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Abstract. The effect of fluctuations on the conductivity of ion channels is
investigated. It is shown that modulation of the potential barrier at the selectivity
site due to electrostatic amplification of charge fluctuations at the channel mouth
exerts a leading-order effect on the channel conductivity. A Brownian dynamical
model of ion motion in a channel is derived that takes into account both
fluctuations at the channel mouth and vibrational modes of the wall. The charge
fluctuations are modeled as a shot noise flipping the height of the potential barrier.
The wall fluctuations are introduced as a slow vibrational mode of the protein
motion that modulates ion conductance both stochastically and periodically. The
model is used to estimate the contribution to the conductivity of ion channels
coming from the electrostatic amplification of charge fluctuations.
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1. Introduction

Ion transport through the channels in cellular membranes underlies all electrical signal
transduction and processing by living organisms. Accordingly ion channels, being natural
nanotubes, control a vast range of biological functions in health and disease. The
understanding of their structure—properties relationship is the subject of intensive, ever-
growing, fundamental and applied research in biology, physics, and nanotechnology [1, 2].
A central problem in studies of ion permeation through biological membrane channels is
to understand how channels can be both highly selective between like ions and yet still
conduct millions of ions per second [3]. Indeed, selectivity between ions of the same charge
implies that there exists a deep potential well for conducting type ions at the selectivity
site of the channel. On the other hand such channels can pass up to 10® ions per second [4]
corresponding to almost free diffusion.

Significant progress has been made towards an understanding of this problem over the
last few decades. In particular, the molecular structure of the KcsA potassium channel [5]
that discriminates between Na®™ and K+ was determined by crystallographic analysis.
Furthermore, by detecting the size of the structural fluctuations [6] and conformational
changes [7], it has become possible to provide the experimental information needed for
molecular modeling of the dynamical features of the observed selectivity and gating [8, 9].
In particular, the minimum radius of the selectivity filter in KesA is ~0.85 A, which is to
be compared with 1.33A for the ionic radius of K*, suggesting that flexibility of the filter
is coupled to ionic translocation [10]. It has therefore become apparent that fluctuations
in the channel walls play a fundamental role in maintaining high conductivity in highly
selective channels (see also Elber [11]).

Another important source of modulation of the electrostatic potential identified in
earlier research [12,13] relates to the interaction of the ion in the channel with charge
fluctuations in the bath solutions. The effect of current fluctuations and noise on the
channel entrance rates and on the channel conductivity was also considered in [14, 15]. It
becomes clear that fluctuations of the electrostatic potential within ion channels induced
by various sources may provide a key to the solution of the central problems of permeation
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and selectivity. Models of such fluctuations have thus a central role in research on the
permeability of ion channels. It is important to note that dynamical models of ion
motion in the channel can also provide a link between studies of the permeability of open
channels and channel gating. Notwithstanding recent advances, theoretical modeling of
the dynamical features of ion channels is still in its infancy. In particular, little is yet
known about the relative importance of the different dynamical mechanisms and sources
of fluctuations in the ion channels.

In our earlier work we started to develop a dynamical model [16]-[21] of ionic
conductivity through open channels. It takes into account the coupling of ion motion
to vibrations of the wall [16,17] and to charge fluctuations at the channel mouth [19, 20].
Our goal is to derive a self-consistent model that allows for analytical estimation of the
potential barrier at the selectivity site and for the effects of fluctuations on the conductivity
of the channels. The starting point of our approach is a self-consistent quasi-analytical
solution of the Poisson and Nernst—Planck equations in the channel, and in the bulk [21],
allowing for accurate estimation of the current-voltage characteristics of ion channels [22]
(see also [23]-[27]). The electrostatic channel potentials resulting from these estimates can
be further used to estimate the relative contributions to the channel conductivity from
the different sources of fluctuations.

In this paper we introduce a model of ion permeation that takes into account the
dynamical effect of the charge fluctuations through the resultant shot noise, and we
demonstrate that the latter has a leading-order effect on the transition probabilities.
We show that charge fluctuations at the channel mouth can be modeled as a flipping of
the electrostatic potential at the selectivity site, which fluctuates between two maximum
values at a rate corresponding to the random arrivals of ions at the channel mouth. The
theoretical framework developed will allow us in the future to include into the model
the modulation of the potential at the selectivity site due to hydration effects inside the
channel.

