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Ion channels are proteins with a narrow hole down their middle that control a wide range

of biological function by controlling the flow of spherical ions from one macroscopic region

to another. Ion channels do not change their conformation on the biological time scale

once they are open, so they can be described by a combination of Poisson and drift-

diffusion (Nernst–Planck) equations called PNP in biophysics. We use singular perturbation

techniques to analyse the steady-state PNP system for a channel with a general geometry

and a piecewise constant permanent charge profile. We construct an outer solution for the

case of a constant permanent charge density in three dimensions that is also a valid solution

of the one-dimensional system. The asymptotical current–voltage (I–V ) characteristic curve

of the device (obtained by the singular perturbation analysis) is shown to be a very good

approximation of the numerical I–V curve (obtained by solving the system numerically). The

physical constraint of non-negative concentrations implies a unique solution, i.e., for each

given applied potential there corresponds a unique electric current (relaxing this constraint

yields non-physical multiple solutions for sufficiently large voltages).

1 Introduction

The prediction of ionic currents through protein channels as a function of the ionic con-

centration, the applied voltage and the structure of the channel is one of the fundamental

problems in molecular biophysics [15]. On the one hand, the function of the channel

depends on its microscopic geometry and content (i.e., permanent charges) which are

in the atomic level and are characterized by atomic length scales – the diameter of the

channel is just a few angstroms. On the other hand, the ionic currents going through the

channel are driven by macroscopic conditions. The currents are due to the applied electric

potential and different ionic bath concentrations. These conditions are prescribed at a

macroscopic distance away from the channel. The concentration and electric potential are

unknown at the two ends of the channel. In other words, the ion channel is an atomic

device. The multi-scale challenge is to understand the function of an atomic device from

the prescribed macroscopic conditions.
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Different channels have different geometries which can be quite complicated. Crudely

speaking, the channel itself may be viewed as a pipe (cylinder) embedded in an imper-

meable membrane. The access region to the channel is roughly a funnel, for example, a

cone. The transition geometry between the channel and the access region is smooth. It is

expected that the function of the channel will depend on both its geometrical properties

such as the diameter and length of the cylinder and also the geometrical properties of

the access region such as the opening angle of the cone. Furthermore, nowadays, it is

also possible to artificially build plastic nano-channels of roughly similar geometries and

similar (although distinct) function [25, 26].

The Poisson-Nernst-Planck (PNP) equations have been proposed as the basic continuum

model for ion channels [10]. PNP is also known as the drift-diffusion equations in the

semiconductor literature [20], the crucial point (in both channels and semiconductors)

being that the electric field is calculated from all the charges present. The electric field

is not set independently of the rest of the model as it is in traditional channel models

[15]. The continuum PNP system was derived from a microscopic model of Langevin

trajectories in the limit of large damping and neglecting correlations of different ionic

trajectories [23]. It also neglects finite size effects due to the finite size of ions. Finite size

effects are approximately captured, as they are in equilibrium models of bulk solutions

[2, 5, 7, 8, 9, 12, 24], by adding a suitable ‘excess’ term to the chemical potential [14, 21].

The dimensionless version of the time-dependent PNP equations for a system of two

ionic species with opposite charges is given by

λ2

a2
Δφ = n− p− q, (1.1)

J n = Dn (−∇n+ n∇φ) , (1.2)

J p = Dp (−∇p− p∇φ) , (1.3)

−∇ · J n = ∇ · [Dn (∇n− n∇φ)] =
∂n

∂t
, (1.4)

−∇ · J p = ∇ ·
[
Dp (∇p+ p∇φ)

]
=

∂p

∂t
, (1.5)

where φ is the electric potential, n is the density of the negative charged ions, p is the

density of the positive charged ions, q is the permanent charge of the channel, J n, J p

are the ionic flux densities and Dn, Dp are their diffusion coefficients. The Debye length

λ is scaled with the maximum of q and is typically a few angströms or smaller long. We

scale spatial coordinates with a, where a2 is the cross-section area of the channel. This

implies that all flux densities are scaled with 1/a, whereas total fluxes are scaled with a.

