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INVERSE PROBLEMS RELATED TO ION CHANNEL SELECTIVITY∗

MARTIN BURGER† , ROBERT S. EISENBERG‡ , AND HEINZ W. ENGL§

Abstract. Ion channels control many biological processes in cells, and, consequently, a large
amount of research is devoted to this topic. Great progress in the understanding of channel func-
tion has been made recently using advanced mathematical modeling and simulation. This paper
investigates another interesting mathematical topic, namely inverse problems, in connection with ion
channels. We concentrate on problems that arise when we try to determine (“identify”) one of the
structural features of a channel—its permanent charge—from measurements of its function, namely
current-voltage curves in many solutions. We also try to design channels with desirable properties—
for example with particular selectivity properties—using the methods of inverse problems. The use
of mathematical methods of identification will help in the design of efficient experiments to deter-
mine the properties of ion channels. Closely related mathematical methods will allow the rational
design of ion channels useful in many applications, technological and medical. We also discuss certain
mathematical issues arising in these inverse problems, such as their ill-posedness and the choice of
regularization techniques, as well as challenges in their numerical solution. The L-type Ca channel
is studied with the methods of inverse problems to see how mathematics can aid in the analysis of
existing ion channels and the design of new ones.
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1. Introduction. Ion channels are proteins with a hole down their middle that
allow ions to move through otherwise impermeable cell membranes, thereby control-
ling many biological processes of great importance in health and disease. Interest in
channels has grown rapidly because of their general role as controllers of biological
function in health and disease. A quick glance at the literature through a search
on the Internet will find hundreds of papers on channelopathies, diseases of channels
(cf. [As99, LHJR00]). Specifically, channels are proteins akin to enzymes (cf. [Ei90])
that control the flow of ions through membranes and thus control a wide range of
biological functions (cf. [Aletal94, Hi01]).

Channels generate the action potential which conducts all information in the
nervous system and coordinates contraction, including the contraction which allows
the heart to function as a pump. Channels are involved in nearly all sensory function,
in the secretion of hormones, and in the function of the kidney and intestine. There
is hardly a biological function that is not controlled by channels or transporters in an
important way.
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The enormous importance of channels has generated enormous amounts of exper-
imental work. Literally hundreds of laboratories and thousands of scientists measure
channel properties every day with remarkable resolution, often studying the prop-
erties of just one protein molecule. Molecular genetics and molecular biology allow
routine (although tedious) engineering of channel proteins nearly one atom at a time
(cf. [Mietal06]). Few areas of biology are so well explored at such resolution.

Channels also are much simpler than enzymes. Channel function does not involve
changes in covalent bonds or chemistry in that sense. Channels perform many of their
functions without changing structure (on the biological time scale of msec). Ions
move through channels driven by concentration gradients and electrical potential at
room temperature. Channels form an unusual nearly unique system because they are
both physically simple and biologically very important. The daunting complexity of
the structure of many biological systems is not found in single molecules of channel
proteins [TBSS01, Ei98, Maetal03].

One of the defining characteristics of proteins is their selectivity. Most proteins
bind specific organic chemicals with great specificity even at very low concentrations,
10−5 times smaller than concentrations of ions always associated with proteins, e.g.,
K+, Na+, and Cl−, which are typically found at 0.2 M concentration. These organic
molecules often control the biological function of the protein with great specificity
even at these very low concentrations. Ion channels (for example) conduct ions of
one type much better than ions of another type, and this selectivity among ions is
essential for their role in signaling in the nervous system, and coordination of muscle
contraction, particularly in the heart. If the selectivity of ion channels is understood,
and a physical theory is available showing how channel structure produces channel
function, channel proteins can be designed to specification and built using the well-
developed techniques of molecular engineering, e.g., by site-directed mutagenesis.

The design of ion channels to specification can also be seen as an application of
the mathematical theory of inverse problems (“reverse engineering”). Design requires
specialized mathematics because of the complexity and sensitivity (with respect to
perturbations) of the system and the mutual dependence of various design goals: im-
proving some properties can make others worse, and so mathematics is needed to find
a good compromise. In this paper, we show how iterative and variational regulariza-
tion methods developed for inverse problems can be applied to design or identify the
function—in particular the selectivity—of ion channels using the physical chemistry
of crowded charge, which is modeled through the Poisson–Nernst–Planck equations, a
system of nonlinear partial differential equations combined with a density functional
theory of excess chemical potential. The main idea of this approach is to formulate the
design or identification of permanent charge as an abstract operator equation or opti-
mization problem involving Poisson–Nernst–Planck (or related) models for the flow of
electrical charge through the channel and to regularize it either by using an iterative
method with appropriate stopping criterion and/or additional penalization of the ob-
jective functional. This regularization is necessary to compute numerical solutions in
a stable and robust way, since the inverse problem is ill-posed in the sense that small
differences in the electrical current can correspond to arbitrarily large differences in
the permanent charge. In the context of identification, regularization methods allow
computation of a stable approximation to the permanent charge in the channel. In
the context of design, they also allow us to introduce a priori ideas of suitable designs.

Inverse problems arise whenever one searches for causes of desired or observed
effects. Two problems are called inverse to each other if the formulation of one problem
involves the solution of the other one. At first sight, it might seem arbitrary which of
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these problems is called direct and which is called inverse. Usually, the direct problem
is the more classical one. But there is an intrinsic mathematical reason to call one
problem “inverse,” namely the fact that it is usually ill-posed (cf. [EHN96]). When
dealing with partial differential equations, the direct problem usually predicts the
evolution of the described system from knowledge of its present state and the governing
physical laws including information on all physically relevant parameters. A possible
inverse problem would be to compute (some of) the parameters from observations
of the evolution of the system; this particular inverse problem is called “parameter
identification” and is usually ill-posed (cf. [CER90, EHN96, ER95, IS05, Na06]). We
shall highlight the ill-posedness of the inverse problem in a simplified setup, which we
nonetheless expect to capture the essential features of the problem, and we also discuss
identifiability, i.e., the question of whether the unknowns in the inverse problem are
determined uniquely from the data.

Regularization methods are needed to overcome these instabilities and to design
solution techniques that are robust (i.e., that are stable with respect to data and nu-
merical errors). In general terms, regularization methods replace an ill-posed problem
by a family of neighboring well-posed problems. We perform this task for design and
identification problems in ion channels. In addition to the stable approximation, the
regularization methods are also used to introduce a priori knowledge about the ion
channel structure. In a case study of an L-type Ca channel, we present various nu-
merical results, which demonstrate the feasibility of our approach and highlight some
particular issues that are likely to appear in channel and protein problems.

2. Modeling ion channels. In the following, we give a brief overview of contin-
uum models of ion transport through channels. Such models need to incorporate the
electrostatic interaction between the charged particles, the change of charge density
by the mobile ions and a consequent change of the electric field, the generation of ion
flux by the electric field, and the direct electrochemical interactions between the ions.
Here we shall detail and use Poisson–Nernst–Planck (PNP) models, where the un-
knowns are the electric potential V and the densities ρk of the various (ionic) species
present in the channel. Continuum models of this sort have received much atten-
tion in the literature (cf. [CE93, GNE02, GNE03, IR02a, IR02b, Maetal03, NCE00])
as well as criticism, mostly because they neglect correlations produced by the small
number of ions that can fit into a single channel. Correlations can be included in
the derivation of PNP (cf. [SNE01, NHE03]), and certain types of correlations can
be analyzed and included in generalizations of PNP with some success (cf. [GNE02,
GNE03, Maetal03, SNE01, XWGM06]). Much more work is needed in this regard,
and it remains to be seen how well extensions of PNP can deal with the entire set
of correlations present in particle-based simulations. Despite similar limitations, con-
tinuum models are used very widely in many fields: For example, in computational
electronics, continuum models are widely used because they are typically much faster
than particle-based simulations (cf. [Se84, JaLu89]).

In our work, we use the extended form of PNP as found in [GNE02, GNE03],
understanding that we will need to refine and replace this model as it is improved.
The following sections show how our inversion approach can easily be updated to
possibly improved forward models.

