longer

than the spatial inhomogeneities of the bulk solution [86].

Contrarily, in computational electronics, the interest has focused on electron

devices, which exchange charge with their environment through geometrically

and electrically complex boundaries and where internal dielectric discontinuities

exist. Simulations are usually performed by varying the applied bias in order

to reproduce transient nonequilibrium conditions and to obtain a record of the

response of the simulated devices.

Given the substantial differences between the systems being simulated, the

force-fields traditionally used by researchers in computational electronics and in

chemistry are necessarily different. In particular, short-range coulombic inter-

actions are either neglected in electron device simulations, or they are treated

with a stochastic approach [87] rather than deterministically. The same consid-

erations apply for finite size effects.

In the highly inhomogeneous charge distribution of ion channel systems
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makes them closer to electron devices than to bulk homogeneous systems. This

analogy encouraged us to develop the discussion in this tutorial from the view-

points of both computational electronics and chemistry. The idea here is not to

compare the two traditions of computational science, but instead to approach

the modeling problem with an interdisciplinary attitude.

Given the complex dynamic properties of the ion channel system, many stud-

ies have been performed to examine whether or not any reduced representation

could be used to account for some key properties. These attempts have been per-

formed both by theoreticians and experimentalists by simulating and measuring

properties of simplified systems. From the modeling viewpoint, the evolution

of the work of Jordan [88, 89, 90, 91], among others, shows how experimentally

obtained structural information has been included into an increasingly complex

electrostatic picture as that data became available. Also, the importance of the

charge distribution within protein channels is highlighted by the recent work

of Varma and Jakobsson [50], who conducted a systematic study of the ion-

ization states within the lumen of a large porin in order to assess the charge

assignment protocols used in the simulation code. Due to the small dimension

of ion channels, charges of ions and protein residues are concentrated in small

areas. The effects of this “crowded charge” configuration generate extremely

localized electric fields that have a significant effect on the polarization state of

the system, and perhaps on the molecular structure of the ion channel itself.

An example of the effects of closely packed ions in a small region representing a

calcium channel can be found in the work of Nonner et al. [92, 93] and validated

by the equilibrium Monte Carlo simulations of Boda et al. [94, 95, 96].

An adequate treatment of the electrostatic properties of the systems of in-

terest is crucial for the understanding of the dynamic properties of ion channels.

We now consider the most common methodologies used to implement accurate

and efficient electrostatic force-field schemes.

Three efficient approaches for electrostatic modeling of inhomogeneous sys-

tems are the Fast Multipole Method (FMM) [97, 98, 99] the Ewald summa-

tion method [100], and the Particle-Particle–Particle-Mesh (P 3M) method [83].
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Conceptually, these three approaches are very similar [101] because they all

consist of writing the total force acting on a charged particle i as the sum of a

long-range and a short-range component:

�Fi = �F lri + �F sri [1]

The difference between the three methods is primarily in the calculation of the

long-range force �F lri . The FMM utilizes a multipole expansion to calculate the

long-range force from particles that are far from particle i, while the short-range

force is computed through the direct summation of the Coulomb force from par-

ticles omitted from the long-range calculation. Within the Ewald method, both

the short-range and long-range components are calculated exactly from analytic

expressions, where the short-range component is calculated in real space and the

long-range contribution is calculated in reciprocal space. The P 3M formalism

accounts for the short-range interactions by directly summing the coulombic

particle-particle force in a small volume, while the long-range interaction is de-

termined using the numerical solution of Poisson’s equation on a discrete grid

over the whole computational domain. Within both the Ewald and P 3M ap-

proaches, an overlap between the long-range and short-range domain exists and

must be accounted for. This is discussed further in the section ”Short-Range

Interactions”.

It is worth mentioning that in the original work of Hockney and East-

wood [83] on the P 3M approach, the solution of Poisson’s equation is calculated

in the reciprocal space with Green’s functions. In this chapter, an iterative

method to calculate the solution of Poisson’s equation in real space is discussed.

This approach is not commonly adopted for the particle-based simulation of liq-

uid systems. The rather laborious implementation of robust three-dimensional

Poisson solvers is probably one of the reasons for the lack of popularity of this

approach, that we advocate nevertheless. For this reason, a section of this tu-

torial is devoted to the discussion of fast iterative methods for the solution of

Poisson’s equation in position space.
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A detailed description of the components of the force �Fi in Eq. 1 is given in

the following sections, for the three different approaches.

2.1 Long-Range Interaction

This section is devoted to a discussion of the implementation of the long-range

component within the FMM, Ewald summation and P 3M methods.

2.1.1 Multipole Expansion

The FMM [97, 98, 99] is based on a multipole series expansion of the long-

range potential. The algorithm performance scales linearly with the number of

particles [97], making FMM one of the most efficient approaches available for

large systems.

As in the P 3M and Ewald summation methods, within the multipole method

formalism the force is separated into a long- and short-range interaction, and the

short-range component is resolved through a direct summation over the particle-

particle interaction. The long-range component of the force on a generic particle

i is computed as

�F lri = −qi�∇Φlr(�ri) [2]

where the long-range potential Φlr(�ri) is computed by a pairwise summation of

the charged particles excluded from the direct short-range calculation.

Given a set of point charges {j}, located inside a sphere of radius R centered

about some origin, the long-range Coulomb potential at position �ri located

outside the sphere (i.e. |�ri| > R) can be written in spherical coordinates as,

Φlr(�ri) =
1

4πε0ε

lmax∑
l=0

l∑
m=−l

1
2l + 1

Mlm

rl+1
i

Ylm(θi, φi) [3]

where the moments of the expansion are given by
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Mlm =
∑
j

qjr
l
jY

∗
lm(θj , φj) [4]

and Ylm and Y ∗
lm are spherical harmonics [102]. A cutoff distance lmax has been

introduced in Eq. 3 resulting in an error of order O(r/R)lmax+1 [97]. Although

the multipole expansion is generally written in spherical coordinates, Cartesian

coordinates have also been used for the computation of the potential energy

function [103, 104]. The representation in spherical coordinates is argued to

produce a more efficient implementation than the Cartesian representation [105,

106].

Within the “cellular” version of the multipole method, the computational

domain is discretized into a set of rectangular grid cells and the moments of the

multipole expansion are computed and stored at each cell. The multipole expan-

sion is only valid for particles that are separated by at least one grid cell [103],

therefore the long-range part of the potential at a position �ri is calculated by

summing the contributions from all the non-neighboring cells. An improvement

of this approach is to use a hierarchy of grids with different cell sizes [107] that

allows for the consolidation of cells into progressively larger groups as the dis-

tance between the position �ri and the cells increase. This coarsening scheme

allows for the reduction of the total number of distant cells used in the cal-

culation, and is based on the assumption that the distant charge distribution

interacts less intensely than the close one [105]. The accuracy of the calcula-

tion remains constant if the ratio between the cell size and the distance is kept

constant [106].

The FMM typically makes use of a local Taylor expansion to further improve

the algorithmic efficiency [97]. The difference between the multipole expansion

calculated in two different points laying in the same grid cell is assumed to be

very small, thus justifying the use of a Taylor series expansion of the potential

about the center of the grid cell. The coefficients of the Taylor expansion for

each grid cell are calculated once and then evaluated for the position of each

individual particle within a given grid cell.

25



The treatment of boundary conditions can be incorporated in the FMM

scheme easily. Periodic boundary conditions as well as Dirichlet, Neumann and

mixed conditions [98] can be accounted for. The FMM approach has been shown

to be more efficient than the Ewald summation method (see the next section)

but it results in code that is only faster than P 3M methods for nonphysically

high numbers of particles [108]. Finally, it is worth noting that the FMM is

applicable to all problems involving an r−n pairwise potential [98].

2.1.2 Ewald Summation

The Ewald summation method was originally developed as an efficient way to

calculate the long-range interactions in ionic crystals [100], and has become one

of the most commonly used methods for modeling electrostatic properties in

periodic structures [109], particularly for molecular dynamics simulations [110].

The electrostatic potential energy in a charged system can be written as

the summation of all the pairwise coulombic interactions between charges. In

a periodic array, this also includes the interaction with the infinite number of

replica charges generated by the periodic repetition of the simulated system.

The series of coulombic terms converges very slowly and the solution depends

on the order of the summation, i.e. the series is conditionally convergent.

The Ewald formalism is based on a decomposition of the conditionally con-

vergent series into two sums that individually have superior convergence prop-

erties. The method involves the addition of an appropriately shaped charge

distribution to each charged particle having the same magnitude as the particle

but of opposite sign. This charge distribution effectively screens the interactions

with neighboring charges, resulting in a series that is limited to a short-range

domain which in turn makes the resulting summation converge rapidly. To

counteract the effects of the artificial charge distribution, a second charge dis-

tribution with the same magnitude and same sign as the original point charge is

also included for each point charge. If this new charge distribution is smooth, the

second summation that accounts for it can be Fourier-transformed and solved
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efficiently in reciprocal space. From the physical viewpoint, this second summa-

tion recovers the long-range interactions that were screened out by introducing

the first artificial charge distribution. The two series can then be combined to

recover the potential energy due to the original point charges.

The traditional Ewald summation approach is generally presented in terms of

the potential energy of the system. However, the force acting on a given particle

is the quantity used by computational approaches, such as molecular dynamics

and Brownian dynamics. Therefore, the derivation of the forces (instead of the

potential energies) is required and how these forces are determined is described

below.

The exact representation of the long-range component of the force is calcu-

lated in the reciprocal space using the Fourier transform. In three-dimensions

the Fourier transform pairs are given by

f(�r) = V −1
∑

k

f̃(�k)ei
k·
r [5]

and

f̃(�k) =
∫
V

f(�r)e−i
k·
rd�r [6]

where V = Lx×Ly×Lz is the three-dimensional unit cell in real space, and the

components of the vector �k in the reciprocal space are restricted to the values

kx = 2πl
Lx

, ky = 2πm
Ly

, and kz = 2πn
Lz

, where l, m and n are integers.

The force acting on a charge distribution i can be written as

�F lri = −
∫

qiS(|�r − �ri|)�∇Φ(�r)d�r [7]

where �ri is the position of the center of the distribution and S is the shape of the

distribution [102]. This integral representation is defined over one real space unit

cell and an extra sum is made over each additional structure to include multiple

periodic cells. Within the Ewald approach, the added charge distribution is

generally (but not always) modeled with a Gaussian function [108]:
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S(r) =
(
α2

π

)3/2

e−α
2r2 [8]

where α determines the width of the charge distribution, and the Fourier trans-

form of the Gaussian charge distribution is

S(|�k − �kj |) = α2V√
8π

ei
k·
rje−k
2/4α2

[9]

The use of a Gaussian distribution is not required, and other functions have

been used in the Ewald summation method [111]. For the sake of simplicity, the

following derivation is limited to the use of Eq. 8.