The steady-state PNP equations are obtained by setting the time derivatives ∂n/∂t, ∂p/∂t

to 0. The only non-dimensional parameter in the problem is ε = λ/a.

Boundary conditions for the PNP system (1.1)–(1.5) must be prescribed as well, because

they drive the system out of equilibrium and produce the non-vanishing ionic fluxes. The

boundary conditions are given by (see Figure 1)

∂φ

∂ν
=

∂n

∂ν
=

∂p

∂ν
= 0, for x ∈ ∂Ωr, (1.6)

φ → φL, for z → −∞, (1.7)
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Figure 1. The ion channel geometry and boundary conditions: z measures distance symmetrically

through the channel from the left bath to the right bath. The membrane walls are both flux-free

and electrically insulating to leading order.

φ → φR, for z → +∞, (1.8)

n, p → nL = pL, for z → −∞, (1.9)

n, p → nR = pR, for z → +∞. (1.10)

where ∂Ωr is the reflecting part of the boundary, i.e., the biological membrane, and ν is the

unit normal of the boundary. The reflecting boundary condition (1.6) ∂φ
∂ν

= 0 approximates

the ‘jump condition’ of the electric field due to the significant difference between the

dielectric constants in water and membrane. Furthermore, a reflecting boundary condition

usually means the no-flux condition, e.g., J n · ν = J p · ν = 0. At the boundary ∂φ
∂ν

= 0, and

equations (1.2)–(1.3) show that the no-flux boundary condition is equivalent to (1.6).

The recent mathematical analysis of the PNP system applied to channels [1, 11, 16]

focuses on a one-dimensional version of the PNP system

ε2
d2φ

dz2
= n− p− q, (1.11)

dn

dz
− n

dφ

dz
= −Jn/Dn, (1.12)

dp

dz
+ p

dφ

dz
= −Jp/Dp, (1.13)
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with boundary conditions prescribed at the two ends of the channel: Jn, Jp are the total

fluxes which are unknown and ε � 1. However, the one-dimensional model incorporates

some conceptual failures. The boundary conditions in the one-dimensional model (1.11)–

(1.13) are prescribed at the two ends of the channel. Notwithstanding, the actual values of

the potential and concentrations are unknown there and are only known at a macroscopic

distance away from the channel. Furthermore, as stated above, the one-dimensional model

cannot capture any geometrical effects.

Nonner and Eisenberg [22] suggested the following one-dimensional approximation of

the three-dimensional PNP system (aka the slowly varying approximation; see also [13,

chapter 2, pp. 14–24]):

ε2

A(z)

d

dz

(
A(z)

dφ

dz

)
= n− p− q, (1.14)

A(z)

[
dn

dz
− n

dφ

dz

]
= −Jn/Dn, (1.15)

A(z)

[
dp

dz
+ p

dφ

dz

]
= −Jp/Dp, (1.16)

where Jn and Jp are once again the total fluxes. The function A(z) represents the surface

area of equipotential shells. The area function A(z) grows indefinitely with z into the bath,

such as the explicit example of [6] which we consider later:

A(z) = 1 + z2, −∞ < z < ∞. (1.17)

The fundamental drift-diffusion device equations of semiconductors are similar to the

PNP system, and it is therefore not surprising that the classical singular perturbation

analysis of semiconductors [17–20] is applicable for ion channels as well. Yet, there are

major differences between ion channels and semiconductors, even in the simplest modelling

level, that call for important modifications. The parameter ε for semiconductors (∼10−5) is

much smaller than in ion channels. The geometry of an ion channel is much different than

that of a semiconductor device. The microscopic size of the channel makes the effective ε

to be much larger. In some cases, the two junction layers overlap without an outer zone

[14], which means that ε is not a small parameter. Another difference between the two is

expressed through the ratio of the doping charge density to the carrier charge density of

the bath (rather than in the ‘doped’ region, where electro-neutrality renders the ratio to

be almost one). In semiconductors this ratio can be as large as 104–105 [18] in favour of

the doping charge density, whereas for channels the ratio is typically much smaller and

can be of the order of one.