We assume that the total number of different species is M , but we distinguish
between the free species and the species confined to the channel, which create the
permanent charge of the channel. For simplicity, we restrict ourselves to a single
confined species, denoted with index M , but extensions to multiple confined species
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Fig. 1. Two-dimensional sketch of the computational domain Ω modelling the bath-channel
system.

are possible. We mention that selectivity in an ion channel can occur only if M ≥ 4,
since one needs at least two free species with charges of the same sign in order to have
selectivity of one over the other, as well as a confined species (permanent charge) and
a free species of opposite sign to achieve charge neutrality in the bath. Since the bath
and channel in practice always includes water, the number of densities should satisfy
M ≥ 5. Indeed, in the case of an L-type Ca channel we study in further detail below,
the number of species is exactly equal to five.

The concentrations have to be computed in a domain Ω that describes the bath
and channel. A schematic setup of Ω is depicted in Figure 1.

The electric potential is computed from the Poisson equation with a source term
equal to the charge generated by the ions, including the permanent charge. For
the continuum description of ion transport, the Nernst–Planck (NP) equations are
used, which involve a diffusion term as well as a drift term caused by the electric
field (ideal electrostatic potential), an external confining potential, and the excess
electrochemical potential. A computational model is a coupled system of the form
(after suitable scaling)

−λ2ΔV =
∑
k

zkρk,(2.1)

−∇ · (mjρj∇μj [ρ1, . . . , ρM ;V ]) = 0, j = 1, . . . ,M.(2.2)

Here zk denotes a relative charge of the kth species, mj is the mobility, and λ is a
scaled variable depending on the dielectric coefficient, elementary charge, and typical
values of the concentrations ρk. The potentials μk are computed as variations of an
energy functional, i.e.,

μk =
∂

∂ρk
E[ρ1, . . . , ρM ;V ],(2.3)
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which is of the form

E[ρ1, . . . , ρM ;V ] =

∫
Ω

(
−λ2|∇V |2 +

∑
k

(zkV ρk + ckρk log ρk + μ0
kρk)

)
dx(2.4)

+ Eex[ρ1, . . . , ρM ].

The functional E includes electrostatic interaction via the electric field (the first two
terms), diffusion (the logarithmic term), external forces via potentials μ0

k, and direct
electric and chemical interactions. Note that the Poisson equation (2.1) can be seen
as an equilibrium condition for this energy, i.e.,

0 =
∂

∂V
E[ρ1, . . . , ρM , V ].(2.5)

Besides the specific exchange terms in energy and potentials, the PNP equations
(2.1), (2.2) are a standard model for electrodiffusion of charged species (cf. [Ru90]),
which has well-known applications to semiconductors (cf. [VR50, MRS90]). A major
difference between electrodiffusion of ions and semiconductors is that it is easy to con-
trol the concentrations of the different species in the bath independently of the applied
potential, while it is not easy (or even usually possible) to control the concentration
of holes or electrons independent of the contact potential. Boundary conditions for
the ion channel problem are of the form

V = U on ΓD,

ρj = ηj on ΓD, j = 1, . . . ,M − 1,

∂μM

∂n
= 0 on ΓD,

∂V

∂n
= 0 on ΓN ,

∂μj

∂n
= 0 on ΓN , j = 1, . . . ,M.

(2.6)

Here the boundary is split into ∂Ω = ΓD ∪ ΓN , where ΓN is the insulated part and
∂.
∂n denotes the normal derivative. Since there are usually two baths, ΓD will consist
of two separated components, and the boundary values are typically constant on each
component. The potential U (or, rather, the difference of U between the left and
right bath) denotes an applied voltage, and ηj are the bath concentrations of the free
species, which are constrained by the charge neutrality condition

M−1∑
j=1

zjηj = 0.(2.7)

Note that the confined species is usually modeled at equilibrium, which is equivalent
to the zero flux boundary condition (for the constrained ions) on the whole boundary.
The total number of confined particles NM needs to be specified to determine ρM ,
giving ∫

Ω

ρM dx = NM .(2.8)
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The (measured) output of a channel is the current flowing out on one side, given
by

I =

M−1∑
k=1

∫
Γ0

zkJk · dn,(2.9)

where Γ0 ⊂ ΓD is one of the connected components of ΓD and Jk denotes the flux of
species k given by

Jk = −ρk∇μk = −ck∇ρk − zkρk∇V − ρk∇μ0
k − ρk∇μex

k ,(2.10)

where the excess potential is defined as μex
k = ∂Eex

∂ρk
. The current can also be measured

and computed from the charge induced on surrounding (Dirichlet) boundaries using
the Shockley–Ramo theorem (cf. [NPGE04]).

We mention that the nondimensionalization and scaling of (2.1), (2.2), (2.6) can
be performed in an analogous way to the drift-diffusion model for semiconductors
(cf. [MRS90]), and for typical values one also has to expect that λ is small; i.e., the
Poisson equation (2.1) becomes a singularly perturbed problem.

The system just described has to be coupled to some model for the excess poten-
tials. The excess electrochemical potentials (obtained as variations of the excess en-
ergy with respect to the particle densities) include the direct interactions between the
ions, usually obtained from hard-sphere or Lennard-Jones models. The external con-
fining potential describes the external forces produced by the structure of the channel
on the ionic groups of the protein that make up the permanent charge. This confined
permanent charge produces the selectivity of the channel. For our test computations
detailed below, we use a specific model of the other components of the excess potential
based on density-functional theory (DFT), as described in [GNE02, GNE03, NCE00].
Other models of the excess electrochemical potential require similar computational
schemes and lead to the same kind of inverse problems. For a detailed statement of
all equations used in the computation of the excess potentials we refer to the appendix
of [BEE06].

3. Inverse problems in ion channels. As in many inverse problems, we con-
sider two classes of inverse problems in ion channels, which have different practical
motivations:

• Identification problems consist in determining properties of a “real” channel
(permanent charge and structure), given measurements of the channel output
(the total current, in a standard experimental setting) at various different
conditions (applied voltages, bath concentrations of the ions).

• Design problems consist in determining properties of a “synthetic” channel—
either a modification of a natural channel (cf. [Mietal06]) or an abiotic ana-
logue of a biological channel (cf. [Sietal06])—such that optimal characteristics
are obtained with respect to some criterion (e.g., selectivity with respect to
certain ion species). The medical and technological effects of improved se-
lectivity can be very important. For example, improving Ca selectivity in
the L-type Ca channel (by using a drug that changes permanent charge in a
way mathematics suggests, if such a drug can be made) would be medically
relevant.

The unknowns to be identified or designed are related to the permanent charge,
i.e., the ion species confined to the channel. First, an important number is the total
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amount of permanent charge, i.e., the number NM of charged particles confined to
the channel. A second important quantity determining the permanent charge is the
external confining potential μ0

M , which represents the forces acting on the permanent
charge and encodes the channel structure. In the absence of an electrical field and of
electrochemical interaction with other ions, the permanent charge density is given by

ρM = γMNM exp
(
−μ0

M/zk
)

(3.1)

with a constant γM determined from the condition (2.8). Hence, the number NM

and the confining potential μ0
M determine the permanent charge density and, subse-

quently, the selectivity properties of the channel. If the sensitivity of the permanent
charge density ρM with respect to voltages and bath concentrations in the measured
range appears to be negligible, one can also try to directly infer ρM from the mea-
surements, ignoring the NP equation for ρM . The total charge NM is a single positive
number for which a lower bound (zero) and an upper bound (since too large per-
manent charges would destroy the channel) are available, and thus it could even be
determined by sampling all its possible values. The ill-posedness plays no significant
role in the determination of NM . The confining potential μ0

M (and also the density
ρM as an alternative) is a function of space, so that the inverse problem of determin-
ing the confining potential is infinite-dimensional. Since ill-posedness in the sense of
discontinuous dependence on data arises only for infinite-dimensional problems and
numerical instability becomes more severe as the number of unknowns/design param-
eters in the inverse problems increases (cf. [EHN96]), instability effects are expected
to be more significant for determining the confining potential than for determining the
total charge. As a consequence of the ill-posedness, suitable regularization methods
have to be used to compute stable approximations of the confining potential, as ex-
plained in the previous sections. In the following, we will describe the computational
solution of the inverse problems of determining total charge and confining potential
in detail, both in the cases of identification and of design.

