
(12) United States Patent 

US008335671B2 

(10) Patent No.: US 8,335,671 B2 
Englet al. (45) Date of Patent: Dec. 18, 2012 

(54) MATHEMATICAL DESIGN OF ION (51) Int. Cl. 
CHANNEL SELECTIVITY VLANVERSE G06F 7/10 (2006.01) 
PROBLEMTECHNOLOGY (52) U.S. Cl. ........................................................... 703/2 

(76) Inventors: Heinz W. Engl. Linz (AT); Martin (58) Field of Classification Search ............... ... ... 703/2 
Burger, Gallineukirchen (AT); Robert See application file for complete search history. 
Shim Eisenberg, River Forest, IL (US) 

(*) Notice: Subject to any disclaimer, the term of this (STCC, Ein Husch Blackwell LLP 
patent is extended or adjusted under 35 ey, Agent, 
U.S.C. 154(b) by 756 days. 

(57) ABSTRACT 
(21) Appl. No.: 12/297,179 

Determining the structure of permanent charge for an ion 
(22) PCT Filed: Apr. 11, 2007 channel formulates an abstract operator, describing ion chan 

nel parameters, comprising equations that are ill-posed. The p pr1S1ng eq p 
(86). PCT No.: PCT/US2007/008976 model of ion channel behavior relates the function of the ion 

S371 (c)(1) channel to the structure of permanent charge within the ion 
(2), (4) Date: Mar. 16, 2009 channel and concentrations ions around the ion channel under 

certain properties and boundary conditions. The model also 
(87) PCT Pub. No.: WO2007/120728 includes regularization of the abstract operator by approxi 

mating the ill-posed equations with a family of well-posed 
PCT Pub. Date: Oct. 25, 2007 equations. An estimate of the closeness of the well-posed 

O O solution to the ill-posed solution is provided. Providing stable 
(65) Prior Publication Data and convergent algorithms allows the model to determine a 

US 2009/O253898A1 Oct. 8, 2009 stability for the regularized solution, so that a regularization 
arameter can determine a balance between the stabilitv and p y 

Related U.S. Application Data accuracy of the Solution. 
(60) Provisional application No. 60/791,185, filed on Apr. 

11, 2006. 5 Claims, 15 Drawing Sheets 

https://patents.google.com/patent/US8335671B2/en



U.S. Patent Dec. 18, 2012 Sheet 1 of 15 US 8,335,671 B2 

FIG. 1 

Forward start > Forward solution 

Design solution (- - - - Design start 

Identification solution < - Identification start 

Structure of 
permanent charge 

{ (A, B, C), V Current-voltage relation 
for each of A, B, and C 

Concentrations of 
species present and 
applied voltage 

FIG 2 

  



U.S. Patent 

FIG. 3 

Ca 
15 

M 

10 

s 

o; 

Ho 
60 

S5 

50 

45 

40 

s 

30 

25's O 

Dec. 18, 2012 

Na' 
2 

M 

5 

1. 

0.5 

2 o; O 2 

cy? 
80 M 

6d 

40 

20 

2 O 2 
x (nnn) 

Sheet 2 of 15 

Algorithms 

Program 

US 8,335,671 B2 

0.8 

0.6 

0.4 

C2 

-2 2 

Settric Polenia 

W 
0.02 

0.04 

-0.6 

0.08 

  

  



U.S. Patent Dec. 18, 2012 Sheet 3 of 15 US 8,335,671 B2 

'total eror' 

'' regularization error 
--- 

--- '' propagated data error 
- r 

e. 

- c. 
t 'ontinal regularization (arameter 

FIG. 5 

0.98 

0.96 

0.9. 

C.192 

0.9 

0.88 

0.86 

0.84 

O. 182 

.8 

(). 178 
O st too so 2O) 2s 300 350 40 as 500 

FIG. 6 

  



U.S. Patent Dec. 18, 2012 Sheet 4 of 15 US 8,335,671 B2 

0.35 

0.3 

0.25 

0.2 

o s GG 50 2 250 300 350 40 45 50 

Total oxygen Mass (Scated) 

o o 2 So 60 50 S. 70 8s Sd 10 
literation Number 

FG. 8 

  



U.S. Patent Dec. 18, 2012 Sheet 5 Of 15 US 8,335,671 B2 

x 10" east-Squares Functional 

o o 3. 40 s s 8 s O 
taration Nuer 

x 10' east-Scuares functional 
3. 

s 

2 

s 

* 

a. 

c 2 s 400 5 f s 
for Nes 

  



U.S. Patent Dec. 18, 2012 Sheet 6 of 15 US 8,335,671 B2 

(37 

dises 

3s 

0.34 

0.32 

03 

0.3 

0. 