The potential can be written in terms of the charge distribution by first

applying the Fourier transform to Poisson’s equation:

k2Φ̃(�k) = − ρ̃(�k)
εε0

[10]

where the total charge density is given by all the remaining charges in the series:

ρ̃(�k) =
∑
j �=i

qjS̃(|�k − �kj |) [11]

The potential in real space is then written as,

Φ(�r) = − 1
V εε0

∑

k �=0

ρ̃(�k)
k2

ei
k·
r [12]

= − 1
V εε0

∑

k �=0

∑
j �=i

qj
k2

S̃(|�k − �kj |)ei
k·
r [13]

By substituting the equations for the potential into Eq. 7 and integrating over

�r one has

�F lri =
qi

εε0V

∑
j �=i

qj
∑

k �=0

i�k

k2
S(| − �k − �ki|)S(|�k − �kj |) [14]

the real part of which gives the final expression for the long-range component
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of the force:

�F lri =
4πqi
εε0V

∑
j �=i

qj
∑

k �=0

�k

k2
e−k

2/4α2
sin(�k · �rij) [15]

where �rij = �ri − �rj .

The conventional Ewald summation method works well for simulations of

small periodic systems, but the computation can become prohibitively expen-

sive [112] when large systems are involved, in which the particle number exceeds

104 . Several numerical techniques have been used to enhance the performance

of the traditional Ewald method with mixed results. For example, look-up ta-

bles and polynomial approximations [101] have been suggested. The algorithmic

performance can also be optimized through the parameter α [113, 114], which

determines both the extension of the short-range interaction and the allowable

cutoff of the summation over the reciprocal space vectors [108]. Calculating the

reciprocal sum is often the most efficient component of the algorithm and α

can be chosen to minimize the portion of the summation performed over real

space [113, 115]. Once the optimal value of α is determined, the performance of

the approach can be significantly improved by implementing fast Fourier trans-

form (FFT) algorithms to solve the summation in reciprocal space. The version

of the Ewald summation based on these procedures is called the particle-mesh

Ewald (PME) method [112, 116]. The reciprocal sum is then defined on a dis-

cretization grid by using a piecewise interpolation scheme to assign the charge

density to grid-points used to evaluate the force (or potential) with FFT.

2.1.3 Poisson Solver in Real Space

Another possible approach for the computation of the long range force �F lri con-

sists of assigning the charge density to the points of a generally inhomogeneous

finite-difference grid, solving Poisson’s equation [102], and differentiating the

potential:

�F lr(�rp) = −q�∇Φ(�rp) [16]
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where �F lr(�rp) and Φ(�rp) represent the force and the electrostatic potential,

respectively, at the grid point p located at �rp. This component of the force also

accounts for external boundary conditions, dielectric discontinuities, and fixed

charges. The force �F lri on the ion i at the specific position �ri is then computed

by an appropriate interpolation scheme.

To solve Poisson’s equation on a grid, a charge assignment scheme must

be devised that builds a charge distribution from the ionic coordinates. Fur-

thermore, once the electrostatic field has been computed on the grid (from the

solution of Poisson’s equation) the force must be interpolated back to each ion

location in a way that is consistent with the original charge assignment scheme.

In other words, a geometric shape is assigned to each ionic charge though a

space-dependent weighting function W (�r) [83], and the geometrical relation be-

tween the charge shape and the discretization grid is accounted for in all the

transformations used to transfer quantities (i.e. charge and force) to and from

the mesh centered at �rp.

The generalized algorithm to accomplish this follows the treatment of Hock-

ney [83]:

1. Assign charge:

ρ(�rp) =
1
Vp

Np∑
i

qiW (�ri − �rp) [17]

2. Solve Poisson’s equation:

�∇ · εr �∇Φ(�rp) = −ρ(�rp)
ε0

[18]

3. Calculate electric field:

�E(�rp) = −�∇Φ(�rp) [19]

4. Interpolate force:

�F lri =
Np∑
p

qiW (�ri − �rp) �E(�rp) [20]

where Vp and Np are the volume of the grid and number of particles in the grid,
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respectively. It should be noted that the same function W (�r) must be used both

for the charge assignment and for the force interpolation, because the use of a

mixed scheme can result in a nonphysical self-force of the particle upon itself.

The three most common charge assignment schemes are called the nearest-grid

point (NGP), the cloud-in-cell (CIC) and the triangular-shaped cloud (TSC)

schemes [83], and represent the particle as a point charge, an uniformly charged

sphere, and a sphere with a linearly decreasing density, respectively. The choice

of the weighting function depends on the properties of the system. Once a

shape has been chosen for the charge, the corresponding weighting function is

determined by the following integral:

W (�r − �rp) =
∫
Vp

S(�r′ − �r)d�r′ [21]

where the function S(�r) represents the shape of the charge “cloud” associated

with the particle. In one dimension, the weighting functions computed from

Eq. 21 are given for the three charge shapes by the following relations:

WNGP (x) =



1

∣∣ x
H

∣∣ ≤ 1
2

0 else
[22]

WCIC(x) =



1− ∣∣ x

H

∣∣ ∣∣ x
H

∣∣ ≤ 1

0 else
[23]

WTSC(x) =




3
4 − ∣∣ x

H

∣∣2 ∣∣ x
H

∣∣ ≤ 1
2

1
2

(
3
2 − ∣∣ x

H

∣∣)2 1
2 ≤ ∣∣ x

H

∣∣ ≤ 3
2

0 else

[24]

where H is the mesh size. For the three dimensional case, the weighting function

is obtained as follows:

W (�r) = W (x)W (y)W (z) [25]
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In agreement with the work of Hockney [83], the TSC weighting function is usu-

ally the optimal compromise between accuracy and computational performance

for the systems discussed in this chapter.

Using a Poisson solver for the long-range interaction results in two main

advantages: 1) the possibility to impose boundary conditions through externally

applied potentials, and 2) the ability to simulate systems with arbitrary ionic

concentrations at the boundaries.

2.1.4 Finite Difference Iterative Schemes

A numerical method is said to be direct when it finds a solution within a given

precision, and with a given accuracy, in an initially known number of opera-

tions. The time required to solve a differential equation is then well known a

priori, and it is independent of the initial or boundary conditions of the problem.

Iterative methods, on the other hand, are based on a sequence of approxima-

tions to the required solution, starting from an initial guess that converge to

the solution. The number of operations, and the time required by these latter

methods’ are initially unknown since they depend on the initial guess and may

vary dramatically as a function of the parameters of the problem itself.

The self–consistent nature of the simulation approaches described in this

chapter requires frequent solutions of Poisson’s equation; the sequential po-

tential profiles from one step to the next are very similar to each other since

the changes in the charge distribution between two consecutive solutions are

very small (but very important for the particle dynamics). The current po-

tential profile can thus generally be used as a good initial guess for the next

solution, making iterative methods a natural choice within the framework of

self–consistent simulation programs. In addition, memory issues [117] (other

than pure performance) make the choice of iterative methods appealing in the

field of ion channel simulations.

We now present and discuss the basic steps in standard stationary linear

iterative methods [118] needed to compute the electrical forces. The present
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discussion concentrates on the general representation of the two–dimensional

Poisson’s equation for simplicity,

∇2Φ = f(x, y) [26]

Employing finite differencing on a set of grid points defining the discrete grid

denoted by Ωn, this elliptic differential equation is transformed into an algebraic

matrix equation of the form,

Au = f [27]

where the vector u denotes the solution, the matrix A represents the Laplace

operator, and f is a generic forcing function.

Within the iterative framework, a sequence of approximations v0,v1, ...,vn, ...

to u is constructed that converges to u [118]. Let vi be the approximation to u

after the ith iteration. Because the exact solution u of Eq. 27 is unknown, one

may define the residual,

ri = f −Avi [28]

as a computable measure of the deviation of vi from u. Next, the algebraic

error ei of the approximation vi is defined by,

ei = u− vi [29]

Subtracting Eq. 28 from Eq. 27 and rearranging terms, it is easily shown that

ei obeys the so–called residual equation,

Aei = ri . [30]

Iterative methods can be interpreted as applying a relaxation operator to vi so

as to obtain a better approximation vi+1 by reducing of the error ei related to

vi. In this way, the sequence of approximations v0,v1, ...,vn, ... is “relaxed” to
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the solution u.

The expansion of the matrix equation (Eq. 27) gives the following relation:

uk =

−
n∑

j=1
j �=k

akjuj + bk

akk
, k = 1, 2, ...n ; akk 
= 0 [31]

In Jacobi’s method [119], the sequence v0,v1, ...,vn, ... is then computed by,

v
(i+1)
k =

−
n∑

j=1
j �=k

akjv
(i)
j + bk

akk
, k = 1, 2, ...n ; akk 
= 0 [32]

It should be noted that one does not use the improved values until after a

complete iteration, within this method. In the closely related Gauß–Seidel’s

method [118] the values are used as soon as they are computed. One then has,

v
(i+1)
k =

−
k−1∑
j=1

akjv
(i+1)
j −

n∑
j=k+1

akjv
(i)
j + bk

akk
, k = 1, 2, ...n ; akk 
= 0. [33]

Note that here only one approximation for each vk needs to be stored at a time.

Proofs and discussions about the convergence properties of iterative methods

can be found in Young [118] and Dahlquist and Björck [119].

It is often possible to obtain a substantial improvement of the convergence

rate by a simple modification of the Gauß–Seidel’s method. Note that, following

the definition of the residual given in Eq. 28, Eq. 33 can be written as v
(i+1)
k =

v
(i)
k + r

(i)
k , where r

(i)
k is the current residual of the k-th equation:

r
(i)
k =

−
k−1∑
j=1

akjv
(i+1)
j −

n∑
j=k

akjv
(i)
j + bk

akk
, k = 1, 2, ...n ; akk 
= 0. [34]

The iterative method
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v
(i+1)
k = v

(i)
k + ωr

(i)
k [35]

is then the so–called successive overrelaxation (SOR) method. Here ω, the relax-

ation parameter, should be chosen so that the rate of convergence is maximized.

For ω = 1, the SOR approach reduces to the Gauß–Seidel’s method. The SOR

method has been shown to converge only for 0 < ω < 2 [119].

The rate of convergence of SOR is often higher than when using the Gauß–

Seidel method, and, the additional computational load associated with SOR is

negligible. However, the value of ω depends on the grid spacing, the geometrical

shape of the domain, and the type of boundary conditions imposed on it [120].

Efforts have been undertaken to find an approach that predetermines the op-

timal value of ω as a function of the discretization scheme [121, 122]. Some

improvements in the convergence rate have also been obtained by modifying

the processing order of the grid points [83, 123]. In spite of this, the perfor-

mance of the SOR approach is inadequate for the implementation of real space

Poisson solvers for the simulation of systems discretized on a large number of

grid points such as the ones described in this document.