Mathematically, in semiconductors the exact outer solutions are not of great importance,

and the solution is mostly determined by the boundary layer solution in the junction

region, whereas for channels, the outer solutions and boundary layers are both significant.

Finally, in the channel problem there can be more than two ionic species with different

valencies (e.g., +1, +2, −1) which leads to rich behaviour. For example, channels can suck

up micromolar calcium, where the aforementioned ratio of permanent charge to carrier

density is of order one for sodium, but 106 for calcium. In a finer level of modelling, it
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is well known that certain aspects of the behaviour of channels, such as selectivity, are

often explained by finite size effects [14, 21] that do not play a role in semiconductors.

Barcilon et al. [1] analysed (1.11)–(1.13) on a finite interval without permanent charge

(q = 0) as a classical singular perturbation problem. Liu [11, 16] recently analysed

a similar problem using the geometric singular perturbation approach. Gillespie [13]

used singular perturbation analysis to explore many other cases, including a general

geometry function A(z), a piecewise constant permanent charge profile q and space-

dependent diffusion coefficients (MD simulations suggest that the diffusion coefficient in a

microscopic channel is much smaller than in the bulk [27, 29]) that are possibly different

for the different ionic species.

In this paper we use singular perturbation techniques to analyse the steady-state PNP

system for a channel with a general geometry and a piecewise constant permanent

charge profile. Using a suitable transformation, we convert the one-dimensional system

(1.14)–(1.16) to (1.11)–(1.13) with an additional geometry factor appearing only in the

Poisson equation. We construct an outer solution for the case of a constant permanent

charge density in three dimensions that also holds as the solution of the one-dimensional

system. Matching the boundary layer solution and the outer solution at the junction (the

discontinuity point of the permanent charge) is possible without solving the boundary

layer (Poisson–Boltzmann) equations explicitly. We focus on the case of two ionic species

in a charged channel and later on the specific geometry (1.17). The asymptotical current–

voltage (I –V ) characteristic curve of the device (obtained by the singular perturbation

analysis) is shown to be a very good approximation of the numerical I –V curve (obtained

by solving the system (1.14)–(1.16) numerically). The physical constraint of non-negative

concentrations implies a unique solution, i.e., for each given applied potential there

corresponds a unique electric current (relaxing this constraint yields non-physical multiple

solutions for sufficiently large voltages). Some results in this paper have appeared in a

doctoral thesis [13] and the Study Group Report [6]; we are pleased to report them here.

The case of three ionic species with different valencies and different diffusion coefficients

will be considered in a future paper.

2 Outer solution with constant permanent charge density in three dimensions

Consider the three-dimensional steady-state PNP system (1.1)–(1.5) after the linear

transformation to net charge Q = n − p and total concentration C = n + p variables

to be given by

ε2Δφ = Q− q, (2.1)

∇ · [∇Q− C∇φ] = 0, (2.2)

∇ · [∇C − Q∇φ] = 0. (2.3)

In this first paper, we assume for algebraic simplicity equal diffusion coefficients Dn =

Dp = 1. The permanent charge density q is assumed to be piecewise constant, that is, it has

constant value q0 inside a narrow region (i.e., the channel) and vanishes elsewhere (in the

two baths). All functions satisfy no-flux (homogeneous Neumann) boundary conditions

on the surface of the membrane, and Dirichlet boundary (aka far field) conditions at the
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left and right infinities with prescribed concentration values C → CL, CR, potential values

φ → φL, φR and electro-neutrality Q → 0 (see equations (1.6)–(1.10)).

We look for an outer solution of the form

φOUT = φOUT
0 + εφOUT

1 + · · · , (2.4)

QOUT = QOUT
0 + εQOUT

1 + · · · , (2.5)

COUT = COUT
0 + εCOUT

1 + · · · . (2.6)

Odd powers of ε are included in the expansion, because we expect the formation of

boundary layers (inner solutions) at the junctions, where q is discontinuous. In this paper

we calculate the leading order terms.