3.1. Identification. The aim of the identification problem is to find the total
charge and/or the confining potential from measurements of the outflow current I
taken at different bath concentrations ηj (boundary values of the densities ρj) and
at different applied voltages U (boundary values of the electric potential V ). The
measured current I is one real number for each combination of voltage and bath
concentrations. In general, I can be seen as a functional of voltage and bath concen-
trations. The underlying forward model creates a relation between the input P and
the output I, which can be modeled via a nonlinear operator F : P �→ I between
function spaces. Note that the evaluation of the operator F for a specific value of P
involves the solution of forward problems with given P for each combination of volt-
age and bath concentrations (in the idealized setting an infinite number of forward
problems). In this setup, the identification problem can be formulated as the operator
equation

F (P ) = Iδ,(3.2)

where Iδ denotes the noisy version of the current obtained from measurements.
We mention that this identification problem has many similarities to the iden-

tification of doping profiles (i.e., permanent charges) in semiconductor devices from
electrical measurements, a problem which has been investigated in detail previously
(cf. [BEMP01, BEM02, BELM04, LMZ06, Wo06, WB06]). Since the underlying dif-
ferential operators appearing in the forward model are exactly the same, one may
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expect similar mapping properties of the forward operator F . In particular, this
analogy suggests that the identification problem in ion channels (concerning the per-
manent charge density or the associated constraining potential) is severely ill-posed,
as was found in some cases for semiconductors (cf. [BEMP01]). Below we shall also
provide analytical arguments for a simplified model and numerical ones for the full
model confirming the severe ill-posedness.

We also want to highlight some important differences between the identification
problem for the permanent charge of ion channels and the already known identifica-
tion of doping profiles in semiconductors. First, the forward models include additional
effects such as the higher number of species, the excess electrochemical potentials, the
different boundary conditions, and the model for the permanent charge density de-
pending on the constraining potential. The second and most important difference is
the amount of data that can be used. For semiconductors, only the voltage can be
varied, but the boundary concentrations (of electrons and holes) are fixed. As a conse-
quence, the amount of data is not enough to produce a unique solution of the inverse
problem using current measurements (cf. [BEM02, Wo06]). On the other hand, one
can also measure capacitances in the case of semiconductors (i.e., variations of the to-
tal charge with respect voltage change), which can significantly improve the quality of
reconstructions in the case of unipolar devices (cf. [Wo06]), but measurements of non-
linear capacitance in biological systems are not analogous (cf. [BeSt98]). However,
even with additional capacitance measurements, there are examples of nonunique-
ness for the identification of doping profiles in bipolar devices due to an inherent
antisymmetry caused by the special boundary values in semiconductors (cf. [Wo06]).
Boundary values cover a wide range in an ion channel, and so this antisymmetry is
broken, and uniqueness in the identification becomes more likely.

For semiconductors, it has already been shown that very demanding problems
such as the inverse conductivity problem with a measured Dirichlet-to-Neumann map
arise as special cases, and the full inverse dopant profiling is even more complex
(cf. [BEMP01]). Since the measured currents and capacitances are functions of a
single variable—the voltage—in semiconductors, the evaluation of the corresponding
forward map F involves significantly fewer numerical solutions (“solves”) than in the
case of ion channels, where the PNP system (2.1), (2.2) has to be solved for varying
bath concentrations as well as voltage. Consequently, the computational complexity
of the identification problem is even higher for ion channels and seems to be one
of the most challenging inverse problems with respect to this issue. Because of the
high number of solves of the PNP system, it is of fundamental importance to use
efficient numerical schemes for the forward problem. Here we use a mixed finite
element scheme with a novel symmetric linearization, which allows an efficient and
robust solution of PNP systems with input parameters that cover a wide range of
values (cf. [BW07]). The fact that currents are measured for many different setups
in ion channel experiments is of crucial importance for the quality of reconstructions.
Since the data set is richer than for semiconductors, one can actually achieve more
ambitious goals in the inverse problem, e.g., unique reconstruction of the permanent
charge density as a function of space (as we shall see below).

3.2. Design. The general remarks and notation of section 3.1 are also valid
here. However, in the case of (optimal) design, there is an objective to be achieved
instead of an object to be determined. In the applications to ion channels we have
in mind, the primary objective is always to increase selectivity of one species over
another. As discussed in detail in [GE02], selectivity has to be defined by experimental
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results, and several different selectivity measures are available. A selectivity measure
Sj of a species can be defined as a functional of ion densities and fluxes (possibly
at varying voltage; cf. [GE02]). Since the densities and fluxes depend implicitly on
the unknowns P related to the permanent charge (total number of charges or the
constraining potential), the selectivity measure can also be rewritten as a functional
Sj = Sj(P ) of these parameters. If the aim is to increase selectivity of species a over
b, then one can minimize a relative selectivity measure

Q(Sa(P ), Sb(P )) → min
P

.(3.3)

A simple widely used choice which we also use in our computational experiments is
the selectivity quotient Q(Sa, Sb) = −Sa

Sb
(note that minimizing the negative quotient

is equivalent to the original aim of maximizing the relative sensitivity). Analogous
treatment is possible for other choices of Q, e.g., Q(Sa, Sb) = Sb

Sa
or Q(Sa, Sb) =

−Sa + Sb.
In practice, to achieve a design task does not mean to actually maximize the

functional Q, but usually one is satisfied if a significant improvement with respect to
the criterion described by Q, e.g., the channel selectivity, is achieved.

The optimal design problem shares many of the problems of instability and ill-
posedness with the identification problem. In the optimal design problem, however,
there are no input data, but only a goal to be achieved, so that noise in the input
data is not relevant. However, if one minimizes a functional Q as part of the solution
of the design problem, as was done previously in the identification problem, then
first of all the minimizer might not exist, which means that the norm of P tends to
infinity in the associated minimization algorithm. Even if a minimizer exists, it might
not be robust with respect to small perturbations of the problem (modeling errors,
numerical errors, small changes of applied voltage and concentrations, etc.), so that
a computed solution becomes useless in practice. Due to these instabilities, we have
used regularization approaches to solve the design problem similar to those used for
the identification problem (section 5).

We finally mention that optimal design problems for PNP systems have also been
investigated before in semiconductor applications (cf. [HP02a, HP02b, BP03]), but
again there are many significant differences in applications to ion channels. Besides
all the differences in the forward problem, the optimal design of semiconductors (and,
in particular, the objective functional) is always related to currents. In semiconduc-
tors, only holes and electrons carry charge, and so there is no analogue to selectivity
measures of ion channels. Hence, the optimal design task for ion channels is a quite
new problem that connects only loosely to previous literature.

4. Analysis of a simplified model. In order to obtain further insight into the
structure of the inverse problems, we study a simplified model case for a spatially one-
dimensional setup, i.e., Ω = (−L,L), with the channel being the subregion (−�, �).
We ignore all direct interactions; i.e., we set Eex ≡ 0, and, moreover, we set μ0

k ≡ 0.
Hence, we arrive at the one-dimensional PNP model

−λ2V ′′ −
M∑
j=1

zjρj = 0,(4.1)

J ′
k = 0, k = 1, . . . ,M − 1,(4.2)

Jk − ρkzkV
′ − ckρk

′ = 0, k = 1, . . . ,M − 1,(4.3)
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with boundary conditions

V (−L) = 0, V (L) = U, ρk(±L) = η±k , k = 1, . . . ,M − 1.

The equations simplify after an exponential transform to a new set of variables
(also called Slotboom variables; cf. [MRS90]) uk = e−βkV ρk, where βk = − zk

ck
. We

obtain

−λ2V ′′ −
M−1∑
j=1

zje
βjV uk = zMρM ,(4.4)

J ′
k = 0, k = 1, . . . ,M − 1,(4.5)

Jk − cke
βkV u′

k = 0, k = 1, . . . ,M − 1,(4.6)

with boundary values V (−L) = 0, V (L) = U , uk(−L) = η−k , and uk(L) = e−βkUη+
k .

Starting from this transformation, (4.5) and (4.6) can be integrated to obtain the
solution

ρk(x) =

(
η−k + (e−βkUη+

k − η−k )
Gk(x)

Gk(L)

)
eβkV (x)(4.7)

with the function

Gk(y) :=

∫ y

−L

e−βkV (x) dx.