3 

2S) 

028: 

27 

0.28 

s 

24 

22 
c 20 So d 60 700 o 90 t 

FIG. O 

  



U.S. Patent Dec. 18, 2012 Sheet 7 of 15 US 8,335,671 B2 

Confining Potential 

w).25 no.2 a). al. as 5. . 2 0.25 
3. 

Confinigotentif 

0. s 

-0.2 

w3 f 1N 

04 

as 

es 

w8 

w 

0.2s a).2 0.5 es. ...ts 0.5 1. s 2 o,25 

  



U.S. Patent Dec. 18, 2012 Sheet 8 of 15 US 8,335,671 B2 

Confining Potential 
- 

: Reconstruction 
'''''''' Exct 

as -0.2 -0.15 -0, -0.05 0.5 O. 15 O.2 0.25 

F.G. 12 

  



U.S. Patent Dec. 18, 2012 Sheet 9 Of 15 US 8,335,671 B2 

east-Squares Frictional 
0.22 

e. 

0.22. 

122 

o, 

22 

22 

,02 

0.22 

o,022 

testic ser 

sef 

2 

3. 

229 

22 

o, as a 
terrtis Nkriter 

FIG. 3 

  



U.S. Patent Dec. 18, 2012 Sheet 10 of 15 US 8,335,671 B2 

Objective Functions and (negative) Penneability Ratio 

O 2 4. S 8. 0. 2 14 
teratio Niber 

  



U.S. Patent Dec. 18, 2012 Sheet 11 of 15 US 8,335,671 B2 

Exponential of Corfiiq Potential 

. 
-0,25. O2 a,15 -, -,9s Q.5 o, .S 2 2 

Expo?ertial of Corfiring Potential 
8 m 

25 

2. 

22 

2 

B 

s 

ta 

2 

t 
ods r0.2 -3 w). es 

FIG. 5 

s 8, is 02 0.2s 

  



U.S. Patent Dec. 18, 2012 Sheet 12 of 15 US 8,335,671 B2 

Objective Functional and (negative) Periteability Ratio 

O OO 200 3. 40 50 soo 700 800 90.0 OO 
eration fiber 

FG 16 

  



U.S. Patent Dec. 18, 2012 Sheet 13 of 15 US 8,335,671 B2 

Exponential of Confining Potential 

6.25 -02 -O.S w). -5 OS O), 15 2 0.23 

x 10' Exposertied of Corfiring Potential 

O 

2. a;2 , w). 0.0 0.5 0. 0. 0.25 

FIG. 17 

  



U.S. Patent Dec. 18, 2012 Sheet 14 of 15 US 8,335,671 B2 

Selectivity 
Fier f 

/ 
f. 

F.G. 18 

L type Ca Channel L type Ca Channel 
s A so Fied With Na Fied With Ca 

it to sco riot to scale 

Cattle Prote is only cystics s . 4e 
1) Glutamate Oxygens a de - See 
2) i.E.h 2. Wolterne 0.38mm 
3) Oielectric Constant 64 3) Dielectric Constant 64 

Outside the Fter tie far 
3 Solo 3kSalton 

NaCl and Caci, NaCl and Caci, 

F.G. 19 

  



U.S. Patent Dec. 18, 2012 Sheet 15 Of 15 US 8,335,671 B2 

Piecewise constant functions, mss 

FIG. 20 
Piecewise linear functions, as 

  

  



US 8,335,671 B2 
1. 

MATHEMATICAL DESIGN OF ON 
CHANNEL SELECTIVITY VA NVERSE 

PROBLEMTECHNOLOGY 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is the National Stage of International 
Application No. PCT/US07/08976, filed on Mar. 21, 2002, 
which, like this application, claims the benefit of U.S. Provi 
sional Application No. 60/791,185. Both references are incor 
porated by reference as if set forth fully herein. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to methods for characterizing 

existing ion channels, and designing ion channels with 
greater specificity for predetermined ions. 

2. Background Art 
Ion channels are proteins that fold to form a hole down their 

middle. When properly configured and installed in a cell 
membrane, ion channels control the movement of ions 
through the cell membrane. An example of this transport 
would be the passage of Na', K, Ca", and Clions from the 
blood stream into and out of cells. The movement of ions into 
and out of a cell is very important for many processes that are 
critically related to health and disease in living things, includ 
ing people. Indeed, ion channels control an enormous range 
of life’s functions by controlling the flow of ions and elec 
tricity in and out of cells. A sample ion channel, 100, as 
illustrated in the prior art is provided in FIG. 1. The port 
exterior to the cell is labeled 102, and the port to the interior 
of the cell is labeled 104. The locations of the permanent 
charges that are the principal influences on how the ion chan 
nel conducts ions are labeled 106. 