The leading order equations are

QOUT
0 = q, (2.7)

∇ ·
[
∇QOUT

0 − COUT
0 ∇φOUT

0

]
= 0, (2.8)

∇ ·
[
∇COUT

0 − QOUT
0 ∇φOUT

0

]
= 0. (2.9)

Electro-neutrality is expressed in (2.7). Next, we show that (2.8)–(2.9) imply the relation1

φOUT
0 = α ln

(
COUT

0 + αq
)

+ β, (2.10)

where α and β are constants, to be later determined by matching and boundary conditions.

Indeed, QOUT
0 ≡ const, therefore ∇QOUT

0 = 0, and equation (2.8) reads

∇ ·
(
COUT

0 ∇φOUT
0

)
= 0. (2.11)

We verify that relation (2.10), which can also be written in the differential form

∇φOUT
0 =

α

COUT
0 + αq

∇COUT
0 (2.12)

satisfies (2.9). Indeed,

∇ ·
(
∇COUT

0 − QOUT
0 ∇φOUT

0

)
= ∇ ·

(
∇COUT

0 − q∇φOUT
0

)
= ∇ ·

(
∇COUT

0 − q
α

COUT
0 + αq

∇COUT
0

)

= ∇ ·
(

COUT
0

COUT
0 + αq

∇COUT
0

)

=
1

α
∇ ·

(
COUT

0 ∇φOUT
0

)
= 0, (2.13)

by (2.11). Equation (2.12) indicates that the homogeneous Neumann boundary conditions

are satisfied by COUT
0 and φOUT

0 if any linear combination of them satisfies this boundary

condition.

1 The relation (2.10) for the particular case q = 0 was introduced in the Study Group meeting

by Professor John King [6, p. 6, eq. (3.16)]. A similar relation for the one-dimensional case appears

in [13, p. 59, eq. (4.53)] and [1, p. 637, eqs. (45)–(47)].
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The calculation (2.13) also shows that the constant α is the proportionality constant

between the electric current J e = J n − J p and the diffusion current J d = J n + J p

J e0 = −
[
∇QOUT

0 − COUT
0 ∇φOUT

0

]
= α

[
∇COUT

0 − QOUT
0 ∇φOUT

0

]
= −αJ d0. (2.14)

Note that QOUT
0 ≡ const, consequently (2.9) gives in the outer zone

Δ
(
COUT

0 − qφOUT
0

)
= 0, (2.15)

that is, COUT
0 − qφOUT

0 is a harmonic function, for which Neumann boundary conditions

are prescribed (note that qφOUT
0 is physically interpreted as the energy of the capacitor, or

the energy to put the doping charge q where it is with potential φOUT
0 – this is the minimal

electrostatic work needed to build the protein from a hypothetic uncharged precursor).

Combining equations (2.10) and (2.15) we conclude that

(
COUT

0 + αq
)

− αq ln
(
COUT

0 + αq
)

(2.16)

is a harmonic function.

2.1 The case q ≡ 0, Ohm’s law and Fick’s law

In the special case where there is no permanent charge, i.e., q ≡ 0, it is possible to find

explicit current–voltage relations.

Substituting q = 0 in relations (2.10) and (2.15) gives

φOUT
0 = α lnCOUT

0 + β, (2.17)

where COUT
0 is a harmonic function (ΔCOUT

0 = 0). The constants α and β are determined

by the boundary conditions

φOUT
0 = φL +

φL − φR

lnCL − lnCR

(
lnCOUT

0 − lnCL

)
. (2.18)

The absence of permanent charge simplifies the relation for the leading order electric

current and diffusion current (2.14)

J d0 = ∇COUT
0 , (2.19)

J e0 =
φL − φR

lnCL − lnCR
∇COUT

0 . (2.20)

Fick’s law is depicted in equation (2.19) stating the diffusion flux equals the gradient of

the concentration. Ohm’s law is rendered in equation (2.20) showing the electric current

is proportional to the applied voltage φL − φR.