A model of 3D Brownian dynamics simulation of ions in the bulk and inside the
channel is described in section 2. Using results of the 3D simulations in the bulk we present
in section 3 a reduced model of an ion moving in the channel and interacting with the wall
vibrational modes and with charge fluctuations at the channel entrance. The model uses
the channel potential derived from a self-consistent solution of the Poisson equation and
the flipping rates of the potential barrier obtained from simulations of Brownian motion
of ions in the bulk. In section 4, we estimate analytically the mean first-passage time
of the channel. These estimates are based on the assumption that barrier crossing and
barrier fluctuations are correlated for a general form of the potential barrier [28]. The
mean first-passage time is calculated as a weighted sum of the escape time 7_ over the low
barrier AFjy, and the escape time 7, over the high barrier AF;. The results are compared
with single-channel data in section 5. Conclusions are drawn and future directions of
research are outlined in section 6.

2. Brownian dynamics simulations in the bulk and inside the channel

We consider the following Brownian dynamical model of the ion permeation (see the
sketch in figure 1 (left)). The system is comprised of three compartments of equal
size. The middle block represents the protein, through which there is a cylindrical hole
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Figure 1. Left: sketch of the model. The middle block represents the protein,
through which there is a cylindrical hole approximating the open ion channel.
The moving charged segment of the protein wall, assumed elastically bound to
the wall, is shown by the filled squares. Negative ions are shown by the filled
circles, and positive ions by the open circles. Right: sketch of an ion moving along
the channel axis. The conducting ion is shown by a red circle. The difference
between ion coordinate x and location of the selectivity site xg is z. The vertical
displacement of the selectivity site is dR. The angle between a line connecting
the ion with the selectivity site and the vertical axis is 3.

approximating the open channel. To model the ion’s coupling to the vibrational modes of
the channel, we introduce a moving segment of the protein wall that is elastically bound
to the wall. The moving segment is charged and represents the selectivity site. The
dynamics of the ions in the bath and channel, and of the moving segment, are modeled
using Brownian dynamics (BD) simulations; see equations (2)—(5) coupled to the Poisson
equation (1).

=V - (e(M)Ve(7)) = p(7), 1

Ml + My = ﬁc,i + ﬁsr,i + FHZ + v 2mz‘%‘kBT5(t)a

(1)
(2)
mj.%j + mj”yji"j = ﬁC,j + ﬁsr,j + ﬁH,j + \/W@(t)a (3)
(4)
(5)

mi +myt = Fo + Fo, + Fipisin(f) + / 2myksTE(), 4

MGSR 4+ MTGSR + KSR = Fyy pr cos(B) + /2MTksTv(t). 5

Here 73; = @; — @}, ri; = |ri;|; and my, @; and ¢;, m;y; and /2m,;y;kgT’ é;(t) are the mass,
position, charge, friction coefficient and the stochastic force of or on the ¢th ion. The
distance between ions ¢ and j is r;;. For simplicity, we restrict the analysis to two types of
ion: the index 7 will correspond to Na™, while index j corresponds to C1~. The motion of
the charged residual of mass M at the selectivity site is characterized by the displacement
0R in the vertical direction from the equilibrium position R and an elastic force xKJR.
Note that, in general, values of the effective mass and diffusion constant D of the ion
moving within the channel may deviate from the corresponding values in bulk due to the
non-trivial effect of hydration in the channel. Coupling between the motion of the ion in
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the channel and the normal mode of the wall oscillations is accounted for by the term Fj,
corresponding to the Coulomb interaction between ion and charge at the selectivity site.
Retaining only the axial component of the force for the ion motion in the channel, and
the radial component of Fj,, for the oscillating wall, we have