Inserting the explicit solution for the concentrations from the NP equations into the
Poisson equation, we obtain a single nonlinear integro-differential equation for the
electric potential as

−λ2V ′′ −
M−1∑
k=1

Rk[V ] = zMρM(4.8)

with the nonlinear operators Rk given by

Rk[V ](x) = zk

(
η−k + (e−βkUη+

k − η−k )
Gk(x)

Gk(L)

)
eβkV (x).(4.9)

The fluxes Jk can be computed as

Jk =
(e−βkUη+

k − η−k )∫ L

−L
e−βkV (x) dx

.(4.10)

Since the fluxes Jk are constant in spatial dimension one (and JM = 0), we obtain
the current globally as

I =

M−1∑
k=1

zkJk.(4.11)

From a computational viewpoint, it seems attractive to consider a setup around
(thermodynamic) equilibrium, since the solution of the forward model can be approxi-
mated by the simpler linearization around the equilibrium state. An equilibrium situ-
ation is obtained if the fluxes of all species vanish, which means in the one-dimensional
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setting that η−k = e−βkUη+
k , since the flux of every ionic species vanishes in this case.

Note that one can always find suitable combinations of the bath concentrations that
satisfy the above equilibrium condition as well as charge neutrality (e.g., vanishing
bath concentration will always be an equilibrium case), so that we obtain a family of
equilibria, still freely parameterized by the voltage U . This is an important particular
feature of PNP systems in channels and will allow us to study some new effects. On
the other hand, this also highlights possible redundancy in the data, since there are
several parameter combinations that produce zero fluxes and even more that produce
zero current, i.e., data without information content for the inverse problem.

The equilibrium electric potential parameterized by U will satisfy

−λ2V ′′
0,U −

M−1∑
k=1

zkη
−
k e

βkV0,U = zMρM , V0,U (−L) = 0, V0,U (L) = U.(4.12)

Since βk and −zk have the same sign and since η−k is nonnegative, the nonlinear
terms zkη

−
k e

βkV0,U in the Poisson equation depend monotonically on V0,U , so that
the existence and uniqueness of the solution can be seen easily, as well as the stable
dependence on ρM .

Now consider the linearization of the problem around the equilibrium values of
η±k , i.e., the first-order change (in ε) of the output I with respect to perturbations of
the form η±k + εη̂±k that still satisfy charge neutrality. The first-order expansion of the
integral term in (4.10) disappears, since the numerator vanishes at equilibrium, and
hence the linearized output is given by

Î(U) =

M−1∑
k=1

zk
(e−βkU η̂+

k − η̂−k )∫ L

−L
e−βkV0,U (x) dx

.

We mention that the use of ÎU instead of I produces only a restriction of the data set.
It is not a simplifying assumption because ÎU can be computed from the measurements
of currents I in a full range of parameters around their equilibrium values.

Now assume that M ≥ 4, so that we have at least three different mobile species.
Then one can always find values η̂±k satisfying charge neutrality such that η̂−k =
e−βkU η̂+

k , k 	= m, and η̂−m 	= e−βmU η̂+
m for some m ∈ 1, . . . ,M − 1. Hence, for this

choice,

Î(U) = zm
(e−βmU η̂+

m − η̂−m)∫ L

−L
e−βmV0,U (x) dx

,

and therefore one can directly infer the knowledge of M(U) =
∫ L

−L
e−βmV0,U (x) dx

from the knowledge of ÎU . Since the equilibrium Poisson equation can be solved
uniquely for fixed U and given ρM , the forward map can be related to a (nonlinear)
integral operator, and the identification of the permanent charge density corresponds
to a nonlinear integral equation of the first kind (the unknown appears only under
the integral sign), which is a classical ill-posed problem (cf. [En97, Gr84]).

The analysis particularly simplifies for the equilibrium case of small bath con-
centrations, i.e., a perturbation of η±k ≡ 0. In this situation, we can compute
V0,U = V0,0 + x+L

2L U , where V0,0 solves

−λ2V ′′
0,0 = zMρM , V0,0(±L) = 0.
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Noticing that there is a one-to-one dependence between ρM and the function f :=
e−βmV0,0 , we can rephrase the integral equation as

M̃(σ) =

∫ L

−L

e−σxf(x) dx

with M̃(σ) = e
βmU

2 M(U) and σ = −βm

2LU . Varying the voltage U in an interval
(−Umax, Umax) is then equivalent to varying σ ∈ (−σmax, σmax). Hence, we arrive
at a Fredholm integral equation of the first kind for f , with an analytic kernel, a
problem which is known to be severely ill-posed (see the analysis below). The standard
classification of ill-posedness we refer to divides into mildly ill-posed problems with an
error amplification that grows like a polynomial with increasing frequency and severely
ill-posed problems with faster growing error amplification (usually exponentially).
The remaining step of computing ρM from f is another nonlinear ill-posed problem,
which involves the application of a logarithm and two differentiations to compute

ρM =
λ2

zMβm
(log f)

′′

and is therefore mildly ill-posed.
Identifiability, i.e., uniqueness of the reconstruction from the given data set, can be

guaranteed in this case independent of the size of Umax (respectively, σmax). Assume
that M(σ) is known in an arbitrarily small interval around σ = 0; then, in particular,
all derivatives

(−1)p
dp

dσp
M̃(0) =

∫ L

−L

xpf(x) dx, p = 0, 1, . . . ,

and hence all moments of f are known. Since a function is uniquely determined from
its moments, we conclude the uniqueness of the reconstruction of f and subsequently
of ρM . Note that we have used only a subset of the data to show identifiability, and
so one might argue that the full inverse problem is actually overdetermined.

In order to gain some quantitative information about the instability present in
the identification problem, we investigate the singular values of the operator

K : L2([−L,L]) → L2([−σmax, σmax]), f �→
∫ L

−L

e−σxf(x) dx.

Note that K is a symmetric positive semidefinite operator, and hence the singular
values and eigenvalues are equal. As mentioned above, the fact that the integral kernel
is analytic implies that the eigenvalues decay faster than any polynomial (cf. [We68]).
One actually expects exponential decay. This is confirmed by a numerical computation
of the spectrum (with 1025 grid points) displayed in Figure 2, where we plot the
singular values (rescaled so that the leading one is equal to one) for different values
of σmax and L = 1 fixed. (We do not consider the change of L, since its change can
be related to the change of σmax by a simple rescaling.) Since the error amplification
factor at each frequency equals the inverse of the singular value, this problem is indeed
severely ill-posed. The influence of the maximal value σmax is seen by comparing the
four results in the figure. For a smaller value of σmax, the decay of singular values is
faster, which implies a more significant loss of information. Since σmax is proportional
to the maximal value of the applied voltage U , this result shows that one should
make measurements at as large a voltage as possible to reduce the instability in the
reconstruction as much as possible.
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Fig. 2. Leading singular values of the linear operators K for different values of σmax.

5. The full inverse problems. In the following, we shall discuss the forward
problem, namely the solution of the PNP-DFT model for given data, and the map F
to the output, namely current-voltage curves for different bath concentrations. This
map will be of fundamental use in the mathematical formulation and solution of the
inverse problems. As a first step, we analyze the existence and uniqueness of solutions,
which hold at least for small bath concentrations of the free species.

5.1. Properties of the forward operators. In the following, we provide an
analysis of the PNP model, including the excess free energy. We mention that an ex-
tensive analysis of PNP systems is available for applications to semiconductor devices
(cf. [MRS90] and the references therein), but the inclusion of the excess free energy in
the ion channel model prevents a direct extension of these available results. We shall
consider only a particular case of small bath concentrations in the following, in order
to make sure that the forward operator can indeed be well-defined at least in some
parameter range. To clarify, we state the system we consider, namely the solution of
(2.1), (2.10) and, as an equivalent statement of (2.2),

∇ · Jk = 0, k = 1, . . . ,M,(5.1)

together with (2.6) and (2.8). In order to show the specific dependence on the applied
voltage U , the vector of bath concentrations η = (ηk)k=1,...,M−1, the number NM

of confined particles, and the confining potential μ0
M , we introduce the following

nomenclature:

We denote by P(U, η;NM , μ0
M ) the problem of solving (2.1), (2.10),

(5.1), (2.6), (2.8) for the unknowns (V, ρ1, . . . , ρM ).