The total fluxes (integrated over any cross section) depend on the specific structure, be-

cause the harmonic function determining the concentration profile is geometry-dependent.

We consider the example given in [6, p. 7] chosen for its mathematical simplicity as it

allows a separation of variables solution. We find equivalent formulas for our variables
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to those given in [6, p. 8]. The example is that of a channel lying inside the hyperboloid

ρ2

cos2Θ
− z2

sin2Θ
= 1, (2.21)

where ρ and z are cylindrical polar coordinates and Θ parameterize the hyperboloid.

Note that Θ = 0 corresponds to an impermeable boundary at z = 0, ρ > 1 and a

hole at z = 0, ρ < 1. Note also that the hyperboloid gives a good approximation to the

funnel shape of the protein associated with the ion channel. Introducing oblate spheroidal

coordinates

ρ = cosh ξ cos η, z = sinh ξ sin η, (2.22)

the domain lies in −∞ < ξ < ∞, Θ < η � π/2. Separation of variables gives the

concentration

COUT
0 =

CR − CL

2

[
4

π
arctan(eξ) − 1

]
+
CR + CL

2
. (2.23)

Therefore,

∇COUT
0 (ξ = 0) =

CR − CL

π sin η
eξ, (2.24)

where eξ is a unit normal vector to constant ξ surface.

We reintroduce the length scale a and find the total diffusion flux to be

Jd0 = aπ

∫ π/2

Θ

CR − CL

π sin η
sin η cos η dη = a(CR − CL)(1 − sinΘ), (2.25)

and the total electric current is

Je0 = a
φL − φR

lnCL − lnCR
(CR − CL)(1 − sinΘ). (2.26)

As mentioned earlier, the total fluxes (2.25)–(2.26) are scaled with a. When a → 0, the

pore shrinks and the total fluxes vanish.

The electric resistance of the channel scaled with a is

R = −φL − φR

Je0
=

lnCL − logCR

a(CL − CR)(1 − sinΘ)
. (2.27)

The L’Hospital rule applied to (2.27) for the case CL = CR implies

R(CR = CL) =
1

aCL(1 − sinΘ)
. (2.28)

In such a case when the channel is scaled with a, the conductance of the channel is

proportional to the concentration.

Finally, we would like to remark on the difference between electro-neutrality and

equilibrium. Note that the solution (2.17) can be represented as

n0 = p0 =
COUT

0

2
∝ eφ/α, (2.29)
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Figure 2. Current–voltage characteristic curve: CL = 3, CR = 2, (i) q = −1 for −1 < z < 1 (solid)

(ii) q ≡ 0 (dashed). The asymptotic I–V curve is linear for the neutral channel by Ohm’s law,

but saturates for the charged channel. Saturation occurs at large voltages, where the asymptotic

expansion is no longer valid.

which is different from the equilibrium Boltzmann distributions

n ∝ eφ, p ∝ e−φ. (2.30)

It is widely believed that away from the channel the bath may be viewed to be in equi-

librium, or at least near equilibrium. Due to that belief, for example, the pair correlation

function in the bath is approximated by that of equilibrium. There are good reasons

supporting the equilibrium belief. First, the ion concentrations in the bath are nearly

constant and the electric field almost vanishes, as in equilibrium. Second, equilibrium is

characterized by zero net flux of all ions. Indeed, as we move away a distance r from the

channel, the local fluxes are attenuated as 1/r2. Mathematically, one can view small fluxes

as a perturbation to equilibrium and look for a near-equilibrium solution. The solutions

(2.29) and (2.30) agree to leading order (in 1/r), because they both tend to constant as

r → ∞, but their first order 1/r correction is different. Why is (near) equilibrium violated?