QQj z Q%’ R

w,i — - jw,M — - -
Areegd? d’ dreegd? d

Here d = \/((R+0R)?+ 2%), z = © — s where z is the coordinate of the ion in the
channel, measured along the channel axis, and x4 is the location of the selectivity site.
An additional coupling of the ion motion to fluctuations of the channel wall is effected
via modulation of the channel potential by the moving wall. This is taken into account
through the term Fy, in equation (4). The ions in the bulk (see equations (2), (3)) do not
feel the channel potential. Instead, their motion is governed by the Coulomb interaction
F¢, by the short-range interaction Fj,, and by hydration forces Fy [3]:

N

N — —
o qq;  Tii o OUWR? 75
Fo,= E Y Fai= E ¢4

10

2 -
1 47T€€0Tij Tij =1 ij Tij
N -
— RZ—TZ RZ—TZ Tiq
FH,Z' = E |:AUO exp (% Sin 277'% — 7'_]’
=1 e w ij

where A = \/1+ (a,,/2ma,)? and a = arctan(a,,/2ma,).

The effect of the surroundings is taken into account by the average frictional force
with friction coefficient m;v; and a stochastic force v/2m;~;kgT’ é(t) The addition of the
pairwise repulsive 1/79 soft-core interaction potential ensures that ions of opposite charge,
attracted by the inter-ion Coulomb force, do not collide and neutralize each other. U,
and R, are respectively the overall strength of the potential and the contact distance
between ion pairs. The oscillating part, added to the potential, takes explicit account
of the internuclear separation for the two solvents, where a,, is the oscillation length, a,
is the exponential drop parameter, and R;; is the origin of the hydration force which
is shifted from R, by +0.2 A for like ions and by —0.2 A otherwise [29]. F, is the
dielectric force in the channel, obtained by solving Poisson’s equation numerically using
finite volume methods (FVM) [30]. We use the Langevin equation to model the collective
motion of the atoms forming the channel protein’s charged ring located at the selectivity
filter. In this way, our analysis is based on the assumption that the movement of structural
domains of the channel protein may be described as the motions of independent, elastically
bound Brownian particles [31]. We have included the damping term MTI'6R and the
corresponding random force \/2MTkgTv(t), whose amplitude is related to the damping
constant via the fluctuation-dissipation theorem. The function v(t) is a Gaussian white
noise. () is the total fixed charge on the flexible ring interacting with an ion of charge
¢; on the channel axis z. R is the channel radius, 0 R is a small variation of the channel
radius and K is the elastic constant of the channel protein. In the particular case of the
Gramicidin A (GA) channel, the value of the elastic constant is estimated by calculating
the root mean square deviation (RMSD) of the backbone forming its central part, together
with the single-ion potential of a Na* ion as it traverses the channel. Using data from [32],
we obtain an elastic constant of ~1.66 N m~' for a maximum RMSD of 1 A. The GA
channel molecular weight M is about 4 kDa = 6.64 x 1072* kg [33]. The diffusion constant
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Table 1. Parameters used in the calculation of the short-range ion—ion interaction
with hydration.

Tons U (kgT) R. (A) R(A) aw (A) ac(A)

Na-Na 0.5 3.50 3.7
Na-Cl 8.5 2.76 2.53 2.76 1.4
Cl-Cl 1.4 5.22 5.42

of the protein in the membrane is between 107! and 1076 m? s7! [34]. The parameters of
the ion—ion interaction are presented in table 1. Other parameters used in the simulations
are: dielectric constants g5 = 80, &, = 2; masses (kg) mya = 3.8x107%, m¢ = 5.9 x 107%;
diffusion coefficients (m? s™') Dy, = 1.33 x 1077, D¢y = 2.03 x 1079 (where D is related
to the friction coefficient via D = (kgT/m~)); ion radii (A) rna = 0.95, r¢p = 1.81;
temperature (K) 7" = 298.

