

Ion Current Oscillations Caused by Femtoliter Volume Precipitation in a Nanopore

MATTHEW R. POWELL¹, MICHAEL SULLIVAN¹, IVAN VLASSIOUK¹, DRAGOS CONSTANTIN¹, OLIVIER SUDRE², CRAIG C, MARTENS³, ROBERT S, EISENBERG⁴, AND ZUZANNA S, SIWY^{1*} ¹Department of Physics and Astronomy, University of California, Irvine, California 92697, USA ²Teledyne Scientific Co., 1049 Camino Dos Rios, Thousand Oaks, California 91360, USA 3Department of Chemistry, University of California, Irvine, California 92697, USA 4Rush Medical College, Department of Molecular Biophysics & Physiology, Chicago, Illinois 60612, USA *e-mail: zsiwy@uci.edu

CaHPO,

-300 -200 -10 400

400 -300 -200 -100

-400

nă

-300 -200 -100

-1.000 mV

1.000

100

Abstract

The fixed negative surface charges inside single conical polymer nanopores result in transport properties not encountered in micrometer-scale counterparts. A notable example of an effect caused by these permanent negative charges is the enhancement of ionic concentration inside the pore when compared to the bulk solution. The nanopores described here are created with the track etching technique resulting in a conical geometry having a large opening of hundreds of nanometers and a small opening of several nanometers. A new phenomenon is presented detailing an oscillating ionic current through our conical nanopore when a small amount of a divalent cation is added to a buffered monovalent ionic solution. An ionic current enhancement brought on by the superposition of the electric field from the fixed negative surface charges and the externally applied electric field causes a formation and redissolution of nanoprecipitates that temporarily block the ionic current through the pore. The frequency and character of these ionic current oscillations is regulated by the transmembrane potential and the chemistry of the nanoprecipitate. This oscillating system could be used as a model for studying nonlinear electrochemical processes and early stages of crystallization.

Nanopore Fabrication

A high energy single heavy ion creates a damage track through the polymer film.

NaOF

Chemical Etching

Cathod

Single Conical Nanopore Dimensions

Pore Wall Surface Charge

Etching PET with NaOH produces carboxyl groups on the polymer surface. Surface density of these groups is estimated at ~1.5 per nm².

(pA² Hz⁻¹) 10 1 0.1 Amplitude 0.01 0.001 -100 m 10-4 10-5 10-6 0.1

Modeling of the Theoretical Concentration for the Magnesium Hydroxide Precipitation

pH ~ 9.2 2 mM Capso buffer

Kan[Mo(OH)-1 = 8.9 × 10⁻¹

35 mM MgCl₂ gives the threshold for bulk precipitati

Current (

 $[OH]^{2}[Mg] = 8.9 \times 10^{-12}$ $[1.6 \times 10^{-5}]^{2}[Mg] = 8.9 \times 10^{-12}$

Theoretical results from the onedimensional Poisson-Nernst-Planck model mapping the products of the magnesium and hydroxide activities for -1,000 mV (left), +1,000 mV (right), along the pore axis. Position 0 corresponds to the tip of the pore. The modelling confirms that the ionic concentrations in the pore are very different for the two voltage allowing polarities, the nanoprecipitates to form for negative voltages.

peak between 10 Hz and 20 Hz for the -1,000 mV time series corresponds to oscillations of that frequency, which can be clearly seen from the time series.

-200 m

Acknowledgements:

Irradiation with swift heavy ions was performed at the Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, Germany. We thank the Alfred P. Sloan Foundation, the Institute for Surface and Interface Science and the Institute for Complex Adaptive Matter for financial support.

Power spectra of the ion current recordings above. The

10 Frequency (Hz)