We shall assume that U ∈ H
1
2 (∂ΩD)∩L∞(ΩD) and that Eex is twice continuously

differentiable on H1(Ω)M ∩L∞(Ω)M . For the sake of simplicity, we also assume that
Eex(ρ1, . . . , ρM−1, ·) is a convex functional of the last variable if ρk, k = 1, . . . ,M −1,
is sufficiently small. Consequently, the map between the density ρM and the confining
potential μ0

M is monotone in this range.
We start our analysis in the case of zero bath concentrations, i.e., ηk = 0, for

k = 1, . . . ,M − 1. In this case, there is obviously no flow, and we can easily construct
a solution.
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Lemma 5.1. Under the above assumptions, there exists a solution

(V, ρ1, . . . , ρM ) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of problem P(U, 0;NM , μ0
M ), which satisfies ρk ≡ 0 for k = 1, . . . ,M − 1.

Proof. The functions ρk ≡ 0 satisfy the boundary conditions as well as (2.10),
(5.1). We now look for a solution of the remaining problem

−λ2ΔV = zMρM , ρM = γMNM exp

(
−zMV + μ0

M + μex
M

cM

)
,

with the boundary conditions remaining for ρM and V . Using the monotone depen-
dence of μex

M on ρM it is straightforward to show that for each V ∈ H1(Ω) ∩ L∞(Ω)
there exists a unique solution ρM ∈ H1(Ω) ∩ L∞(Ω) of the second equation. More-
over, the specific exponential dependence on V implies that the map F : V �→ −zMρM
is monotone and continuously Fréchet-differentiable, too. Hence, we can perform a
further reduction to a problem of the form

−λ2ΔV + F(V ) = 0 in Ω

with Neumann and Dirichlet boundary conditions on the respective parts of ∂Ω.
Finally, a standard result for elliptic equations with monotone operators implies ex-
istence and uniqueness of this remaining problem (cf. [Sh96]).

In order to proceed to small positive bath concentrations, we shall perform a
linearization around zero concentrations. The formal linearization of the PNP system
around a given state (V, ρ1, . . . , ρM ) is given by

−λ2ΔV̂ −
∑

zkρ̂k = f0,(5.2)

∇ ·

⎛
⎝ck∇ρ̂k + zkρk∇V̂ + zkρk∇

⎛
⎝∑

j

∂μex
k

∂ρj
ρ̂j

⎞
⎠+ zkρ̂k∇(V + μ0

k + μex
k )

⎞
⎠= ∇ · (ρk∇fk),

(5.3)

cM
ρ̂M
ρM

+ V̂ +
∑
j

∂μex
M

∂ρj
ρ̂j = fM(5.4)

with right-hand sides fj ∈ L∞(Ω) ∩ H1(Ω), j = 0, . . . ,M , to be solved for V̂ and
ρ̂k. The left-hand side of (5.2), (5.3) is indeed a Fréchet derivative of the left-hand
side in the PNP system. We are going to prove that this linearization defines a con-
tinuously invertible linear operator (f0, . . . , fM ) �→ (V̂ , ρ̂1, . . . , ρ̂M ) around zero bath
concentrations, i.e., for (V, ρ1, . . . , ρM ) being the solution of problem P(U, 0;NM , μ0

M )
from Lemma 5.1. The implicit function theorem in Banach spaces (cf. [De85, Theo-
rem 15.1]) then yields the local existence and uniqueness of solutions as well as the
well-posedness of the linearized problems for small bath concentrations.

Lemma 5.2. Let (V, ρ1, . . . , ρM ) be the solution of problem P(U, 0;NM , μ0
M ), as

in Lemma 5.1. Then, for any fj ∈ L∞(Ω)∩H1(Ω), . . . , there exists a unique solution

(V̂ , ρ̂1, . . . , ρ̂M ) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of (5.2), (5.3), which depends continuously on the data.
Proof. Due to ρk ≡ 0 for k = 1, . . . ,M − 1, the NP equations (2.2) simplify to

∇ ·
(
ck∇ρ̂k + zkρ̂k∇(V + μ0

k + μex
k )

)
= 0
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and, in particular, become scalar equations decoupled from the other variables. After
a change of variables to uk := ρ̂k exp(−βk(V + μ0

k + μex
k )), with βk = − zk

ck
, we obtain

the equation

∇ ·
(
ck exp(−βk(V + μ0

k + μex
k ))∇uk

)
= 0,

whose well-posedness can be analyzed by standard techniques for elliptic equations due
to the absence of convective terms. Using also the equilibrium boundary conditions
for ρ̂M , we obtain the remaining problem

−λ2ΔV̂ − zM ρ̂M = f̃0, cM
ρ̂M
ρM

+ V̂ +
∂μex

M

∂ρM
ρ̂M = f̃M ,

now with the given right-hand sides f̃0 =
∑M−1

k=1 zkρ̂k + f0 and f̃M =
∑M−1

k=1 (fk −
∂μex

M

∂ρk
ρ̂k). For the remaining problem to compute V̂ and ρ̂M , exactly the same ar-

guments as in Lemma 5.1 apply, so that we can conclude the well-posedness of the
linearization.

We now have collected the necessary prerequisites to prove the well-posedness of
the problem for small bath concentrations.

Theorem 5.3. Let ‖ηk‖H1/2(ΓD) and ‖ηk‖L∞(ΓD) be sufficiently small. Then,

for each U ∈ H1/2(ΓD), there exists a locally unique solution

(V, ρ1, . . . , ρM ) ∈ H1(Ω)M+1 ∩ L∞(Ω)M+1

of problem P(U, η;NM , μ0
M ), and the linearized problem (5.2), (5.3) is well-posed.

Proof. In the lemmas above, we have shown that the problem for η ≡ 0 is
well-posed and its Fréchet-derivative exists with continuous inverse in the respective
function spaces. Moreover, the equation operator is Fréchet differentiable, so that we
can apply the implicit function theorem in Banach spaces (cf. [De85, Theorem 15.1])
to conclude that a locally unique solution of problem P(U, η;NM , μ0

M ) exists around
η ≡ 0 and that the linearized problems are well-posed for small η.

As a direct consequence of the above result, we can verify the well-definedness and
even differentiability of the map from the relevant input data related to the permanent
charge to the output current.

Corollary 5.4. Let ‖ηk‖H1/2(ΓD) and ‖ηk‖L∞(ΓD) be sufficiently small. Then,

for each U ∈ H1/2(ΓD), the map

G(·;U, η) : R
+ × (H1(Ω) ∩ L∞(Ω)) → R,

(NM , μ0
M ) �→ I(U, η) =

∫
ΓD

∑
zkJk dσ

(5.5)

is well-defined, compact, and continuously Fréchet differentiable.

5.2. Regularization. In practice, one has to discretize the function I of the bath
concentrations and voltages, so that one computes only a finite number K of function
evaluations, denoted by I1, . . . , IK , and the operator F can be written in the form
F = (F1, . . . , FK). The evaluation of a single part Fj amounts to a single solution
of the forward problem for a specific combination of the bath concentrations and
the applied voltage and the subsequent computation of the outflow current from the
solution. The linearization is then of the form F ′ = (F ′

1, . . . , F
′
K), and its adjoint is of

the form F ′(P )∗ =
∑K

j=1 F
′
j(P )∗. Note that the operators Fj are of the form Fj(P ) =
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G(H(P );U j , ηj), where H is the affine linear operator mapping the parameter P to
the pair (NM , μM

0 ). If both NM and μM
0 are the unknowns in the inverse problem,

then H is just the identity. If one of them is known, then H is the operator mapping
the other one to the pair (NM , μM

0 ). The well-definedness and compactness of the
operators Fj and subsequently of F can directly be inferred from Corollary 5.4, and
one can even conclude the existence of Fréchet derivatives of F .