3. Reduced model for ion channel conduction

To derive the reduced model we note that equations (1)—(5) correspond to a many-body
problem with widely varying timescales, ranging from ps (ion fluctuations) to ns (wall
vibrations). We further assume that the channel is occupied most of the time by only
one ion, and that the rate of transition of ions through the channel is mainly determined
by escape over the potential barrier at the selectivity site. Thus the effect of the many-
body ion dynamics in the bulk on the ion motion in the channel is twofold: (i) delivery
of ions to the channel mouth and (ii) modulation of the channel potential by the charge
fluctuations at the channel mouth. Under these physiologically plausible assumptions one
can separate the ion motion in the channel from the many-body ion dynamics in the bulk.
The resulting equations of ion dynamics in the channel coupled to the wall fluctuations
can be written as follows:

myi = —w + \/2myksT £(t), (6)

X
MGSR 4+ MTSR + KSR = Fyy py cos(3) + /2MTksTv(t). (7)

Note that the reduced motion of the conducting ion is overdamped, whereas the wall
fluctuations are damped. The damped vibrational mode models the relatively slow (on
a timescale of ns) motion of the protein of the channel walls that was suggested [35,12]
to be essential for the ion transport process. The potential V' (z,t) in our approximation
is made up of three main contributions: (i) the potential of Coulomb interaction with
ions in the bulk solution Vi; (ii) the electrostatic potential induced by interaction with
the channel protein Vg,; (iii) the potential of Coulomb interaction with the wall charge
at the selectivity site. By an averaging procedure, the effect of multi-ion motion in the
bulk solutions is reduced to the Coulomb interaction with ions arriving at the channel
mouth. The later process can be viewed as a stochastic Poisson process or as shot noise
that modulates the potential barrier for the conducting ion at the selectivity site. Our
goal is to estimate analytically the effect of this potential modulation on the channel
conductivity, as will be discussed in detail in the next section.
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Figure 2. Simulations of Brownian dynamics in the bulk liquid. Left: the
number of ions as a function of the distance between ions of different types:
C = 400 mmol; box size: 40 A. Forces included in the simulations were:
(i) Coulomb interaction; (ii) short-range repulsion; (iii) hydration. Right: the
arrival time distribution for positives (solid line) and negative (dashed line) for
cylindrical channel of radius 7 = 6 A.

To quantify the effect of multi-ion motion in the bulk on the conducting ion at the
selectivity site, we have simulated the ion’s Brownian dynamics. The resulting ion-ion
distributions in the bulk are shown in figure 2 (left). We emphasize that these distributions
are very close to those obtained earlier in both BD simulations [3] and experiments [36].
The arrival time distributions for Na* and Cl~ ions at the channel mouth (defined as a
cylindrical section of radius R and length R) obtained in our simulations are shown in
figure 2 (right). Note that these distributions are exponential for both C1~ and Na™ with

mean arrival times 77 = 471 ps and 77 = 365 ps respectively. These estimates are in
agreement with the theoretical estimates in [37]:
1
Tarrival = ma (8)

where c is the ion concentration. The time evolution of the charge in the channel mouth is
shown in figure 3 (left). It can be seen that the charge at the channel mouth is a Poisson
process with the three main states being +1e, 0, and —1e. As a first approximation it is
convenient to divide the states of the channel potential affected by the charge fluctuations
into two effective states: (i) a state of high conductivity, corresponding to +1e; and (ii)
two states of low conductivity, corresponding to 0 or —1le at the channel mouth. In this
approximation the effect of having three states of the potential is taken into account by
asymmetry of the transition rates between the two effective states. The corresponding
transition rates can be estimated as a® = 1/(T%), where (1) are mean residence times
of two effective states, giving (a™)™' = 0.22 and (a”)~' = 0.38 ns. The occupation
probabilities of these two states are 0.36 and 0.64 respectively. The effect of the wall
oscillations on the channel potential was estimated earlier [20] and for simplicity the wall
will be assumed rigid in the rest of the paper.

To estimate the effect of charge fluctuations on the value of the channel potential we
solve the Poisson equation for various positions of the conducting ion along the channel
axis in two cases: (i) when there are no other ions at the channel entrances; (ii) when there
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Figure 3. Left: charge fluctuations at the channel mouth. Positive charge is
shown by the solid line and negative charge by the dashed one. Right: the
potential energy profiles as a function of the position of the ion when: the first
ion is fixed at the channel mouth (dashed line) and the second is moving along
the channel axis. The solid line corresponds to the potential energy of a single
ion moving on the channel axis, and the dotted line to the potential energy of the
passive channel. The vertical dashed lines show the channel entrance and exit.
The height of the potential energy barrier seen by a single ion at the selectivity
site as it moves from the left-hand side to the right-hand side of the channel is
denoted as AFy. In the presence of a second ion at the channel’s left mouth this
barrier is reduced to AE;.