The mathematical explanation is that electro-neutrality takes over the problem in the

form of the small parameter ε which seems to have a profound effect more than any other

physics in the problem. The physical explanation is that the total current in the baths
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Figure 3. Non-physical current–voltage characteristic curve: Allowing negative concentrations

gives rise to two additional branches of unbounded electric current.

must equal the current through the channel (by conservation and/or Kirchoff’s law) and

that is not zero.

3 One-dimensional approximation

The three-dimensional PNP system (2.1)–(2.3) is often approximated by the one-

dimensional ODE system [22] (aka the slowly varying approximation)

ε2

A(z)

d

dz

(
A(z)

dφ

dz

)
= Q− q, (3.1)

A(z)

[
dQ

dz
− C

dφ

dz

]
= −Je, (3.2)

A(z)

[
dC

dz
− Q

dφ

dz

]
= −Jd, (3.3)

where the two transport equations are already in an integrated form and Je, Jd are the

total fluxes. The function A(z) represents the surface area of equipotential and equi-

concentration shells. The area function A(z) grows indefinitely with z into the bath,
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Figure 4. Current–voltage characteristic curve: CL = 3, CR = 2, q = −1 for −1 < z < 1:

(i) Numerical (dashed), and (ii) Asymptotical (solid).

e.g.,

A(z) = 1 + z2, −∞ < z < ∞. (3.4)

The change of variables

ds

dz
=

1

A(z)
(3.5)

maps the infinite axis −∞ < z < ∞ to a finite interval given
∫ ∞

−∞
dz
A(z)

< ∞ and the ODE

system (3.1)–(3.3) to

ε2

A(z(s))2
d2φ

ds2
= Q− q, (3.6)

dQ

ds
− C

dφ

ds
= −Je, (3.7)

dC

ds
− Q

dφ

ds
= −Jd. (3.8)

The geometry appears in merely a single place as a pre-factor in the Poisson equation.

For example, for A(z) = 1+ z2 (1.17) we have s = arctan z, A(z(s)) = 1+ tan2 s = 1/ cos2 s
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Figure 5. Current–voltage characteristic curve: CL = 0.3, CR = 0.2, q = −1 for −1 < z < 1:

(i) Numerical (dashed), and (ii) Asymptotical (solid). This shows the need for a correction when V

becomes large.

and the Poisson equation takes the form

ε2 cos4 s
d2φ

ds2
= Q− q, −π/2 < s < π/2. (3.9)

The transformation shows that the actual length of the interval used in [1, 16] is L =∫ ∞
−∞

dz
A(z)

rather than the physical length of the channel when modelled as a cylinder.

Furthermore, the transformation also changes the location of the junctions. Note that the

geometry factor is multiplied by ε2, so it has no leading order effects, other than those

mentioned above.

The ODE system (3.6)–(3.8) is a singular perturbation problem, because the small

parameter ε multiplies the high-order derivative. The approximate solution consists of an

outer solution and inner (boundary layer) solutions that are formed at the junctions.

The three-dimensional outer solution relations (2.7), (2.10) and (2.16) hold for the

one-dimensional case as well. In particular, (2.16) reads

COUT
0 − αq ln(COUT

0 + αq) = −Jds+ γ, (3.10)
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Figure 6. Concentration profile: numerical solution (dashed) vs. leading order outer solution

(solid); CL = 3, CR = 2, V = 0, ε = 0.0687, q = −1 for −1 < z < 1.

where γ is a constant to be determined by matching (in one dimension, a harmonic

function is also a linear function).