Due to the instability of the inverse problems, regularization methods should be
used for their solution. One of the most frequently used classes of regularization
methods for nonlinear problems is variational methods (cf. [EHN96, EKN89, SV89]),
where the inverse problem (3.2) is approximated by the variational problem

Jα(P ) := ‖F (P ) − Iδ‖2 + αR(P ) → min
P

(5.6)

with a suitable regularization functional R (e.g., R(P ) = ‖P − P ∗‖2 for Tikhonov
regularization) and a positive real regularization parameter α. An alternative is iter-
ative regularization methods (cf. [KNS06, ES00, OBGXY05]), based on an iteration
procedure of the form

Pn+1 = Pn −Gn(F (Pn) − Iδ)(5.7)

with a linear or even nonlinear operator Gn (depending on Pn in general). Such an
iterative scheme becomes a regularization method with the appropriate choice of a
stopping index n∗ at which the iteration is stopped. A common choice of stopping
rule—due to its computational simplicity—is the discrepancy principle; i.e., the iter-
ation is stopped when the residual reaches the order of the noise level. We mention
that with the properties of the operator F and its linearization F ′ derived above,
the existing theory of variational and iterative regularization methods can be applied
(cf. [EHN96, EKN89, KNS06, ES00]) to our case. We can then guarantee the regu-
larizing properties and convergence of the methods we apply to inverse problems in
ion channels.

We mention that an analogous iteration method to (5.7) can (and should) be
used to solve the variational problem appearing in variational methods. In our test
examples detailed below, we carried out a gradient-based method, which is an iteration
procedure of the form

Pn+1 = Pn − τn
[
F ′(Pn)∗(F (Pn) − Iδ) + αR′(Pn)

]
= Pn − τnJ

′
α(Pn)(5.8)

which can be interpreted as a minimization method for the variational problem (5.6)
or, with α = 0 and an appropriate choice of the stopping index, as an iterative
regularization method of the form (5.7). Here F ′, R′ denote the derivatives of the
operator F and the functional R, respectively, in the appropriate function spaces.
Moreover, F ′(Pn)∗ is the adjoint of the derivative (which is a linear operator between
these function spaces).

The simplest, but already quite significant, inverse problem to be solved in this
context is to determine the number NM , characterizing the total permanent charge
(i.e., P = NM in the above setting). As noticed above, this problem is one-dimensional
as an inverse problem (although, of course, the direct problem is still a system of
partial differential equations), and hence the instability does not appear. Also, this
problem is not very challenging with respect to the optimization algorithm, which is
fortunate because this problem is particularly important biologically. The main issue
in the optimization is the evaluation of the functional Jα (respectively, the operator
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F ) and its derivative, which involves the solution of several forward problems. The
derivatives can be computed via the adjoint operator F ′

j(Pn)∗ or approximated simply
by finite differencing, which typically creates a higher computational effort but needs
no further implementations than those already used to evaluate the forward operator.
Since the aim is to identify a single real number only, it seems reasonable that this
is possible for rather low values of K, and indeed our computational experiments
indicate that this is possible with high accuracy already for K = 10 and even for
K = 5.

The next level of complexity is the identification of the confining potential μ0
M or

the identification of the permanent charge ρM . By analogy to the simplified problems
considered above, we have to expect that these identifications are severely ill-posed so
that regularization is of fundamental importance. The computational complexity of
this inverse problem is much higher also because a much higher number K of different
setups is needed in order to obtain a reasonable reconstruction of the confining po-
tential or the permanent charge density. It is interesting that numerical exploration
of the forward problem suggests that the details of the distribution of permanent
charge, and thus the details of the constraining potential, are much less important for
biological function than the total amount of that charge as long as the charge is of
one sign and also is not too small.

Also for the design tasks introduced above, one can define variational regulariza-
tion methods by just changing the objective functional to Q + αR. In our computa-
tional tests, we specifically use a variational method of the form

Q(Sa(P ), Sb(P )) + α‖P − P ∗‖2 → min
P

,(5.9)

where P ∗ is a favored initial design. In a synthetic ion channel, this a priori guess
could introduce additional criteria into the minimization; e.g., P ∗ can represent a
total charge or a confining potential that is easy to manufacture, so that the reg-
ularization term would introduce a criterion for the minimizer to be close to easily
manufacturable states. In this way, robustness is introduced in the problem, which
can also be observed in the results of our computational experiments.

From a computational viewpoint, the minimization of the regularized variational
problem (5.9) is an analogous task to the one appearing in identification problems.
The main steps are the evaluation of the objective functional (by solving forward
problems and subsequently evaluating selectivity measures) and the computations of
gradients of the objective functional with respect to P . The latter task can again be
carried out by finite differencing, which reduces to additional solves of the forward
problem and creates a high computational effort, or by solving appropriate adjoint
problems. The total computational effort for solving optimal design problems is usu-
ally much less than for solving identification problems, since the selectivity measure is
computed only for very few different combinations of bath concentrations and voltages.
Significantly fewer forward problems have to be solved for evaluating the objective
functional than in the case of identification.

6. Case study: An L-type Ca channel. In this section, we report on a
case study performed for an L-type Ca channel (LCC), for which we performed the
identification and design tasks as described above. A sketch of the LCC is provided
in Figure 3.

We choose the LCC because it is of enormous importance as the regulator of the
contraction of skeletal and cardiac muscle, and it has received extensive attention in
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Fig. 3. Illustration of the LCC when filled with Ca.

Table 1

Parameter settings for the LCC example, using elementary charge e = 1.602 × 10−19C.

k 1 2 3 4 5

Species Ca2+ Na+ Cl−1 H2O O−1/2

Charge zk 2e e −e 0 − e
2

ρk(L) 6 mM 12 mM 24 mM 55 M 0 M
ρk(−L) var var var 55 M 0 M

the biophysics literature for that reason (cf., e.g., [KMS83, Hetal92, SMC03]). Recent
work shows quite clearly that many properties of two types of calcium channels can be
quantitatively described by extended versions of the PNP model (cf. [Betal06, GNE02,
Mietal06, Mietal04, Waetal05, XWGM06]). Given the importance of calcium channels
and the demonstrated ability of PNP-type models to explain current voltage relations
and selectivity over large ranges of concentration of many types of ions, it is natural
to use this system in our investigation of inverse problems.

6.1. Forward model. The forward model of the LCC involves the electrical
potential V and five densities ρk modeling the three mobile ion species Ca2+, Na+,
Cl−, a neutral mobile species H2O, and half-charged oxygens O−1/2 corresponding to
the permanent charge. This means that each forward problem consists of a coupled
system of six partial differential equations, the Poisson equation (2.1) and five NP
equations (2.2) for the densities ρ1, . . . , ρ5 (see Table 1 for the assignment of densities
to the species).

The channel is modeled as cylindrical with diameter 0.4 nm (y − z plane) and
length 2� = 1 nm (x-direction), embedded in two baths both of length 1.7 nm. This
yields a total length of 4.4 nm for the system, and therefore the computational domain
is chosen as (−L,L) with L = 2.2 nm.

From the geometry of the system, it is rather obvious that the flow arises in
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Fig. 4. Plot of ion densities and electr potential as functions of spatial location for an LCC
with applied voltage 50 mV. The illuminated region is the channel which is scaled in the x-direction
by a factor five compared to the bath regions.

the x-direction, and the model can be reduced by averaging in the y − z plane to a
one-dimensional problem with single spatial variable x; but note that our procedures
are in no way restricted to the one-dimensional case. In this averaging procedure,
the shape of the channel has to be taken into account, which yields some spatially
dependent coefficients in the reduced system of one-dimensional differential equations.
The details of the averaging and an exact statement of the equations to be solved for
the LCC can be found in [GNE02, GNE03, NCE00, BEE06].

We solve the forward problem on a grid with n = 1251 (for data generation) and
n = 1000 cells (for the inverse problem) with a standard conforming finite element
discretization of the electric potential and the Poisson equation and a mixed finite
element discretization of the continuity equations for the ions. Since we have the
electric potential and five different species (Ca2+, Na+, Cl−, H2O, and O−1/2), this
yields 1252 + 5 × 1251 = 7507 degrees of freedom (for data generation), respectively,
1001 + 5 × 1000 = 6001 (for the inverse problem) degrees of freedom, in the forward
problem.