is one positive ion at the left entrance to the channel. The results of these calculations
are shown in figure 3 (right). The low conductivity effective state of the channel is
shown by the blue solid line and corresponds to the potential barrier ~1kgT at the
selectivity site. The high conducting state is shown by the dashed line and corresponds
to a potential barrier height ~0.2kgT, i.e. practically no barrier state. It can be seen that
the charge fluctuations are enhanced in channels of low dielectric constant, resulting in
strong modulation of the potential barrier at the selectivity site [20] (see also [38]). It is
therefore possible to build a simple model capable of coupling the motion of ions in the
channel to the bath solution. The channel potential becomes

Vi+ Vo V.-V

V(z,t) = + x(t), x(t) = £1,
N ’ AL, 9)
Vi = ml(x—xo)—l—Ea“, V.o = xo(x—x0)+E()_

where x(t) is a Poisson random force with two rates of transition a4 between the states
+1 and —1. The charge fluctuations at the channel mouth thus result in flipping of the
potential. Here AEy = E; — E; and AE, = Ef — E, with AEy > AF) are respective
barriers of the potential in two states, and x,, = 1 — xy.

A direct analogy can be made between the model described by equation (6) and the
model described by Ziircher [28] whose barrier fluctuation is controlled by a dichotomic
noise of zero mean and exponential correlation. An approximation of the fluctuating
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Figure 4. Approximation of the fluctuating potential.

potential is sketched in figure 4. The similarity of the two problems suggests that there
is some possibility of semi-analytical estimations of the effect of the charge fluctuations.

4. Estimation of the mean channel crossing time

We are interested in the transition of a particle initially trapped at the channel selectivity
filter. This corresponds to the motion of the ion across the interval [rg,z;]. The
approximate potential in this interval is given by (9). We are interested in unidirectional
current, so there is no backward flow of ions. We assume that, on average, the channel is
always occupied by a single Na™ ion. This arises from the fact that, when an ion is sitting
in the middle of the channel, it is almost impossible for a second ion to enter the channel
due to the height of the barrier at the left entrance of the channel, as can be seen from
figure 4.

As a first approximation, we assume that the mean first-passage time (MFPT) is only
determined by escape. Therefore the MFPT for the channel is expected to be a function
of the two times 7, and 7_ corresponding to the times of escape from the potential
minimum in two effective states of the potential. Our derivation follows very closely the
earlier discussion by Ziircher [28] with the difference that, here, we are interested in the
asymmetric case with two transition rates.

Assuming no backflow, the quantities 7 (z) are defined [39] by

—1dv,.d kpT d?
o IRt o = —ps, (10)

my dz dz = my da?

—1dVodr. | kgT d*7_
my dr dzx my da?

—a T +atry=—p_. (11)

The potential jumps between positive and negative values, with respective rates o™ and
a~. p+ are the occupation probabilities of these states. We choose a reflecting boundary
condition (BC) at the bottom of the barrier x = z, and an absorbing BC at the top of
the barrier z = x4,

dry(z = xp)
dx
doi:10.1088,/1742-5468,/2009/01 /P01010 9
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with 7, and 7_ specified, and the mean exit time of the Brownian particle initially trapped
at the selectivity filter x = xg is given by

T =74 (x0) + 7 (). (13)
Following Ziircher [28], the calculation of 74 is straightforward. We introduce
E = M’ A = M’ (14)
2 2
and
o(r) =a’ 1 (x) + o 7_(2), §(x) =atr () —a 7_(2). (15)
We find the coupled differential equations
—DFE do d20 DA do
——+D— oy —apl)d — 16
—DFE do d2§ DA do
— ) oy —apl) = — 17
T dr + Pqgr ~ @ T )0 (@Tpe —aTpo) = PO (17)
where D = Dy,, and the boundary conditions
do(z ==z do(z ==z
olx=x)=0, % =0, d(z =mz) =0, ( o 0) =0 (18)
We introduce the following scaled dimensionless coordinate:
xkaT
= ) 19
oY (19)
The model is therefore characterized by the following parameters:
B (l’kaT)2 B A o T0 + _ To
W=2"pe s 1= A=gleiptatp), f=(aTpy—aTp).
(20)
The coupled differential equations then read
do d%c d(5
- 21
A +— 07 +A=030+n— m (21)
do d26 do
—— — =n— 22
and o(y) and (5(y) are subJect to the BC
do(y = wo) dd(y = yo)
U(y yl) ) dy ) (y yl) ) dy ( )
The solution of this system gives
—A
Z s exp(gy) + L2 (24)