2.1.5 The multi-grid method

In the previous section we discussed the basic theory of the classical iterative

solution to elliptic problems. The multi-grid method allows for a dramatic

performance improvement of standard iterative approaches such as the SOR

method. The basic principles of its operations are briefly introduced in the

following section.

Error reduction in classical iterative methods Iterative methods for the

solution of large sparse systems of equations have been presented above. These

methods produce, by iteration, a sequence of approximations to the required

solution which converge to the solution itself. This process progressively reduces

the error related to each approximation. A given approximation is then accepted
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as the solution when the deviation from the previous approximation (or some

norm of it) is smaller than a predefined threshold. Therefore, an analysis of the

error expressed in Eq. 30 as a function of the iteration number (or of the required

computer time, since the the number of operations per iteration is constant) can

provide a useful indication of the solver performance.
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Figure 6: Error reduction rate of the successive overrelaxation method. The
smaller slope of the curve for small relative error values indicates the poor
performance of solvers based on this method.

The absolute value of the maximum relative error is plotted versus the CPU

time for a SOR solver in Fig. 6. The slope of the curve gives an indication of the

performance of the solver: the initial error reduction is very fast, as confirmed

by the steep slope of the curve in the upper left corner of the plot. As the error

becomes smaller, the slope is less pronounced, showing a dramatic degradation

of the performance. The values of the error that are usually acceptable in

particle–based simulations lie in this low performance region, i.e. typically in

the range [10−5, 10−7]. The reason for the performance degradation shown in

Fig. 6 can be understood easily through a spectral analysis of the error before

and after a relaxation sweep.

Figure 7 shows, in the upper plots, a schematic representation of the error

before (left) and after (right) a single iteration on a unidimensional domain. In
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before relaxationbefore relaxation after relaxationafter relaxation

Figure 7: Schematic representation of the relative error of an iterative method
after a relaxation sweep. The lower plots show that the low frequency Fourier
component of the error is less reduced than the high frequency one.

the lower plots, the corresponding Fourier components of the error are depicted;

in this simplified picture only two Fourier components are shown. Application

of one relaxation sweep affects only the high frequency component, which is

much more reduced in amplitude than is the low–frequency, long wavelength

component. Thus, the two–slope curve shown in Fig. 6 can be explained as

follows: the relaxation operator of the iterative method is efficient in reducing

only some of the Fourier components of the error. Its error reduction rate slows

down because the remaining components (the ones with long wavelengths) are

not reduced as efficiently. This difference in the error reduction is due to the

grid spacing: those components of the error with a wavelength comparable to

the grid spacing are reduced more efficiently by the relaxation operator.

Multi-grid basics The basic idea of the multi–grid approach is to simultane-

ously employ different length scales to efficiently reduce the error. Specifically,

one solves Eq. 30 exactly on a grid Ωn−1 that is coarser than the initial given

grid Ωn. The resulting value of ei is an approximation that is used to correct

the previous approximation vi that has been determined on the original grid

Ωn,
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vi+1 = vi − ei [36]

The advantage of this approach can be understood by considering the Fourier

expansion of the error ei shown in Fig. 7. The long wavelength components of

ei are only slightly reduced on the fine grid because their spatial extent exceeds

the range of the relaxation operator. The use of a coarser grid renders those

components to have an effectively shorter wavelength and thus making those

long wavelength components “visible” to the relaxation operator. This improves

the convergence of the solver dramatically, as compared to a single–grid based

relaxation scheme, such as the SOR.

The simplest version of the multi–grid algorithm is the so–called two–grid

iteration employing only two grid levels. In the ith iteration, the procedure

starts from the approximation vi of u in Eq. 27 and the following five steps are

performed:

1. Smooth vi on the grid Ωn by applying some suitable relaxation scheme,

called pre–smoothing.

2. Compute the residual according to Eq. 28 and transfer it to the coarser

grid Ωn−1. This step is called restriction.

3. Solve Eq. 30 exactly on the grid Ωn−1.

4. Interpolate the resulting ei to the finer grid Ωn. This step is called pro-

longation. Subsequently, calculate vi+1 from Eq. 36.

5. Smooth vi+1 on the grid Ωn by applying some relaxation method, termed

post–smoothing.

It is possible to extend the two–grid algorithm to a sequence of grids that are

increasingly coarse, since Eq. 30, applied on the grid Ωn−1, has the same form as

Eq. 27 on Ωn. This is achieved by recursively applying the complete algorithm

(step 1 through 5) at step 3. The recursion scheme is stopped when the coarsest

grid Ω0 is reached. At that grid level, Eq. 30 is solved exactly. Since this grid
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usually contains only a few points, this can be done easily. This multi–scale al-

gorithm defines one complete multi–grid iteration (labeled by the superscript i).

The whole procedure is then repeated until the required convergence threshold

is reached.
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Figure 8: Standard multi–grid structure for a V–, W–, and F–cycle. In this fig-
ure, the number of grid levels is four, the circles represent a Smoothing operation
or an Exact solution, the arrows indicate prolongation (upward) and restriction
(downward) operations. Ω0 represents the coarsest, and Ω3 the finest grid.

The above discussion of the multi–grid iteration refers to a cyclic structure

called V–cycle (see Fig. 8). More generally, one may define the multi–grid

iteration as the recursive application of γ two–grid cycles at any grid level,

the V–cycle being characterized by γ = 1. The case γ = 2 is called W–cycle.

It is possible to use any number γ of two–grid cycles at each level, obtaining

better convergence at the cost of increased complexity of the algorithm. A

special cycle, the so–called F–cycle, is also shown in Fig. 8. It is important

because its structure often optimizes the trade–off between pure performance

and complexity. The F–cycle on Ωi is recursively defined as follows [124]: its

coarse grid part consists of an F–cycle on Ωi−1, followed by a V–cycle on Ωi−1.

An F–cycle on the coarsest grid Ω0 is just a V–cycle.

Finally, it should be noted that the multi–grid method can be used as either

an iterative process or as a direct solver (the so–called full multi–grid or nested

iteration method [125]).

Algorithmic details on the multi–grid method can be found in the excel-

lent works of Hackbusch [125] and Brandt [126, 127]. It should be noted that
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the multi–grid approach can be easily applied to adaptive non-tensor-product

grids [126, 127], allowing for variable resolution in regions of the computational

domain where the charge concentration is high. A discretization scheme based

on adaptive grids can result in a further increase in performance when simu-

lating highly inhomogeneous systems such as biological membranes or complex

proteins.
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Figure 9: Comparison of the CPU time required to solve Poisson’s equation
with the multi–grid and SOR method. The computational domain consists of a
65x65x65 homogeneous mesh.

The SOR method for solving Poisson’s equation in ion-channel applications

is not advocated here because of its slower convergence compared to the multi–

grid approach, and, because of its inefficiency for large problems. It is recog-

nized, however, that the extreme simplicity of the SOR algorithm makes it an

attractive choice. A typical SOR solver can be implemented with a few tens of

lines of code, while our 3D multi–grid solver is several thousand lines long.
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2.2 Short-Range Interactions

The short range force is written as three terms,

�F sri = �FCi + �FWi + �Ri [37]

where �FCi is the coulombic force due to all the particles within a predefined

short-range domain, �FWi represents the effects of the van der Waals forces, and,

where �Ri is a “reference force” [83] that corrects the double counting of charges

due to the overlap between the short-range and long-range domains occurring

in both the Ewald and P 3M methods. No overlap exists within the FMM

formalism, so the reference force is null in such a scheme. The forces in Eq. 37

are expressed as follows:

�FCi =
Λi∑
j �=i

qiqj
4πεrε0|�ri − �rj |2 r̂ij [38]

�FWi =




Λi∑
j �=i

24εij
|�ri − �rj |

[
2
(

σij
|�ri − �rj |

)12

−
(

σij
|�ri − �rj |

)6
]
r̂ij Lennard-Jones

Λi∑
j �=i

βij |qiqj |
4πε|�ri − �rj |(p+ 1)

(
si + sj
|�ri − �rj |

)p
r̂ij inverse power

[39]

�Ri = −
Λi∑
j �=i

qiqj
4πεrε0

∫∫
S(�r1)S(�r2 − �rij)

(�r1 − �r2)
|�r1 − �r2|3 d�r1d�r2 [40]

where Λi is the domain of the short-range interaction (see below), εr is the

relative dielectric constant, ε0 is the permittivity of vacuum, q is the charge,

and �rij is the distance between ions.

The van der Waals force �FWi is often modeled with the Lennard-Jones func-

tion or by an inverse power relation [128]. The former is based on the two fitting
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parameters σij and εij , representing respectively the maximum attraction dis-

tance and the strength of the interaction [129]. For ions of different species, the

Lennard-Jones parameters are typically calculated by combining the values of

the individual species [129],

σij =
1
2
(σi + σj), and, εij =

√
εiεj [41]

In the expression of the inverse power law, βij is an adjustable parameter,

si is the radius of the ith particle, and p is a hardness parameter that also

represents the interaction strength. A comparison of the inter-ionic potential

profile for the two different pair potential schemes in an aqueous KCl solution is

shown in Fig. 10. The parameters used for the short range potentials are taken

from Im et al. [130] for the Lennard-Jones function and from Hockney [83] for

the inverse power relation.
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Figure 10: Comparison of short range Lennard-Jones and inverse power poten-
tial for K+ and Cl− in aqueous solution.

The final component of the particle-particle force is the reference force �Ri,

which depends on the shape S of the ionic charge. As previously stated, within

the P 3M approach, the particle-particle portion of the force is calculated for
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ions within the relatively small spherical region Λi. The role of the reference

force is to correct for the overlap between Λi and the entire system over which

the mesh force �F lri is calculated. In other words, the sources of the electrostatic

force acting on a given charged particle are classified as “far sources” (including

boundary conditions) that are accounted for efficiently by the solver for the long-

range interaction, and “close sources” generating forces that are not resolved by

the solver and must be computed by the more CPU expensive particle-particle

scheme. The domain Λi defines the high resolution region around a given ion.

For obvious reasons, the computation of the long range interactions can not be

obtained by subtracting the charges within Λi – this would indeed require a

full solution for each particle at each iteration – so the effect of those sources is

subtracted from the potential distribution after the solution has been obtained.

This correction is accomplished by the reference force.

Clearly, the size of the region Λi should be chosen as small as possible based

on performance considerations. The key aspect that limits the minimum size

of Λi is the size of the ionic charge used for the charge assignment scheme (see

“Poisson Solver in Real Space”). As stated above, the charge distribution is

computed by assigning a “cloud” of charge to each individual ion. The cloud

has a specific geometric shape and a predefined charge density. When calculating

the total force on a given ion i, all the charged particles j 
= i whose charge cloud

is overlapping with that of i are considered “close sources” of the electrostatic

force, and must be included in the domain Λi.