The measurements are the currents, taken as functions of the voltage and of
the left bath concentrations ρk(−L) for k = 1, 2, whereas the right bath concentra-
tions ρk(L) are kept fixed. The water concentration (“osmolarity”) is fixed in both
baths, and ρ5(±L) = 0, because of the confinement of permanent charge to the chan-
nel. The concentrations ρ3(±L) are finally determined from the charge neutrality∑

k zkρk(±L) = 0. The parameter settings for the boundary values are given in
Table 1, where var means that the values are varied in the identification process.

The solution of the forward model for an LCC with the above settings—applied
voltage U = 50 mV, NM = 8 confined oxygens, and confining potential μ0

M plotted as
the exact value in Figure 8—is illustrated in Figure 4. The illuminated region corre-
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sponds to the channel, while the white region to the left and right correspond to the
bath. In this example, one observes many typical effects, in particular the selectivity
properties of the channel. Due to the negative permanent charge (oxygens), there is
an attractive electrical force on the positively charged ions (Na and Ca) and a repul-
sive force on the negatively charged ions (Cl). Moreover, the additional “chemical”
forces arising from the finite volume of the ions produce an additional decrease of the
densities in the channel region. These excluded volume forces are particularly impor-
tant because of the narrow cross section of the channel. This decrease in densities
can be observed in particular in the plot of the water density, since it is the only force
acting on this species. (There are no electrical interactions with water in our system
due to neutrality of our model of water.)

6.2. Identification I: Reconstruction of the total charge. In this case,
one assumes that the structure of the channel is known, but the total charge of the
crowded elements in the selectivity filter is unknown. The inverse identification prob-
lem consists of identifying the total charge based on measurements of the total current
for different bath concentrations of the ions. As noticed before, the reconstruction of
the total charge is the simplest case of an inverse problem for ion channels, so that
we expect more accurate results than for the more complicated inverse problems in
the sections below.

This inverse problem is a finite-dimensional one. We try only to identify a single
real number from a finite number of measurements. As mentioned above, this inverse
problem is not ill-posed in the classical sense of inverse problems theory, cf. [EHN96],
because of the low dimension. The only possible instability is due to nonlinearity
effects, but such effects seemed not to appear in the various computational tests.

For a test of the inverse problem technique, we generated synthetic data for the
setup as used in the LCC [GNE03], i.e., a crowded charge consisting of eight half-
charged oxygens. This means we solve the forward problem with the finer grid and
then compute the resulting currents. Subsequently, we perturb the synthetic mea-
surements by noise and use them as data to solve the inverse problem. (The same
technique is also used for the other inverse problems below.) In this way, we have a
known reference solution, and we can check to see if the algorithm yields reasonable
reconstructions in a stable way.

The reconstructions are carried out by a gradient method for the associated least-
squares functional describing the residual. The gradients are approximated by finite
differences. This is for illustration only. More efficient ways are possible to approxi-
mate the gradient for this and related problems, e.g., via adjoint problems.

In this case, one obtains very accurate reconstructions of the exact total charge
even for noisy data and even for a rather low number of measurements, allowing us to
deal effectively with this quite significant biological problem. The pessimism of early
analysis can be removed if the problem is posed with PNP equations and solved with
the methods of inverse problems (cf. [At79, AJ78]); see below. A typical setup consists
of three different applied voltages (0.1V, 0V, −0.1 V) and two different concentrations
for Na and Ca (2 mM and 4 mM) in the left bath. With all combinations, this gives
3 × 2 × 2 = 12 measured values; i.e., the problem is already overdetermined. An
illustration of the reconstruction process in this situation is given in Figure 5. Here
the reconstructed mass of the crowded particles (scaled by the mass of the eight half-
charged oxygens in the real structure) are plotted versus the number of iterations
in the optimization method. In this case, a standard stopping criterion would stop
the calculation after some 90 to 100 iterations. (The reconstruction does not change
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Fig. 5. Plot of the total charge (relative to the exact value) during the iterations of the gradient
method.

significantly with more computation.) The difference between the scaled mass of the
real total charge and the reconstructed one is less than 5%, although the initial value
is quite far away from the solution. Similar behavior was found also in other tests
with different initial values and parameter settings.

6.3. Identification II: Reconstruction of the structure. The second in-
verse problem is related to the reconstruction of the structure of the channel. This
is done indirectly by identifying the confining potential acting on the crowded ions
(oxygens in our example), which models the way the structure interacts with the
channel. More specifically, the confining potential models the forces that keep the
charged oxygens of the channel inside the selectivity filter.

The unknown in the above setting is given by P = μ0
5. Now the inverse prob-

lem is to find a space-dependent function on the channel region, which is really an
infinite-dimensional problem. In an idealized setting, the unique reconstruction of the
confining potential (as a function of space) would require an infinite number of mea-
surements. Therefore, any measurement realized in practice (where, of course, only a
finite number of measurements can be taken) has to be interpreted as a discretization
of the problem with an infinite number of measurements. It therefore seems obvious
that a higher number of measurements yields better reconstruction, and this is also
confirmed by all our tests. On the other hand, a much higher number of measurements
forces an extremely high computational effort.

The variation of the confining potential μ0
5 has a significant influence only in the

channel region, since outside it will just take some very large values that cause the
confinement of the permanent charge species. In the solution of the identification
problem, we use this a priori knowledge and approximate μ0

5 by a constant func-
tion in the baths. Note that due to the large values of μ0

5 in the bath regions, the
concentration ρ5 is almost zero there in any case.

As representative examples of the behavior of the reconstructions, we illustrate
the results for

(a) four applied voltages and different left bath concentrations for Na and Cl,
for a total of 4 × 2 × 2 = 16 measurements (voltages ±10 mV, ±5 mV and
concentrations 2 mM, 4 mM),

(b) six applied voltages and different left bath concentrations for Na and Cl, for
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Fig. 6. Plot of the squared residual ‖F (Pn) − Iδ‖2 as a function of the iteration number for
4 × 2 × 2 measurements (left) and 6 × 3 × 3 measurements (right).

Fig. 7. Plot of the identification error ‖Pn − P †‖ as a function of the iteration number for
4 × 2 × 2 measurements (left) and 6 × 3 × 3 measurements (right).

a total of 6×3×3 = 54 measurements (voltages ±10 mV, ±6.6 mV, ±3.3 mV
and concentrations 2 mM, 4 mM, 6 mM),

obtained with 0.1% noise. The resulting evolution of the least-squares functional dur-
ing the iteration is plotted in Figure 6 (left for case (a) and right for case (b))—one
observes that they are quite similar in the two cases, and the residual decreases to
some value around the size of the noise level. As has to be expected for iterative reg-
ularization methods (cf. [EHN96, KNS06]), the evolution of the reconstruction error,
however, is completely different, as one can see in the plots of Figure 7 (left for case (a)
and right for case (b)). In the first case (16 measurements), the reconstruction error
is hardly reduced, while in the second case, one already obtains a very significant
decrease before the noise level is reached. This can also be seen from the final recon-
structions obtained with a stopping of the iteration dependent on the noise, which are
shown (here plotting the negative potentials for illustration purpose) in Figure 8 (left
for case (a) and right for case (b)). The initial guess used in both cases is shown in
Figure 9. One observes that the second reconstruction is already rather close to the
real potential, in particular in the left part of the channel. The reason for the better
reconstruction in the left part is that the concentrations are varied in the left bath,
and so there is more sensitivity with respect to the data in this region.
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Fig. 8. Final reconstructions Pn∗ obtained at the stopping index determined by the discrepancy
principle for 4 × 2 × 2 measurements (left) and 6 × 3 × 3 measurements (right).

Fig. 9. Initial value P0 used for all reconstructions of potentials.

These results clearly indicate that the reconstructions will improve for an increas-
ing number of measurements. For a very high number of measurements, the computa-
tional complexity of the inverse problem dramatically increases and will be necessary
to implement very efficient methods to compute reconstructions, including faster for-
ward solvers (cf. [BW07]), adjoint methods for computing derivatives (cf. [GP00]),
and multiscale versions of the regularization methods (cf. [Sch98, BM02]).