(A Bn)

doi:10.1088/1742-5468,/2009,/01/P01010 10
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The eigenvalues ¢; follow from

G+ @t+ag =2
B2 + g3 + 31 = 1 — X =1, (25)
01G293 = — (A — ).

The a; are given as follows:

0 = _% <q3(q§ —A) — (s — /\)) exp((gs + g2)v0)
- Dis (A(/\ﬁ—i_g:) - 5) (g3 exp(gsyo + @211) — G2 exp(gsyr + @230))-  (26)

Here a; and ag are determined by cyclic permutation of the indices of the ¢; from a;, and
Dy is given by

Dy = q1g2(q2 — q1)(g3 — 1) exp((q1 + q2)y0 + q3y1) + cyclic permutations. (27)
At yo, we have

= Zal K —14¢q— A) exp(qiyo) (qi - qi) eXP(Qi?Jl)}
(
(

h _B=x) [AB=M) B],
n(\ — Bn) L] A — 1) n](yl bo)- 28)

Combining equations (13) and (15), the mean exit time for the Brownian particle follows:

(o) + 6(vo) " a(yo) — 6(yo)
N 2at 2a~ '
The effect of shot noise on ion channel conduction is related to the arrival of ions at the
channel’s mouth. We calculated the channel MFPT as a function of the two flipping rates.
Since the channel has a high affinity for the ions and therefore slows them down, we have
used a smaller ion diffusion coefficient inside the channel equal to 1.33 x 1071 m? s7!.
The results of the calculations are shown in figures 5 and 6. It is clear from figure 5 that
the particle takes longer to cross AFEy as compared to AF;. There is a fast drop in MFPT
as the flipping rate ot increases. The current I = e/7 is also presented as a function of
at. A more general view of the dependence of the MFPT and the current on the two
rates is shown in figure 6. We emphasize that the transition rates obtained are essentially
non-equilibrium. In particular, a current saturation effect can be observed as a™ increases
for a wide range of parameters. This is in accord with the experimental observation [33]
of current saturation at high concentrations.

(29)

5. Comparison with experiment

We have compared the results of our calculations directly with the single-channel
measurements of Andersen et al [33]. In order to estimate the current—concentration
dependence, we used equation (8), an approximation calculated in the bulk in the absence
of an electric field. As explained above, the arrival time given by this formula is comparable
with that obtained from numerical simulations. It is the inverse of the flipping rate, which
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Figure 5. Left: MFPT as a function of at. Right: current as a function of a™.

300, W 40

T (ns)
I (PA)

0.4

0.2 )
05 0 a* (ng)™
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is proportional to the concentration. By varying the flipping rate, we correspondingly
vary the concentration and are thus able to calculate the current as a function of the
concentration. When the applied voltage increases, the second energy barrier, close to
the channel’s right-hand mouth, vanishes, thus invalidating our model. We therefore limit
ourselves to low applied voltages. The ion diffusion coefficient and the two flipping rates
are used as fitting parameters. With a careful choice of the diffusion coefficient as well
as the range of variations of the positive and negative flipping rates it is possible to fit
experiments as shown in figure 7. Although the range of experimental conditions under
which the theory can fit experimental data is limited at present by a number of simplifying
assumptions, these preliminary results are very encouraging. Furthermore, our model of
the knock-on mechanism of conductivity may shed new light on the role of the effective
dielectric constant within the channel and the importance of the additional charged sites
at the channel mouth. Indeed, the effective dielectric constant of the channel not only
affects the dielectric self-energy, as was extensively discussed earlier [23,29,32], but also
has a leading-order effect on the amplification of the charge fluctuations in the channel.
On the other hand, the existence of the additional sites outside the selectivity filter not
only can reduce the potential barrier for the ion entering the channel [29], but also can
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Figure 7. Current as a function of Na™t ionic concentration in a Gramicidin
channel. The data points for the potential differences 75 and 100 mV are taken
from the single-channel measurements of Andersen et al [33]; the curves are from
theory for the parameter values given in the text.