For example, if the chosen ionic electrostatic shape S is a sphere with an

uniformly decreasing charge density, the corresponding weighting scheme is the

TSC [83]:

S(r) =




3
πrc

(rc − r) rc ≤ r

0 else
[42]

where rc is the radius of the spherical charge cloud. In this case, the natural

choice for the minimum cutoff radius that defines the short-range region Λi is
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twice rc. The reference force is then found analytically by substituting the shape

function S(r) into Eq. 40:

R(r) =
qiqj

4πεrε0




4
35r2c

(224ζ − 224ζ3 + 70ζ4 + 48ζ5 − 21ζ6) 0 ≤ ζ ≤ 1

4
35r2c

(12/ζ2 − 224 + 896ζ − 840ζ2 + 224ζ3

+70ζ4 − 48ζ5 − 7ζ6) 1 ≤ ζ ≤ 2

1
r2 else

[43]

where ζ = r/rc. To reduce the computational burden, the reference force is

tabulated as a function of the distance between ion pairs as suggested by Hock-

ney [83] and subsequently by Wordelman [131] during initialization.
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Figure 11: Components of the force inside the short-range domain calculated
between two ions of opposite charge in a 500 mM solution of KCl with no bias.

The components of the force between an anion and a cation inside the short-

range domain (2rc=2 nm) are shown in Fig. 11 as a function of the inter-ionic
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separation. The two ions are placed in a 500 mM KCl solution, with no external

bias. As expected, the reference force and mesh force have the same amplitude,

and therefore will cancel within the short-range domain.

Within the Ewald approach, the charge distribution is defined as a Gaussian

function (see Eq. 8), and the sum of the direct Coulomb force and reference

force can be written as an analytic expression. The final expression for the

short-range interaction is then

�F sri = �FWi +
qi

4πεε0

∑
j �=i

qj

(
erfc[α|�rij |] + 2α√

π
|�rij |e−α2r2ij

)
�rij

|�ri − �rj |3 [44]

2.3 Boundary Conditions

Once the significant components of the system have been chosen, a computa-

tional domain is then defined to enclose them. The geometry of the simulation

box must define a volume that realistically encloses the physics of the system,

with boundary conditions mimicking the effects of the larger, real system being

modeled. Within the ion channel framework, only a small fraction of the cellular

lipid membrane is simulated; thus the dimension of the computational domain

is minimized to reduce the computational burden. Consequently, the boundary

conditions must be chosen carefully so that unwanted computational artifacts

are not introduced into the simulation results.

The most popular, and somehow elegant, choice is to impose periodic bound-

ary conditions on a parallelepiped-shaped domain. This approach is adequate

for simulating bulk systems because it ensures continuity of the ionic flux and

of the force field at the boundaries. It is also compatible with the algorithm

that accounts for long-range electrostatic interactions in the Ewald summation

method. However, the periodic boundary approach also has drawbacks that are

sometimes difficult to address. The main problem involves the charge distribu-

tion within the computational domain. The source of this problem is due to

the highly inhomogeneous ion charge distribution that generates far-reaching
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electric fields. When a periodic boundary “cuts” the field distribution, signif-

icant perturbations are generated in the forces that drive the dynamics of the

system; care must be taken in choosing the size of the periodic box. To validate

the results obtained with periodic boundaries, Yang suggests running the same

simulation on computational domains of different size; that way the presence of

size-dependent artifacts can be deleted and then excluded [132]. Furthermore,

periodic boundaries make it extremely difficult to simulate systems with inho-

mogeneous charge distributions at the boundary, such as those systems with

different dielectric coefficients in different regions or with different solutions on

either side of the membrane. Also, the common experimental practice of apply-

ing external potentials across the solution is difficult to reproduce in a periodic

system.

The use of nonperiodic boundary conditions is also complicated, especially

by the necessity for having a mechanism that effectively and realistically recir-

culates mobile components (ions and sometimes water molecules) that escape

from the computational domain. The injection scheme is trivial in periodic

systems, but is not at all obvious [133] for the nonperiodic systems.

Two main types of electrostatic boundary conditions are used in nonperiodic

systems. The Dirichlet boundary condition fixes the value of the electrostatic

potential, while the Neumann method sets the value of the normal component

of the electric field [83]. One approach employed to regulate the injection of ions

in nonperiodic systems is to use reservoirs of particles and a simple stochastic

boundary that maintains a given concentration value in the entire system [134].

Ions are recycled from one side of the domain to the other whenever there

is an imbalance due to a conduction event. It has been shown that the simple

stochastic boundary method of constant injection gives very similar fluctuations

in the particle number of regions of the computational domain far from the

injecting boundaries [134]. This approach is simple and efficient, but has the

drawback of not being able to handle concentration gradients. Rather than

maintaining the concentration in the entire domain, another approach consists

of simply fixing the concentration in the Dirichlet boundary cells, and injecting
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particles to sustain this concentration. That way, the concentrations at different

boundaries can be different.

A third approach [130] is to inject particles based on a grand canonical

ensemble distribution. At each predetermined molecular dynamics time step the

probability to create or destroy a particle is calculated and a random number

is used to determine whether the update is accepted (the probability for both

the creation and destruction of a particle must be equal to ensure reversibility).

The probability function depends on the excess chemical potential and must

be calculated in a way that is consistent with the microscopic model used to

describe the system. In the work of Roux [130], a primitive water model is used,

and the chemical potential is determined through an analytic solution to the

Ornstein-Zernike equation using the hypernetted chain as a closure relation [72].

This method is very accurate from the physical viewpoint, but has a poorer

CPU performance compared to simpler schemes based on constant injection

rates because of the continuous calculation of the chemical potential.

3 Particle-Based Simulation

A key component of particle-based simulation methods involves the coupling of

the dynamics of the charge carriers (ions) with the field of forces generated by

the external boundary conditions as well as by the internal electrostatic inter-

actions between the components of the system. This self-consistent coupling

approach has been successfully employed for more than three decades in plasma

simulations [135]. The adjective self-consistent refers to the fact that the forces

due to the electrostatic interactions within the components of the system de-

pend strictly on the spatial configuration of the components themselves, and

must be updated continuously as the dynamics of the system evolves.

Self-consistency is achieved by periodically “freezing” the dynamics, and by

updating the spatial force distribution. The dynamics is then resumed in the

“updated” field of forces, which is assumed to be constant for a time ∆t that,

in the cases of interest, is usually on the order of a femtosecond. At the end of
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∆t a new field is computed from the new charge distribution.

Initialize Data

Compute Charge

of Simulated
Time ?

Collect Data

EndNO
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System Dynamics

Force Equations

START

STOP

Figure 12: Flowchart of the self-consistent, particle-based algorithm.

The need for self-consistency between charge and force distributions is due

to the spatial inhomogeneities of the systems under scrutiny. The long-range

nature of the electrostatic interaction makes the relation between ionic con-

centration and field distribution highly non-linear [136, 137]. Significant dif-

ferences in methodology for implementing the potential functions in simulation

programs [138] exist. Figure 12 depicts the flowchart of a typical particle-based

algorithm. The self-consistent aspect of the approach is enforced within the

main iteration cycle, where the field of force and the ionic dynamics are contin-
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uously coupled during the simulation.

The following section is devoted to two popular approaches for particle-

based simulations of ionic charge transport in transmembrane proteins. The

name used for the family of approaches to be discussed has its origin in the

fact that at least some of the components of the system are represented as

computer “particles”, and their trajectories are tracked in phase-space. While

mobile ions in solution are always modeled as particles, their dynamics can be

Brownian or Newtonian based on the representation of the water solvent. When

the effects of water on the system dynamics are modeled through macroscopic

quantities such as the diffusion coefficient or the dielectric constant rather than

by treating each atom (or collection of atoms)as a unique particle that exerts

its influence on the system, we say that the solvent is treated implicitly, i.e.,

we are implying in some way that the water is there influencing the system’s

dynamics. Alternatively, the solvent model is defined as being “explicit” if the

water molecules are represented as separate entities, each obeying the laws of

physics and thus influencing the system’s dynamics.

3.1 Implicit Solvent: Brownian Dynamics

When the solvent is treated as a continuous dielectric background that interacts

stochastically with the mobile ions, the ionic trajectories can be modeled with

the Langevin formalism [139, 140]. In particular, the strict or full Langevin

equation can be used, which assumes Markovian random forces and neglects

correlations (both spatially and temporally) of the ionic motion:

mi
d�vi(t)
dt

= −miγ�vi(t) + �Fi(�ri(t)) + �Bi(t) [45]

where mi is the reduced mass of the ith ion, �vi(t) is its velocity at time t, γ is the

friction coefficient (i.e., the inverse of the ionic velocity relaxation time), �Fi is

the force on ion i due to all other particles in the system and boundary conditions

(including internal dielectric discontinuities), and, �Bi is a fluctuating force that

mimics the molecular bombardment of water on the ion, and is modeled with
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a Markovian random variable. The fluctuating force can therefore be written

explicitly as,

�B(t) =
√

2γmkBTẇ [46]

where a Gaussian white noise term is given by ẇ.

The Langevin equation is discretized temporally by a set of equally spaced

time intervals. At predetermined times the ion dynamics is frozen, and the

spatial distribution of the force is calculated from the vector sum of all its

components, including both the long-range and the short-range contributions.

The components of the force are then kept constant while the dynamics resumes

under the effect of the updated field distribution. Self-consistency between the

force field and the ionic motion in the phase-space is obtained by iterating this

procedure for a desired amount of simulation time. The choice of the spatial and

temporal discretization schemes plays a crucial role in terms of computational

performance and model accuracy.

The integration scheme used for Eq. 45 is chosen based on fulfilling two re-

quirements: maintaining energy stability and allowing for large time-steps. The

latter requirement is related to the need to investigate system properties for the

typically long biological time scales, which can be on the order of microseconds

or more. Using long time-steps reduces the number of operations for each unit of

simulated time, thus increasing the performance of the simulation code. Coun-

teracting this is the requirement that the time-step must be small compared

with the mean time between particle collisions. An excessively coarse time dis-

cretization would not account for rapid variations in the short-range force, and

does not correctly account for its coulombic singularity. A large timestep typ-

ically results in a spurious heating of the particle ensemble that then becomes

energetically unstable [83].

Two common implemented integration schemes for the Langevin equation

are the standard first-order Euler scheme and the Verlet-like method by Gun-

steren and Berendsen [141]. The later is a third order model that reduces to the
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Verlet algorithm [142] when the friction coefficient in the Langevin equation is

zero (see section on Explicit Solvent below). This approach by Gunsteren and

Berendsen allows for a larger time-step as compared to the Euler method. Both

schemes are discussed in the following sections, and a comparison is offered.