The instability of the identification problem in this case is illustrated in the plots
of Figure 10. Here we use the same setup as before (6 × 3 × 3 measurements) but
a slightly higher noise level (1%). We start with an initial guess where the residual
is in the order of the noise level; in such a situation, a stopping rule for an iterative
regularization such as the discrepancy principle would immediately stop the iteration.
If one iterates further (which one would do when using a standard optimization stop-
ping criterion based on the gradient of the residual), then the error starts to increase
(and then possibly oscillates), although the residual is still decreasing. This situation
is illustrated in Figure 10, where the least-squares functional and the error are plotted
as functions of the iteration number. One observes that in this case the least-squares
functional is still decreasing, but the error between the reconstruction and the exact
solution can increase, which demonstrates the ill-posedness of the problem. Note that
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Fig. 10. Plot of the residual (left) and identification error ‖Pn − P †‖ (right) as a function of
the iteration number without regularizing stopping criterion.

this effect did not appear in the examples with a stopping criterion based on regu-
larization theory as described in section 5, which again illustrates the importance of
regularization.

6.4. Identification III: Reconstruction of the permanent charge density
for PNP. As a final step in our study of identification problems, we consider the
reconstruction of the permanent charge density ρM in a pure PNP model; i.e., the
forward model consists in solving (2.1), (2.2), and (2.6) for k = 1, . . . ,M−1 with given
ρM and Eex ≡ 0. Apart from the elimination of the equation for ρM , the discretization
and numerical schemes used to solve the PNP system are the same as in the previous
section; in particular, we use the Landweber iteration as a regularization method.

In this case, we numerically implemented adjoint solvers to compute derivatives,
which results in improved accuracy and lower computational effort even for finer dis-
cretizations (in this case, we use 21 grid points) of the unknown in the inverse problem.
We refer the reader to [GP00] for a general overview of adjoint methodology and to
[BEMP01, Wo06] for the derivation of adjoint problems in related semiconductor
applications.

For the reconstruction, we used five different values of the voltage U and eight dif-
ferent bath concentrations of Na and Ca, which results in a total number of 5× 16×
16 = 1280 measured values. With this amount of data, very reasonable reconstruc-
tions can be obtained even in the presence of noise. The development of the residual
and error ‖Pn − P †‖ are illustrated in Figures 11 (without noise) and 12 (with noise
level 3%). One observes that the residual and error both decrease in a monotone way
in the noiseless case, whereas a minimum of the error is reached after some iteration
number in the presence of noise. However, at this iteration number the relative resid-
ual is already very close to the noise level, so that a stopping rule like the discrepancy
principle would stop already slightly earlier. These results have been obtained with
an initial value P0 ≡ 3 and an exact value P † ≡ 5, but qualitatively similar results
have been computed also with other choices of P0 and P †.

The quality of the reconstructions is illustrated in Figure 13 for permanent charge
P † being constant (left) and of a sinusoidal shape (right). In both cases, the starting
value P0 is dashed, the exact solution P † is dotted, and the reconstruction is the solid
line. One observes that with the amount of data we use, it is possible to reconstruct
the constant solution very accurately, while there remains some visible deviation for
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Fig. 11. Plot of the residual (left) and identification error ‖Pn − P †‖ (right) as a function of
the iteration number in the absence of noise.

Fig. 12. Plot of the residual (left) and identification error ‖Pn − P †‖ (right) as a function of
the iteration number for 3% data noise.

Fig. 13. Plot of reconstructions in the absence of noise for a spatially constant permanent
charge (left) and a spatially varying permanent charge (right).
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the more complicated shape. However, the magnitude of values as well as the prin-
cipal shape (a valley in the middle) could also be reconstructed in the more difficult
sinusoidal second case. Reconstructions of this moderate quality have to be expected
in a severely ill-posed problem even for a larger number of measurements, and even
these are quite tricky to achieve. Situations in which the permanent charge changes
sign or reaches nearly zero are likely to pose even more problems.

6.5. Design: Maximizing selectivity. The final inverse problem we consider
is an optimal design problem, which aims at designing in silico channels with optimal
sensitivity properties (or at least improved sensitivity compared to a given initial de-
sign but possibly also close to this one, which can be used as a constraining criterion).

As a test case, we use one of the three selectivity measures from [GE02], the
so-called permeability ratio, at equal concentrations for all ions in the left and right
bath. (For this sake, we use the bath concentrations ρk(±L) = 20 mM for k = 1, 2
and ρ3(±L) = 60 mM.) More precisely, the selectivity measure is the permeability
ratio for Na and Ca, where the permeabilities on the right side of the channel are
computed (detailed formulas for the computations of the permeabilities Sa are given
in the appendix of [BEE06] and in [GE02]). The unknown to be designed is again
related to the structure of the channel; i.e., we set P = μ0

5 and use the same dis-
cretization as in the previous section. Since our design goal is to maximize or at least
significantly increase the selectivity, we should minimize the negative permeability

ratio. It turns out that formulating the negative permeability ratio −SNa(P )
SCa(P ) as the

objective functional for selectivity, one ends up with a very unstable problem (which
is also expected from the arguments in section 3.2). Moreover, the computed designs
seem not really useful for practical construction due to various oscillations. Therefore,
we use an additional regularization term as proposed in (5.9),

Jα(P ) := −SNa(P )

SCa(P )
+ α‖P − P ∗‖2 → min

P
,(6.1)

where P = μ0
5 is the confining potential to be optimized and P ∗ is the favored initial

design of the confining potential (the one used in the simulations in [GE02]). Besides
its regularizing effect, the second term in the objective functional favors solutions as
close as possible to the initial design, which helps to obtain potentials that can be
realized in practice.

The objective functional is then minimized with a gradient method and suitable
step-size selection to guarantee decrease of the objective, and the gradients are again
approximated by finite differences (see above for a discussion of this point).

A special design case (with parameter α = 200) is illustrated in the plot in
Figure 14 (left), which shows the evolution of the objective functional (black) as well

as its first part, the negative permeability (i.e., selectivity) ratio −SNa(P )
SCa(P ) , during the

iteration until convergence. One observes that an increase in the selectivity measure
of more than 100% is achieved by the optimization. The initial value used for the
optimization and the final result are plotted in Figure 15. One observes that the two
potentials are still very close, and so the structure has not been changed completely.

For comparison (and illustration of instabilities), the classical approach of just
minimizing the negative permeability (i.e., selectivity) ratio is also illustrated with the
same initial value and parameter settings but with the objective functional J(P ) :=

−SNa(P )
SCa(P ) . Again, the right plot in Figure 14 displays the objective functional during

the iterations; the optimal solution is plotted in Figure 16. One observes that in this
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Fig. 14. Objective functional Jα(Pn) (black) and negative permeability ratio (grey; red online)
as a function of the iteration number for α = 200 (left) and α = 0 (right).

Fig. 15. Initial value (left) and computed optimal confining potential (right) for the functional
Jα with α = 200.

Fig. 16. Initial value (left) and computed optimal confining potential (right) for the functional J.

case, the gradient method needs many more iterations than with penalization but
does not yield a dramatic increase of selectivity ratio (around 17 instead of 14 for
the penalized case). However, just one look at the optimal confining potential in the
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unpenalized case (Figure 16) shows that the (small) increase in the ratio is caused by
a blowup in the confining potential (notice the vertical scale of 106!). Obviously, such
extremely high forces will not be easy to realize, and the resulting channel will not be
useful in practice, which is another point in favor of our regularization approach. The
regularization parameter α can control the balance between increasing the selectivity
and “practicability,” namely, remaining close enough to the initial design that the
new channel can actually be built. If α is very large, then the minimizer of Jα will
remain close to the initial guess. For α → 0, the permeability ratio can be increased
further, but also the optimal confining potential will increase more and more (until
it reaches the one computed for J in the limit). So, regularization gives (in addition
to the advantages discussed) even more flexibility in finding a compromise between
different design goals.

We summarize by stating that our examples show that both the identification and
the design goals can be achieved in a stable and efficient way by our approach based
on regularization, as illustrated by the special case using Tikhonov regularization
with an iterative minimization of the Tikhonov functional, and that such results are
not possible by standard approaches due the ill-posed nature of the inverse problems
considered. It will be interesting to see how regularization methods help in the solution
of a range of problems in ion channels and proteins.
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