The outer solution net charge QOUT
0 is discontinuous at the junction s = s∗, where its

value jumps from 0 to q0. For that reason, a boundary layer is introduced, characterized

by the local variable ξ = (s− s∗)/ε. The boundary layer equations are

1

A(z(s∗ + εξ))2
d2φ

dξ2
= Q− q, (3.11)

dQ

dξ
− C

dφ

dξ
= −εJe, (3.12)

dC

dξ
− Q

dφ

dξ
= −εJd. (3.13)

The fluxes are swept away to leading order, giving rise to the equilibrium Boltzmann

distributions

n =
1

2
(C + Q) =

1

2
C0e

φ−φ0 , (3.14)

p =
1

2
(C − Q) =

1

2
C0e

−(φ−φ0), (3.15)
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Figure 7. Potential profile: numerical solution (dashed) vs. leading order outer solution (solid);

CL = 3, CR = 2, V = 0, ε = 0.0687, q = −1 for −1 < z < 1.

where C0 and φ0 are the values of the outer concentration and potential approaching the

junction from the bath, where QOUT
0 = 0. Multiplying equations (3.14) and (3.15) yields

np =
1

4
(C2 − Q2) =

1

4
C2

0 . (3.16)

On the other side of the junction the net charge is QOUT
0 = q0. The charge QOUT

0 = q0 forms

part of the capacitance measured across the membrane containing both lipid bilayers,

channel protein and the pore through the protein. In general QOUT
0 = q0 will depend

non-linearly on transmembrane voltage and will appear as a non-linear capacitance

[3, 4]. Components of capacitance of this sort contribute importantly to the properties

of semiconductor diodes and junctions [28]. The charge QOUT
0 = q0 gives the matching

concentration value

Cq =

√
C2

0 + q2
0 (3.17)

(Physical concentrations are non-negative. Moreover, equation (2.10) (with q = 0) shows

that negative concentrations lead to complex electric potential). Similarly, dividing (3.14)

and (3.15) gives

φq = φ0 +
1

2
ln

(
Cq + q0

Cq − q0

)
. (3.18)
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Figure 8. Net charge profile: numerical solution (dashed) vs. leading order outer solution (solid);

CL = 3, CR = 2, V = 0, ε = 0.0687, q = −1 for −1 < z < 1.

Relations (3.17) and (3.18) match the two outer solutions across the junction, without

solving explicitly the boundary layer equations (that turn out to be the Poisson–Boltzmann

equations).

Gillespie [13] derived these formulas in a more general system where the fixed charge

q and diffusion coefficients Dn and Dp are piecewise constant along z. On each segment

i (z(i) < z < z(i+1)) where these functions are constants with values q(i)
0 , D(i)

n and D(i)
p , the

outer solutions (to leading order) on each segment are

C
(i)
0 (z) − C

(i)
0

(
z(i)

)
+ q

(i)
0

J
(i)
−

J
(i)
+

ln

⎛
⎝ C

(i)
0 (z) − q

(i)
0
J

(i)
−
J

(i)
+

C
(i)
0

(
z(i)

)
− q

(i)
0
J

(i)
−
J

(i)
+

⎞
⎠ + J

(i)
+

∫ z

z(i)

dz′

A (z′)
= 0 (3.19)

and

φ
(i)
0 (z) = φ

(i)
0

(
z(i)

)
− J

(i)
−

J
(i)
+

ln

⎛
⎝ C

(i)
0 (z) − q

(i)
0
J

(i)
−
J

(i)
+

C
(i)
0

(
z(i)

)
− q

(i)
0
J

(i)
−
J

(i)
+

⎞
⎠ (3.20)

where

J
(i)
± =

Jn

D
(i)
n

± Jp

D
(i)
p

. (3.21)
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Figure 9. Concentration profile: numerical solution (dashed) vs. leading order outer solution

(solid); CL = 0.3, CR = 0.2, V = 0, ε = 0.0687, q = −1 for −1 < z < 1.