3.1.1 Particle Tracking: Euler Integration

The first order Euler integration scheme reduces the Langevin equation to

�vi(t+∆t) = �vi(t)−∆t

[
γ�vi(t)−

�Fi
m i

−
√

2γkBT
mi∆t

�N(0, 1)
]

[47]

where ∆t is the integration time-step and �N(0, 1) is a three dimensional Gaus-

sian random variable with zero mean and variance of 1. The spatial trajectories

are calculated with Newtonian mechanics. To represent the fluctuating force as

a stationary Markovian, Gaussian process, the time-step duration ∆t must be

much smaller than the reciprocal of the friction coefficient γ in the Langevin

equation (Eq. 45) [141]. This results in a fine (and computationally expensive)

time discretization when ionic solutions are simulated.

3.1.2 Particle Tracking: Verlet-like Integration

The need for carrying out impractically short time-steps was addressed by Gun-

steren and Berendsen [141] who accounted for the evolution of the fluctuating

force during the integration time-step. In their method, the force on the ith

particle at time tn+1 is first expanded in a power series about the previous time

tn,

Fi(tn+1) ∼ Fi(tn) + Ḟi(tn)(tn+1 − tn) [48]

where Ḟ denotes the time derivative. The power series expansion is then sub-

stituted into Eq. 45, and the resulting solution of the Langevin equation is,
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vi(tn+1) = vi(tn)e−γ∆t + (miγ)−1Fi(tn)(1− e−γ∆t)

+ (miγ
2)−1Ḟi(tn)(γ∆t− (1− e−γ∆t)) [49]

+ (mi)−1e−γ∆t
∫ t

tn

e−γ(t
′−tn)Bi(t′)dt′

where ∆t = tn+1 − tn is the integration time-step. Note that the fluctuating

force Bi(t) is retained inside the integral. The ion’s position is calculated with

the expression,

xi(tn+1) = 2xi(tn)− xi(tn−1)e−γ∆t

+
∫ tn+∆t

tn

vi(t′)dt′ + e−γ∆t
∫ tn

tn−∆t

vi(t′)dt′ [50]

and, finally, the updated particle position is written as,

xi(tn+1) = xi(tn)[1 + e−γ∆t]− xi(tn−1)e−γ∆t

+ (miγ)−1Fi(tn)(∆t)[1− e−γ∆t]

+ (miγ
2)−1Ḟi(tn)(∆t)[0.5γ∆t(1 + e−γ∆t)] [51]

− [1− e−γ∆t] +Xn
i (0,∆t) + e−γ∆t]Xn

i (0,−∆t)

where,

Xn
i (0,∆t) = (miγ)−1

∫ tn+∆t

tn

[1− e−γ(tn+∆t−t′)]Bi(t′)dt′ [52]

Equation 52 is also a Markovian stochastic process with zero mean and vari-

ance ∆t. The quantity Xn
i (0,−∆t) is correlated with Xn−1

i (0,∆t) through

a bivariate Gaussian distribution. In the zero-limit of the friction coefficient,

this set of equations corresponds to the trajectories obtained with the Verlet

algorithm [141].
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The set of trajectories resulting from the Verlet-like integration scheme as

compared to the Euler scheme is not limited by the velocity relaxation time,

and consequently a longer time-step can be used. Figure 13 shows a plot of

the steady-state average ionic energy versus time-step interval for a 150 mM

KCl solution simulated for 1 ns in the absence of an external electric field.

The Euler and Verlet-like algorithms give similar results for time-steps below

approximately 10 fs, but larger time-steps result in a greater energy drift for

the Euler integration scheme.
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Figure 13: Steady-state energy of an ensemble of anions and cations in a 150 mM
solution of KCl as a function of time-step, for both the Euler and Verlet-like
integration schemes.

3.2 Explicit Solvent: Molecular Dynamics

The molecular dynamics approach allows for the simulation of the system com-

ponents individually with atomic resolution. Broadly speaking, an appropriately

constrained Newtonian dynamics is used to capture the evolution of particles

representing individual ions, atoms or groups of atoms in the force field gen-
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erated by electrostatic and van der Waals interactions together with boundary

conditions. One difference between molecular dynamics and Brownian dynam-

ics is the way the solvent is modeled: water molecules are typically treated

explicitly within the molecular dynamics framework.

The role of water in ion permeation through narrow channels was stressed

previously; a model that accounts for the dynamics of the ionic solvation state

is needed for a full understanding of channel functionality. Furthermore, the

atomic resolution of molecular dynamics includes sufficient information to (in

principle) treat polarization effects with highly accurate, microscopic resolu-

tion. This is definitely an advantage of molecular dynamics over Brownian

dynamics, which tracks the individual ionic trajectories on the atomic scale,

but uses blurred-out collective properties such as the dielectric constant or the

friction coefficient to express the interaction of the ions with their environment.

Unfortunately, the computational burden associated with molecular dynamics

simulations of ion channels is such that only relatively small systems can be sim-

ulated for times that are too short to produce statistically relevant estimates

of macroscopic observables such as the ionic current flowing through an open

channel [11, 143]. While it is obvious that the macroscopic parameters “friction

coefficient” and dielectric coefficient will not capture the atomic detail important

for ion movement or permeation in Brownian dynamics, it is not obvious that

simulations of ion channels will reproduce the bulk properties of friction or di-

electric response with explicit molecular dynamics methods until the simulations

are actually performed and the results compared to experiment. Calibration of

equilibrium systems with atomic detail form the basis of equilibrium molecular

dynamics and Monte Carlo simulations of ionic solutions [95, 96].

Many models are used to include the microscopic effects of water molecules

on biological systems, and most of them are based on parameterized force field

schemes that are tuned to reproduce some bulk macroscopic properties of the

solvent. For a given system, the choice of a specific water model is based on the

usual trade-off between accuracy and computational complexity. Furthermore,

even if a particular model fits a type of data better than another–for example,
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dielectric constant better than density vs. temperature–the choice of which

model to use is not obvious.

Water models used in ion channel simulations must reproduce, among other

things, the solvent structural properties measured by the radial distribution

function (RDF), mass transport characteristics like the diffusion coefficient, and

the macroscopic polarization behavior, such as the dielectric constant. These

models should also account for the local interactions of the water with molecules

in the protein structure. This is especially important because polarization effects

may play a role in the ion permeation process. It should also be noted that

the bulk ionic concentrations of biologically relevant systems are relatively low,

so an usually large number of solvent molecules must be simulated to ensure

the presence of a statistically relevant number of ions within the simulation

domain. Indeed, ions in concentrations of 10−6 Molar often control biological

reactions of great importance: biochemistry textbooks pay much attention to

the cofactors or coenzymes that control life’s metabolism. The effects of these

cofactors depend heavily on concentration. Thus, simulations must be able to

estimate accurately the activity (i.e., effective concentration) of such trace ions

if they are important in the system being studied. Consequently, the greatest

number of atoms in molecular dynamics simulations is usually those of the water

molecules, adding the computational efficiency as a final stringent requirement

for implementing a particular solvent model. It is difficult to calculate more

than a few nanoseconds of simulation time in ion channel simulations and in

fact only Crozier [144, 145], to the best of the Author’s knowledge, has been

able to compute ion trajectories for a microsecond.

Rigid, fixed-charge water models are widely used in molecular dynamics

simulations [146]. Their popularity is due to their algorithmic simplicity and to

their ability to reproduce many thermodynamic properties that match experi-

ment. Within these models, point charges combined with empirical potentials

are used to model the electrostatic interaction of the water molecule [147] with

its environment. The charges are placed at specific sites within the molecular

volume [147] and the effective potentials are tuned to reproduce the average
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(bulk) effects of polarization.

Among these approaches, 3-, 4- and 5-site models have been implemented,

with different geometric configurations. Within the simple 3-site model, the po-

sitions of 3 charges are set to the sites of the hydrogen and oxygen atoms, while

the negative charge is moved from the oxygen site toward the hydrogens along

the bisector of the hydrogen-oxygen-hydrogen angle [146] in the 4-site represen-

tation. For the 5-site model, discrete charges are located at the positions of the

hydrogen atoms, and an additional lone pair is oriented tetrahedrally around

the oxygen. The number of operations in the molecular dynamics algorithms

scales with the square of the number of interaction sites, thus explaining the

popularity of the 3- and 4-site water models.

The family of 3- and 4-site models include the simple point charge model

(SPC), and the transferable intermolecular potential functions (TIPS). The SPC

is a basic 3-site model [148] with parameters adjusted to reproduce the energy

and pressure of liquid water under ambient conditions. Parameters are further

optimized to fit structural properties, specifically the second peak of the RDF

of the oxygen atoms. The TIPS started as a 3-site liquid-phase model that

was later extended to a 4-site (TIP4P) configuration [149] to reproduce the

second peak structure [149] of the oxygen RDF. The TIPS and SPC based

models are considered to be the most efficient since they require the lowest

number of interaction calculations while providing accurate estimates of the

intermolecular energy and density [144]. An extended version of the SPC fixed-

charge water model was developed, which included the polarization through

a mean-field description of the induced moments (SPC/E [150]). This model

provides a more accurate RDF and an improvement in the calculated diffusion

coefficient as compared to the standard SPC model. The parameters used in this

approach are still empirical, and are adjusted to fit known physical properties.

The inclusion of a realistic self-consistent description of polarization in water

models is currently an important research topic.

The integration schemes used for Newtonian dynamics are simpler than that

employed in the Brownian dynamics simulation based on Langevin’s equation
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(see the section “Implicit Solvent: Brownian Dynamics”). A popular choice [11]

for Newtonian molecular dynamics is the Verlet integration scheme that con-

serves volume in phase space and is therefore symplectic [151]. To reduce the

number of computations per unit of simulated time, much work has been devoted

to integration schemes with variable time resolution [152, 153]. The idea be-

hind these multiple-timestep methods is that a lower time resolution is required

for assessing the long-range components of the force field. This translates into

computing the long-range forces less frequently than the short-range forces [154].

3.2.1 Calculation of Free energy

In spite of the limitations discussed above, molecular dynamics simulations sup-

ply invaluable insight into channel functionality because 1) they allow for a mi-

croscopic analysis of the structural fluctuations of the channel-membrane sys-

tem [52, 155], and 2) they allow for a mapping of the energetics of the ion

permeation process in terms of the potential of mean force [156], which repre-

sents the free energy content of the system as a function of a reaction coordi-

nate [157]. The free energy landscape associated with ions in the proximity of a

channel can then be used as input for faster and less detailed simulation tools,

such as the Brownian dynamics approach [158]. Analogously, the ion diffusion

coefficient within the channel can be extracted from molecular dynamics calcu-

lations [159, 160] and used with electrodiffusive continuum models (see the next

section on Flux-Based Simulation).