modify substantially the flipping rates of the potential barrier due to charge fluctuations
and therefore the dependence of the channel conductivity on the bulk concentrations.
These and other features of the proposed model, including the effect of a more realistic
potential profile on the channel conductivity, will be investigated in more detail elsewhere.

6. Conclusion

In summary, we have introduced a Brownian dynamical model of ionic transitions
through a channel, taking into account charge fluctuations at the channel mouth and
the fluctuations of the channel walls. The statistical properties of the charge fluctuations
were reconstructed from 3D Brownian dynamics simulations of multi-ion motion in the
bulk solution. It was shown that distributions of ion arrival times at the channel mouth
are exponential. It was further shown that these charge fluctuations strongly modulate
the potential barrier for the conducting ion at the selectivity site due to amplification of
electrostatic interactions in long narrow channels of low dielectric constant. These findings
have allowed us to model the mean ion transition time through the channel as an ionic
escape from the potential well at the selectivity site induced by thermal fluctuations and
by modulation of the height of the barrier by stochastic Poisson processes. The proposed
model is a Brownian dynamical model of a ‘knock-on’ mechanism [40,41]. It allows for
analytic estimation of transition probabilities in the presence of charge fluctuations, i.e. it
allows for analytic estimation of correlations between bulk concentrations and ion currents
in charged narrow channels. In particular, it demonstrates the effect of current saturation
due to ion concentrations in the bath. The model is of an essentially non-equilibrium
character. This last point is worth emphasizing because traditional approaches assume
equilibrium rates of hopping between the sites.

The model takes account of the wall fluctuations. This latter feature is very important
e.g. for an analysis of the tightly correlated motion at the selectivity site, of the type
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discovered in KesA [42]. Our model allows for analytic estimation of transition rates in
the presence of oscillations of channel walls, using our earlier results [43] on escape from
periodically driven potentials based on application of the logarithmic susceptibility [44],
as will be discussed in detail elsewhere. Such an escape process, assisted by the periodic
modulation of the potential barrier by the wall oscillations, can result on its own in
selectivity between like ions due to the difference in their diffusion coefficients [45,46].
However, ultimately the selectivity of the channel has to be incorporated into the model
by taking into account the effects of hydration [47] (see also [20] for a discussion of how
the hydration effect can be incorporated in our model). It is also worth mentioning that
a model taking into account wall fluctuations may account for dissipation of energy in
the channel, for self-induced acceleration of the rate of transition of the ion through the
channel, and for coupling of the ion motion to the channel gating mechanics. Indeed, in
this model, part of the energy induced by a very strong Coulomb interaction between the
charged site at the channel wall and the moving ion is stored as the energy of vibrational
modes. The latter energy is only partially dissipated by the protein phonon modes. The
remaining energy can now be used to modulate the potential barrier for the moving ion
in a self-consistent manner to accelerate its transition through the channel. It can also be
used to assist the conformational changes that lead to channel gating.

The work in progress contains a plethora of unsolved problems. The immediate
extension of the proposed model will be to include more than two levels for the potential
at the selectivity site, taking into account positive and negative (or zero) charge at each
mouth of the channel. The model can be further refined by including estimates of the
return times corresponding to a return of the ion in the channel to the initial bulk solution.

Following the discussion above, we formulate the following general unsolved problems
in ion channels:

(i) The role of the membrane fluctuations.

)
(ii) The role of the hydration potential.
(iii) The role of additional binding sites outside the selectivity filter.
)

(iv) The energetics of the ion transition including energy relaxation due to the coupling
to the protein phonon modes (wall oscillations).

(v) The coupling of the ion—wall interaction to the gating mechanism.

We believe that they can all be tackled by extending the model introduced in this paper.
In each case, noise and dynamical effects seem to play a crucial role that is only just
starting to be elucidated.
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