To connect these outer solutions across each segment boundary (that is, to determine

C
(i)
0

(
z(i)

)
from C

(i−1)
0

(
z(i)

)
, for example),

C
(i)
0

(
z(i)

)
=

√(
C

(i−1)
0

(
z(i)

))2
+

(
q

(i)
0

)2 −
(
q

(i−1)
0

)2
(3.22)

and

φ
(i)
0

(
z(i)

)
= φ

(i−1)
0

(
z(i)

)
+

1

2
ln

(
B(i)

B(i−1)

)
(3.23)

where

B(i) =
C

(i)
0

(
z(i)

)
+ q

(i)
0

C
(i)
0

(
z(i)

)
− q

(i)
0

. (3.24)

4 Numerical study

At this point we have all the ingredients to compute the current. In the case of three

segments (two baths and the charged channel), one can determine the current with the

following algorithm. Given a diffusion current Jd0 the concentration C0 at the entry to

the junction is calculated using (3.10) (with q = 0). The matching condition (3.17) then
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Figure 10. Potential profile: numerical solution (dashed) vs. leading order outer solution (solid);

CL = 0.3, CR = 0.2, V = 0, ε = 0.0687, q = −1 for −1 < z < 1.

gives the concentration at the other side of the junction, into the charged zone at both

ends. Equation (3.10) is used once again, this time with q = q0, and uniquely determines

the value of α, which by equation (2.14) is the ratio of the electric and diffusion currents.

The electric flux is then used to calculate the potential outside the junction in the left

bath (2.10) and using (3.18) into the charged zone and once again in the right bath,

resulting in the value of φR. Overall, we find the potential V = φR − φL and electric

currents Je0 as functions of the diffusion current Jd0 . The curve (V , Je0) is known as the I –V

(current–voltage) characteristic curve of the device.

Figure 2 shows asymptotical current–voltage curves corresponding to bath concentra-

tions CL = 3 and CR = 2 and two different permanent charge profiles: (i) q = −1 for

−1 < z < 1 with A(z) = 1 + z2 (or q = −1 for |s| < π/4 and q = 0 for π/4 < |s| < π/2),

and (ii) q ≡ 0 (no permanent charge), where Ohm’s law predicts linear I–V curve.

For the negative charged channel, the values of Jd0 do not exceed 4
π
CL and − 4

π
CR,

because non-physical negative concentrations are excluded. In such a case there is a

single electric current for a given applied potential. If one allows non-physical negative

concentrations and complex electric potential values, then ‘mathematical’ multiple currents

may be found [11], as shown in Figure 3 for sufficiently high voltages.

Next, we compare the leading order asymptotical result with the numerical I–V curve,

obtained by solving the ODE system (3.1)–(3.3) numerically with ε = 0.0687. Figure 4
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Figure 11. Net charge profile: numerical solution (dashed) vs. leading order outer solution

(solid); CL = 0.3, CR = 0.2, V = 0, ε = 0.0687, q = −1 for −1 < z < 1.

shows an excellent agreement between the numerical and asymptotical results for con-

centration boundary values CL = 3 and CR = 2. The approximation gets poorer at very

high voltages, where we enter a different asymptotical regime, as V is no longer O(1) but

rather O(1/ε), violating our perturbation analysis assumptions. In particular, even though

the asymptotical electric current saturates to a limit value as V → ±∞, the numerical

electric current grows up indefinitely. This behaviour is better depicted in Figure 5 that

shows the I–V curve for CL = 0.3 and CR = 0.2.

Finally, we compare the numerical profiles of concentration, net charge and potential

with those predicted by the leading order outer expansion. Figures 6–8 show this compar-

ison for the negative charged channel with CL = 3, CR = 2, V = 0 and ε = 0.0687. The

figures demonstrate that the outer solution is a very good approximation of the numerical

solution, but for the two boundary layers where the permanent charge is discontinuous, as

predicted by the above analysis. Figures 9–11 show the successful approximation when the

boundary concentration values are changed to CL = 0.3 and CR = 0.2. The total electric

current, which is the single measured output of the device, is constant and therefore

can be evaluated at a single point away from the boundary layers, where the outer and

numerical solutions show an excellent agreement. In that sense, the exact boundary layer

profiles are unimportant for the determination of the fluxes.

Our work shows the importance of the access regions to channel conduction. It is clear

that analyses without the access region can be misleading. We expect that different types
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of channels will have access regions specialized for their particular evolved function. Few

complete structures of channels—including access regions—are known today to evaluate

this idea.
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