Indeed, all the ingredients for a complete thermodynamic characterization of

the system are available in molecular dynamics simulations: atomic resolution,

protein flexibility, membrane fluctuations, explicit solvent, and ionic motion.

Since the free energy profile controls ion conduction [161], along with nonequi-

librium parameters like the diffusion coefficient, one can expect to fully under-

stand the permeation (and selectivity) processes from it. Furthermore, because

one can explore the energetics of molecular configurations in response to exter-

nal stimuli, free energy calculations can in principle supply information about
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gating mechanisms, or, at least, could be used to confirm hypotheses derived

from indirect experimental observations.

The task of computing free energy from molecular dynamics trajectories can

be difficult because of the (non)statistical relevance of the trajectories and the

inaccuracy of the force field (discussed in the next section). Extracting sta-

tistically homogeneous data from raw molecular dynamics simulations of ion

channels is arduous. The highly inhomogeneous charge distribution generates

a rather bumpy electrostatic landscape for the ions’ dynamics. Consequently,

regions of the conduction path that are needed for permeation are rarely visited

by ionic trajectories [143]. Fortunately, much work has been done to enhance

the statistical relevance of low-occupancy regions, and several numerical tech-

niques have emerged as being highly effective in sampling those regions. For

example, the addition of an artificial restraint on the ionic trajectories artifi-

cially biases them toward more sparsely populated regions, increasing the accu-

racy of the free energy profile. The effects of this external perturbing potential

are then processed out of the calculated results, giving a statistically enhanced

free energy profile. This technique, called umbrella sampling [162], can be used

simultaneously on different regions of the same reaction coordinate, or on a mul-

tidimensional reaction space (see chapter 9 in Becker et al. [163]). This allows

one to obtain an accurate free energy profile by means of loosely coupled simu-

lations that can be run concurrently on separate computers. Umbrella sampling

has been used to study the multi-ion free energy profile of the selectivity channel

of KcsA [156], where the existence of binding sites on the extracellular side of

the channel were predicted. These predictions were subsequently confirmed by

high definition experimental observations [41].

3.2.2 The force field

If the ionic trajectories can be statistically enhanced by using appropriate com-

putational techniques like umbrella sampling, it is imperative that we also in-

crease the accuracy of the forces being computed in particle-based simulations.

58



State-of-the-art simulation packages use the force field decomposition discussed

early in the section on electrostatics (see Eq. 1), where either the long range

component of the force is neglected, or is included in the Ewald approach.

Therefore, most of the simulations including long range electrostatic interac-

tions are performed with periodic boundary conditions that bypass the problem

of injecting and expelling ions and water molecules into and out of the computa-

tional domain. As stressed before, periodic boundary conditions involve several

limitations that are particularly serious for ion channel simulations. For exam-

ple, electrostatic boundary conditions can be applied by acting on the electric

field rather than on the electrostatic potential (which is unphysically discon-

tinuous, when not null, at the periodic boundary). This does not constitute

a problem from a theoretical standpoint, but implies a representation of the

simulated system that differs from reality, where potentials are applied across

the system by using reversible electrodes. These limitations can be addressed

by solving Poisson’s equation in real space [11] and by devising an appropriate

injection/ejection mechanism that mimics the effects of distant electrodes on

the small domain being simulated [164].

Calculating the short-range component of the force field is crucial for an

accurate particle-based simulation of ion channels. It is not possible to fully

understand the permeation mechanism, especially in narrow channels, without

a correct representation of the short-range interactions between the ions and

the protein. The need for an accurate representation of short-range interactions

is evident in KcsA, where 1) the solvation state of the ions changes during their

transit through the channel, and 2) the narrow part of the channel (the selec-

tivity filter) that is lined by backbone carbonyl oxygens, is being traversed by

a single line of ions alternating with water molecules. The effective process of

selecting and moving ions through such a narrow lumen is the result of com-

peting microscopic interactions [155, 138] that must be accounted for precisely.

The main problem is related to the force field parameters used to compute the

short range components, as, for example in the Lennard-Jones potential or in

the inverse power relations, as well as the other contributions like bond length-
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ening, angular deformations, bond rotational barriers, etc. that are included

in the potential energy functions used to describe the molecules under study.

Force field parametrization is usually performed in a way that accounts for the

average effects of the atomic polarization field, and involves a redistribution of

the electric charge. In other words, the simulated particles (ions and atoms

or groups of atoms in the protein and in the membrane) are assigned effective

properties such as charge, size, and hardness, which normally depend on their

position within the system. These force field parameters [165] are optimized in

such a way that the simulation reproduces some of the desired bulk properties

of the solution. The idea of the parameterization is to include the effects of the

true many-body polar interactions in a simple pairwise additive fashion, so that

the many-body effects can be embedded implicitly in the equations for the short

range force. This approach is efficient from a computational viewpoint, but it

involves a few problems. First the parametrization is not unique [138]. Second,

the effects of the real polarization fields are assumed to be fixed rather than

consistently evolving with the charge distribution. Finally, the effects of polar-

ization on the molecular flexibility are necessarily neglected. It is safe to assume

that in narrow pores the polarization field plays some role in the structural prop-

erties of the protein, and plays a crucial role in the ion-water and ion-protein

interactions. One can try to address the problem by treating the polarization

field macroscopically, i.e. by computing an effective position-dependent dielec-

tric tensor at equilibrium [143], and then use this dielectric tensor in Brownian

dynamics or in an appropriately modified parametrization of molecular dynam-

ics. This approach, however, neglects the transient dynamics of the polarization

fields that may assist permeation and selectivity in ultra-narrow channels.

The induced point dipole (PD) model and the fluctuating charge (FQ) model

are two approaches used to include polarization explicitly in a self-consistent

fashion in molecular dynamics simulations [166, 167]. Both methods define the

total interaction potential as a sum of pairwise interactions (of all fixed and

mobile charges) and an additional polarization term based on the induced elec-

trostatic moments. Within the PD approach, the polarization term is included

60



by “inducing” a point dipole at appropriate charge sites. This dipole depends on

all the other charges and all the other dipoles in the system. Therefore, the total

dipole distribution must be computed as a collective (i.e. many-body) property

of the system. This can be achieved by an iterative procedure that minimizes

the polarization energy [166], or, by treating each dipole as a dynamic variable

governed by a set of equations of motion. The PSPC (polarizable-SPC) model

is based on this extended Lagrangian formalism, as an example.

With the FQ approach the polarization term can also be included in the

model by changing the amplitude of the charges in response to the electric field.

Here, a Lagrangian method is also applied to solve the set of equations of motion

describing the charge dynamics. In this case, the equations are derived for the

fluctuating charge system using an electronegativity equalization scheme [166].

In terms of computational resources, the FQ approach is only slightly more

demanding than are the nonpolarized charge models, making it very attractive.

The polarized version of the TIP4P model (TIP4P-FQ) produces RDFs that

are in excellent agreement with experimental values [166].

Molecular dynamics simulations of ionic motion in hydrated ion channels

have been performed for more than two decades [15, 168, 169]. Much work

has been done to include explicit polarizability in molecular dynamics simula-

tions [166, 167, 170, 171, 172] and to obtain models of water[146, 173, 174, 175,

147] that can account precisely for the local solvation properties of ions and ion

channels[16, 148, 176]. A more detailed discussion of these approaches cannot

be included in this document for reasons of space, so the reader is referred to

the references indicated above.

4 Flux-Based Simulation

It should be clear by now that a microscopic representation of the system compo-

nents can provide invaluable information for the molecular modeler that relates

the structure of ion channels to their function. A major problem with such

microscopic, atomistic, particle-based approaches is the inability to perform
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large-scale simulation in time and space. Even optimistic guesses about the

evolution of computer hardware and software place the time frame for modeling

all the components of a realistically large system, of, say, a few cubic microns

and for a few milliseconds, to be decades from now.

Because we want to predict and explain the complex physiological behavior

of ion channels on a large scale, one can argue that all the information obtained

with particle-based approaches is not actually needed. The very same issue

arose more than a decade ago when algorithms were ranked for their ability

to simulate semiconductor devices. State-of-the-art simulation of an individual

transistor still takes hours of CPU time for picoseconds of simulated time, while

key mechanisms like the trap-assisted recombination of charge carriers in the

floating body of a silicon on insulator MOSFET have characteristic times of the

order of hundreds of microseconds. Furthermore, even if the full characterization

of an individual device could be achieved in a reasonable time, what about

simulating a whole circuit where thousands of such devices are non linearly

coupled? Algorithmic efficiency together with faster computing machines are

not realistic solutions to such massive and complex problems.

It is our opinion (and probably the most important message that we try to

convey in this chapter) that any approach for simulating complex, many-body

systems must be based on a hierarchy of consistently related models (see the

next section below). Each model employed must be validated individually by

comparison (direct or indirect) with experimental data, and, the range of validity

for each model must be defined as clearly as possible. Knowing in which cases

we can safely apply a theory then makes that theory practical.

With this background we devote this section to approaches based on contin-

uum ionic charge distributions rather than limiting this tutorial to the discus-

sion of particle-based simulation methods. These electrodiffusive approaches are

called here flux-based because they model the flux of charges, i.e., the current

densities, flowing through the system. Electrostatic and van der Waals interac-

tions are accounted for implicitly by a mean field approach where their effects

are included as averages over the many instantaneous configurations that the
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particle-based approaches would otherwise model individually. The main as-

sumption made with the flux-based approaches is therefore that the ion channel

behavior can be explained by their mean structural properties rather than by

the instantaneous microscopic dynamics of the system.

4.1 Nernst-Planck Equation

One continuum model for electrodiffusion of ions between regions of different

concentration is based upon the combination of Fick’s law [177] that describes

the diffusion of ions along a concentration gradient and Kohlrausch’s law that de-

scribes the drift of ions along a potential gradient. Nernst and Planck combined

these two laws to obtain the electrodiffusive equation, now known as the Nernst-

Planck equation, and which can be written in the Stratonovich form [178, 179]

as,

d

d�r

{
D(�r)

[
∇c(�r) +

q

kBT
∇Φ(�r)c(�r)

]}
= 0 [53]

Here D is the diffusion coefficient, c is the ionic concentration, and Φ is the

electrostatic potential due to the charges within the system and the external

boundary conditions. The absolute temperature of the solution is T , while kB

is Boltzmann’s constant and q is the ionic charge. Integrating Eq. 53 once, gives,

D(�r)
[
∇c(�r)− 1

kBT
�F (�r)c(�r)

]
= − �J [54]

where �J is the constant steady-state current density vector, and �F (�r) is the

force as calculated through the gradient of the electrostatic potential. Both

the concentration c and the force field �F are space-dependent unknowns in the

problem, so two additional equations are coupled to Eq. 54 to obtain �J : the

continuity equation,

1
q
∇ · �J = −∂c

∂t
+G [55]

and Poisson’s equation (Eq. 18). The quantity G in Eq. 55 represents the mech-
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anisms of charge generation and recombination occurring within the system. In

the following discussion it is assumed to be null for the sake of simplicity. For

an one-dimensional domain starting at x = 0 and ending at x = L, the solution

to Eq. 54 can be written as [180]:

�J =
c(0)eΦ(0)/kBT − c(L)eΦ(L)/kBT∫ L

0
eΦ(x)/kBT dx

D(x)

[56]

The set of three coupled equations (Eq. 18, Eq. 54, and Eq. 55) is then solved

numerically with an iterative procedure that will be discussed in a subsequent

section.

The remainder of this section is devoted to the derivation of Eq. 54. Besides

the mathematics we also define the range of applicability of simulations based

on the Nernst-Planck equation. The starting point for deriving the Nernst-

Planck equation is Langevin’s equation (Eq. 45). A solution of this stochastic

differential equation can be obtained by finding the probability that the solution

in phase space is �r,�v at time t, starting from an initial condition �r0, �v0 at

time t = 0. This probability is described by the probability density function

p(�r,�v, t). The basic idea is to find the phase-space probability density function

that is a solution to the appropriate partial differential equation, rather than

to track the individual Brownian trajectories in phase space. This last point

is important, because it defines the difference between particle-based and flux-

based simulation strategies.

The derivation of a differential equation for p(�r,�v, t) is performed by first

defining the diffusion process as an independent Markov process in order to

write a Chapman-Kolmogorov equation in phase space:

p(�r + �v∆t, �v, t+∆t) =
∫

p(�r,�v −∆�v,∆t)Ψ(�r,�v −∆�v;∆�v)d(∆�v) [57]

In Eq. 57 ∆t is a time interval chosen to satisfy two criteria: 1) during ∆t the

position and velocity do not change appreciably, and 2) the stochastic term in
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Langevin’s equation must undergo many fluctuations. Equation 57 states the

Markovian nature of p(�r,�v, t).

Applying a Taylor expansion to each of the individual terms in Eq. 57 results

in the generalization of the Fokker-Planck equation [181] for the evolution of

p(�r,�v, t) in phase-space:

∂p

∂t
+ �v · ∇rp+

�F

m
· ∇vp = γ∇v · (p�v) + γ

kBT

m
∇2
vp [58]

It should be noted that the left-hand side of Eq. 58 is identical to that of

the reduced Liouville equation [181]. Indeed, several theories have been devel-

oped that obtain Eq. 58 from the reduced Liouville equation [182, 181]. Fol-

lowing the standard Smoluchowski expansion [178] of the full time-dependent

Fokker-Planck equation, it can be shown that, for large γ, the following model

is obtained for the probability density at steady state:

d

d�r

{
1
γ

[
kBT

m
∇p(�r) +

q

m
∇Φ(�r)p(�r)

]}
= 0 [59]

Note that the dependence of p on the velocity has been dropped because of the

overdamping hypothesis (i.e. large γ), and p(�r) ≡ limt→∞ p(�r, t) which is a

consequence of the steady state hypothesis. Equation 59 is clearly written in

the Stratonovich form (see Eq. 53).

The probability distribution functions in Eq. 59 applied to the trajectories

of particles flowing into and out of a system provides a justification for using

the Nernst-Planck equation (Eq. 54): the net ionic directional fluxes can be ex-

pressed in terms of differences between the probability fluxes, normalized to the

concentration at the sides of the region of interest [180]. That ionic fluxes and

differences in probability fluxes are related thus supplies a connection between

the solution of the Nernst-Planck equation (Eq. 54) and the Smoluchowski equa-

tion (Eq. 59), and provides a direct justification for using Eq. 54 for the study

of ions subjected to Brownian dynamics in solution.

Continuing along these lines, we also observe that the Liouville equation is

used to obtain the Boltzmann transport equation derived initially within the
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kinetic theory of gases:

∂f

∂t
+ �v · ∇rf +

�F

m
· ∇vf =

(
∂f

∂t

)
coll

[60]

where f(�r,�v, t) is the phase-space point density, or distribution function, of the

particles. The right hand term of Eq. 60 represents the time rate of change of

f(�r,�v, t) due to collisions that particles undergo within the system.

We now conclude with a derivation of the basic transport equations starting

from the Boltzmann equation rather than from the Fokker-Planck equation. We

already noted that both the Fokker-Planck and Boltzmann equations are related

to the Liouville equation and that our goal is to obtain equations for the charge

distribution and the current density (Eqs. 55 and 54) using an appropriate

representation of the collisional term in the left hand side of Eq. 60. The method

described here is the well known methods of moments. It consists of multiplying

the Boltzmann equation by a power of the velocity, and by integrating over the

velocity itself. For the moment of order zero (i.e., the zeroth power of the

velocity), one uses a constant; that, in this case is the elemental charge q, to

obtain

1
q
∇ · (qc�v) = −∂c

∂t
+G [61]

where G is the integral of the collisional term:

G = −
∫ (

df

dt

)
coll

d�v [62]

Based on the assumption that collisions change the ionic velocity but not their

position, G is simply reduced to a charge generation-recombination term that

will be neglected in processes involving transport. By recalling that �J = qc�v, one

realizes that Eq. 61 is the continuity equation previously written (see Eq. 55).

The moment of order one is obtained by multiplying the Boltzmann equation

by �v and integrating over the velocity space. The result is given by:
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∂

∂t
(c�v) + �v∇r · (c�v) + (c�v · ∇r)�v +

1
m
∇r · (ckBT̂ ) +

�F

m
c =

(
∂�v

∂t

)
coll

[63]

where T̂ is the temperature tensor. Equation 63 is simplified considerably by

assuming that the concentration c is not a function of time (steady-state as-

sumption). This is accomplished by neglecting the convection term �v∇ · (c�v),
by representing the tensor T̂ with the scalar T , and, finally, by assuming that

the evolution of the velocity is a sequence of stationary states. Furthermore,

assuming that the fluctuations of the velocity generate small deviations from

equilibrium, one can apply a relaxation time approximation [183] to the colli-

sional term,

(
∂�v

∂t

)
coll

≈ �vγ [64]

These assumptions allow us to write Eq. 63 as

D(�r)
[
∇c(�r)− 1

kBT
�F (�r)c(�r)

]
= − �J [65]

which is the Nernst-Planck equation, where the diffusion coefficient is expressed

as D = kBT
γ .

Because Boltzmann’s equation is a conservation relation in phase space, its

moments represent conservation laws in position space �r. In particular, the

moment of order zero, Eq. 61, is the charge conservation law, while Eq. 65

represent current conservation. The next moment is obtained by multiplying

Eq. 60 by mv2/2 and integrating over the velocity space. The resulting equation

is an energy conservation relation that accounts for heat flow within the system.

Inspired by the literature on semiconductor modeling and simulation [184], Chen

solved the system for the first three moments of Boltzmann’s equation within the

ion channel framework [185], proposing the inclusion of kinetic energy exchange

between the different components of the system.
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4.2 The PNP Method

This section describes the numerical techniques used for solving the set of dif-

ferential equations that are used to model the electrodiffusion of ions in solu-

tion. The method has historically been called the Poisson-Nernst-Planck (PNP)

method because it is based on the coupling of the Poisson equation with the

Nernst-Planck equation. The basic equations used in the PNP method include

the Poisson equation (Eq. 18), the charge continuity equation (Eq. 55) and the

current density of Nernst-Planck equation (Eq. 54).

Poisson’s equation is usually simplified by assuming the dielectric constant

to be stepwise constant in the position space. It should be noted that this

approximation does not preclude the possibility of having dielectric interfaces

within the computational domain, what is assumed here is that the dielectric

constant changes abruptly at the interface of different materials. This assump-

tion is completely natural when Poisson’s equation is solved on a discrete grid

by a finite differences scheme.

Equations 18, 54, and 55 constitute a system of three equations with three

unknowns, and is solved numerically on 1-, 2- or 3D domains. For the sake

of simplicity, we will discuss the one-dimensional case (the equations are easily

extended to 3D). While finite element methods have been used extensively for

the solution of Eqs. 18, and 55 in solid state electronics, flux-based approaches

for the simulation of ion channels rely primarily on finite difference schemes.

The system of Eqs. 18, 54, and 55 is usually solved iteratively, with each

iteration defined by the successive solution of the three equations. An initial

guess is first supplied for the force field �F in Eq. 54, that is then solved on a

discrete grid to provide the components of the current density �J . The divergence

of �J is then computed with the steady-state continuity equation (Eq. 55) to

obtain the charge distribution that, in turn, is used in the forcing function of

Poisson’s equation. From the gradient of the computed potential one derives a

new (better) approximation to the force �F that is used to start another iteration.

The iterative process is repeated until the difference between the results of two
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successive iterations reaches a predefined threshold value. This process ensures

self-consistency between the spatial distributions of the charge, current, and

potential.

ii-1 i-1/2 i+1/2 i+1

a
i-1

a
i

Figure 14: Discretization scheme used for the solution of the PNP equations.
Values of the current density are computed at the points designated by empty
circles, the potential and charge density values are computed at points corre-
sponding to the filled circles.

The numerical method for solving of the PNP system is normally based on

the discretization scheme in Fig. 14. A grid is initially defined upon which

the values of potential and charge distributions are computed (filled circles in

Fig. 14), while the components of the current density vector are computed on

points located half way between those grid-points (empty circles). Because

methods for solving Poisson’s equation were already discussed, the remaining

part of this discussion will focus on the solution of the continuity equation. For

a discretization scheme as in Fig. 14, one can write a first order finite difference

equation for the continuity equation:

∂c

∂t
=

1
q
∇ · �J =

1
q

[
Ji+1/2 − Ji−1/2

ai+ai−1
2

]
= 0 [66]

where Ji+1/2 = Jx(xi+1/2), a represents the mesh spacing, and the system is

assumed to be in steady-state. The values of the current can be obtained by

finite difference equations obtained from Eq. 54:
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Ji+1/2 = Di+1/2
ci+1 − ci

ai
− ci+1/2

Di+1/2

kBT
Fi+1/2 [67a]

Ji−1/2 = Di−1/2
ci − ci−1

ai−1
− ci−1/2

Di−1/2

kBT
Fi−1/2 [67b]

where the values of any function at the midpoint locations (empty points in

Fig. 14) are obtained through linear interpolation. The currents from Eqs. 67a

and 67b can then be used in Eq. 66 to obtain a difference equation that expresses

the concentration c as a function of the force F . In 2- and 3D domains, the

difference equations are normally solved by using a standard iterative method.

This solution scheme for the PNP method is attractive for its simplicity, but,

it leads to substantial errors in those regions where there exists large concen-

tration gradients. Within this approach, the lack of robustness is traced to the

assumption that the ion concentration varies linearly between adjacent grid cells

(see Eqs. 67). The discretization of the gradient operator in the current density

equation results in negative values for the concentration when the difference of

potential between adjacent cells exceeds 2kBT/q volts [186]. An effective solu-

tion to this problem has been suggested by Sharfetter and Gummel [187, 188]

who demonstrated that the discretization errors can be substantially reduced

by including a nonlinear exponential variation of ion concentration between grid

points. In this case, Eqs. 67a and 67b are rewritten as,

Ji+1/2 = −qFi+1/2

[ Di+1/2

kBT
ci+1

1− exp[F1+1/2

q ai]
+

Di+1/2

kBT
ci

1− exp[−F1+1/2

q ai]

]
[68a]

Ji−1/2 = −qFi−1/2

[ Di−1/2

kBT
ci

1− exp[F1−1/2

q ai−1]
+

Di−1/2

kBT
ci−1

1− exp[−F1−1/2

q ai−1]

]
[68b]

Again, the current from Eqs. 68a and 68b can be used to obtain a difference

scheme for the concentration via the continuity equation. The method of Shar-

fetter and Gummel is slightly slower than the linearized approach, but, it is more
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accurate and is remarkably more robust in the presence of high concentration

gradients. Furthermore, it produces positive definite matrices and hence can be

implemented by using overrelaxation techniques [119], which have a relatively

fast rate of convergence. Multi–grid methods [125] have also been used success-

fully for solving PNP-like equations (see Molenaar [189] and references therein).

Finally, it should be noted that the approach suggested by Eisenberg [180]

(which is also based on the iterative solution of the continuity equation, the

analytical solution of the Nernst-Planck equation (Eq. 56), and Poisson’s equa-

tion (Eq. 18)) is mathematically equivalent to the Gummel iteration once it has

been discretized on a finite difference grid.

The evolution of the numerical approaches used for solving the PNP equa-

tions has paralleled the evolution of computing hardware. The numerical solu-

tion to the PNP equations evolved over the time period of a couple of decades

beginning with the simulation of extremely simplified structures [84, 190] to fully

3D models [22, 191, 192], and with the implementation of sophisticated variants

of the algorithmic schemes to increase robustness and performance [20]. Even

finite element tetrahedral discretization schemes have been employed success-

fully to selectively increase the resolution in regions inside the channels [21].

An important aspect of the numerical procedures being described above is the

need for full self-consistency between the force field and the charge distribution

in space. This is obtained by coupling a Poisson solver to the Nernst-Planck

solver [1, 193] within the iteration scheme described above.

The PNP approach, together with the Poisson-Boltzmann [194, 195] method,

belong to the family of continuum theories of electrolytes [196] that are based

on the mean field approximation. Because the PNP approach is based on con-

tinuous fluxes rather than individual trajectories, average concentrations are

employed and the ions are assumed to move in average electric fields [1]. Con-

sequently, a key role is played by macroscopic parameters such as the diffusion

coefficient and the dielectric constant. Recall that the term macroscopic is be-

ing used to represents the collective behavior of a large group of microscopic

components of the system, i.e., atoms within molecules and ions in solution.

71



While the PNP theory has been developed as a model for large systems, e.g.

those with feature-sizes larger than the Debye length, its applicability in mod-

eling ionic permeation within channels only a few angstroms across has been

questioned [197, 198]. Similar concerns have been expressed with respect to the

Poisson-Boltzmann method [199]. It should be noted, however, that the rele-

vant Debye length in either method is that within the channel (or active site)

and not that in bulk. The concentration of ions is typically 10-50 times higher

inside a channel than in bulk, and consequently the Debye length is extremely

small there.

From a physical viewpoint, the use of a fixed diffusion coefficient corresponds

to assuming that the ionic energy relaxation time is independent of the local

electric field. The same approximation is applicable to the friction coefficient

γ in Langevin’s equation. Generally speaking, ion channels are not ohmic ma-

chines, at not least during the transient conditions typical of gating. Because

of the steady-state assumption, the PNP method is not suitable for the study

of fast transients or situations in which the ionic energy is different from the

energy of the surrounding system. Nonetheless, because it can supply valuable

information for the study of the steady-state ohmic regime, assuming a con-

stant diffusivity has been a popular choice by scientists studying ion channels.

Alternatively, and similarly to what is done for the simulation of semiconductor

devices, a space-dependent diffusivity for a specific channel configuration can be

obtained with particle-based simulation (usually molecular dynamics) and used

in the PNP equations [160].

Solving the PNP equations is more complicated when including the effects

of polarization. Defining a dielectric “constant” within a small channel presents

huge conceptual difficulties. From a microscopic viewpoint, the dynamics of

one ion (or more) within the channel is being described as a purely many-body

problem, meaning that the presence of even one ion modifies significantly the

polarization field felt by the ion itself, and, possibly, even the structural confor-

mation of the channel protein. It is reasonable to conclude that the polarization

plays a role in the conduction properties (including selectivity) of very nar-
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row channels and possibly even wider channels. The interaction of ions with

dielectric surfaces is definitely a local phenomenon related to the particle char-

acter of the ions themselves. However, continuum theories represent ions as

a smooth charge distribution rather than as point-like charges, and modeling

effects of the dielectric interfaces on such distributed charge is thus particularly

arduous. A typical example is the problem of “overshielding” shown by PNP

simulations of narrow channels. The continuous nature of PNP results in the

formation of a spurious counter-charge in the channel that is already populated

by a given ionic species. This flow of counter-charge represents counter-ions

that would not normally enter the channel because of their interaction with

the image charges generated at the channel dielectric surface. This spurious

and non-realistic effect, in contrast, is not produced by particle-based Brownian

dynamics simulations because the finite size of ions is included in Brownian dy-

namics. The spurious counter-charge modifies the electrostatic landscape, and

consequently a remarkable discrepancy is found in the ionic concentrations when

comparing results obtained with Brownian dynamics [198]. Several adjustments

to the PNP theory have been proposed to alleviate this problem, either via the

inclusion of a term that accounts for the induced image charges as a surface

charge in Poisson’s equation [200], or, by correcting the free energy of the sys-

tem with a potential of mean force [181] obtained from molecular dynamics

simulations [160]. These extended theories offer better agreement with results

from particle-based approaches [201], at least for single channel occupancy and

in very narrow channels.

In conclusion, flux-based approaches are appealing because of their low com-

putational costs and because of their ability to predict quantities that are di-

rectly observable, such as currents flowing through open channels. Their utility

for the study of small channels has been questioned, especially because of the

argued inability to account for molecular flexibility. Therefore, much theoretical

work is needed to extend and generalize the flux-based simulation approaches to

better account for more realistic configurations, keeping in mind their basic lim-

itations. Several researchers rightly stressed the need for validating flux-based
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simulation with microscopic particle-based models. Analogously, particle-based

models must also be validated on the largest scales for which they are used, in

the hierarchy of models (see below).

5 Hierarchical Simulation Schemes

Several approaches for the simulation of ionic charge transport in protein chan-

nels have been presented in the previous sections. It should be clear from the

above discussion that none of the mentioned methods can supply a complete

and self-contained description of the full functionality of ion channels starting

from purely structural information. For this reason, methods based on a hier-

archy of simulative approaches [202, 203], rather than on a specific method are

becoming more and more popular.

The concept of using atomistic molecular dynamics simulations for extract-

ing parameters to be used in less precise but faster Brownian dynamics simu-

lators, or electrodiffusive solvers, has been discussed above. This methodology

can be applied rather extensively, and can entail molecular mechanics tech-

niques for the full preparation of the protein structure, continuum techniques

for its electrostatic characterization, and molecular dynamics for the extraction

of diffusion or energy profiles for use in Brownian dynamics [204]. This “se-

quential” approach has been used with excellent results in other fields, and is

well established in computational biophysics [205]. A further step in the di-

rection of hierarchical modeling is to use different approaches simultaneously,

and to analyze the (sometimes different) results by keeping in mind strengths

and weaknesses of the simulative methodologies. This “parallel” or comparative

strategy has a certain degree of subjectivity that can be minimized if a rigorous

attitude is adopted by the modeler throughout the study when interpreting the

results [51], and by calibrating the methods.

Furthermore, due to the limitations in the size of the systems that can be

simulated with high resolution, all-atom techniques, the integration of different

approaches into the same simulation procedure is necessary in the foreseeable
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future. For example, using a molecular dynamics simulation engine in a rel-

atively small region of the system under study and including a larger domain

where the solvent can be treated implicitly, say with Brownian dynamics, will

allow for extending the size of the simulated system and to reduce artifacts

arising from close boundaries. Of course, the correct treatment of the interface

that “bridges” two regions simulated with different computational and philo-

sophical approaches is not trivial and solving such problems has not yet been

accomplished.

6 Future Directions and Concluding Remarks

The recent development of high resolution experimental techniques allows for the

structural analysis of protein channels with unprecedented detail. However, the

fundamental problem of relating the structure of ion channels to their function is

a formidable task. This chapter describes some of the most popular simulation

approaches used to model channel systems. Particle-based approaches such as

Brownian and molecular dynamics will continue to play a major role in the study

of protein channels and in validating the results obtained with the extremely

fast continuum models. Research in the area of atomistic simulations will focus

mainly on the force-field schemes used in the ionic dynamics simulation engines.

In particular, polar interactions between the various components of the system

need to be computed with algorithms that are more accurate than those cur-

rently used. The effects of the local polarization fields need to be accounted

for explicitly and, at the same time, efficiently. Continuum models will remain

attractive for their efficiency in depicting the electrostatic landscape of pro-

tein channels. Both Poisson-Boltzmann and Poisson-Nernst-Plank solvers will

continue to be used to extract qualitative information about the macroscopic

behavior of ion channels. Their quantitative predictions will become better val-

ued once the range of applicability of the theory is validated by particle-based

approaches. These improvements will help scientists address how the functional

properties of ion channels depend on the instantaneous structural fluctuations
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and to what extent a mean conformational characteristic is sufficient to describe

these amazingly complex systems.

The idea of integrating different approaches into a hierarchical simulation

strategy is promising. This can be accomplished either through a “sequential”

approach, in which the results obtained with one method are used to calibrate

a faster but less accurate one, or though a “concurrent” technique, in which

several simulation tools are integrated or “bridged” within the same algorithm

in a way that provides different levels of accuracy in different regions of the

computational domain.
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