Ion channels conduct one type of ions much better than 
other types of ions, and this preference for conducting one 
type of ion over other types of ions into or out of a cell is 
termed “selectivity.” The selectivity of ion channels is a cru 
cial, indispensable part of their function. 

If ion channels in living things lose their selectivity, activi 
ties critical to sustaining life cease. Thus, if the Ca" channels 
of an animal or human heart were to become nonselective, or 
become equally selective to Na' and Ca", the heart could not 
beat and death would occur in ~3 minutes. 

Ion channels, like many other systems in biology are not 
perfectly formed; that is to say, they have characteristics 
which if changed could greatly increase their function. This 
characteristic of ion channels is particularly clear in the heart. 
A particular instance of this, the relevance of ion channels to 
the hearts of certain mammals is explained. 

The heart is a sheet of cardiac muscle that is folded to 
enclose a ventricle, which is a cavity in the heart that holds the 
blood to be pumped. The ventricle has valves that operate to 
keep the blood flowing in one direction. The heart works by 
squeezing the blood out of the ventricle, say the left ventricle. 
The squeeze must start from the bottom of the ventricle (fur 
thest away from the exit valve and exit artery called the aorta). 
If the Squeeze starts anywhere else, contraction of the heart 
muscle will be futile, the ventricle will not function as a 
pump, and the animal or human will will quickly lose con 
sciousness and die. So coordination of the contraction of 
cardiac muscle is crucial for Survival. 

In engineered systems of this sort, Such as artificial hearts, 
and in the hearts of lower forms of life, coordination of this 
sort is done by a control system that is separate from the 
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2 
contractile system. Thus, most invertebrates with hearts con 
trol the heart beat with separate nervous systems, and are 
referred to as having neurogenic hearts. Vertebrates and 
humans have what are called myogenic hearts, and do not 
separate the control system from the heart muscle itself. Myo 
genic hearts use the electrical signal in the contractile tissue 
itself (the heart muscle) to coordinate contraction. This makes 
the system very labile and easy to interrupt because any 
difficulty the tissue has because of its contractile function 
immediately affects the coordination of the contraction that 
allows the ventricle to pump blood. Here is where channels 
come in. If the calcium channels responsible for (a main part 
of) the coordination of the heartbeat are at all disrupted, the 
heart no longer pumps blood and the animal or person dies. If 
the calcium flowing through a calcium channel could be 
increased, the heart would be much less sensitive to this kind 
of disruption. Thus limitations on the current flow through a 
calcium channel of the heart is one example of a technical 
deficiency of the heart. This is just one example. There are 
many others which physicians and pharmacologists discover 
every day, unfortunately. 
The structures of ion channels are currently identified 

using X-ray crystallography to measure the positions of the 
key elements of the protein. Crystallography techniques have 
several shortcomings, not all of which are listed here. First, 
the crystallography is time consuming because it takes a long 
time to obtain a crystal Suitable for crystallographic study. 
Indeed, growing crystals is an art unto itself and most of the 
proteins of interest in membranes have not been crystallized. 
Second, proteins can fold differently in different environ 
ments. Therefore, even if the ion channel is crystallized, the 
protein as crystallized may not be in the same environment or 
state as it is in the animal as it functions. Thus, the crystal 
structure of the ion channel may not reflect the structure in the 
form in which it actually functions. Third, the X-ray crystal 
lography studies are only as good as the crystals provided, and 
take considerable time and resources. Whether the crystal was 
good enough to obtain the results desired is often not known 
until after the study is conducted. Fourth, the expertise needed 
to conduct the X-ray crystallography studies is Sufficiently 
different from the manufacture and design of the channels 
that it is rare for the same worker to be able to have the 
complete skill set, and thus workers in the field are dependent 
on the technical skills of a crystallographer. 
The manufacture of ion channels is now sufficiently under 

stood such that if channels can be designed to specification 
they can be built using the well developed techniques of 
molecular engineering, e.g., by site directed mutagenesis. 
One example is given in U.S. Pat. No. 6,979,724 to to Lerman 
et al. which relates to calcium channel compositions and 
methods of making and using them. In particular, the Lerman 
disclosure relates to calcium channel alpha2delta (C26) Sub 
units and nucleic acid sequences encoding them. A review of 
ion channel manufacturing techniques is provided by 130. 
which should be available to the general public shortly. How 
ever, there are present shortcomings in the ability to under 
stand how the structure of an ion channel dictates its function 
Such that the technical ability to make an ion channel is not 
sufficient to solve problems in the field. 
The technical limitations of present design methods are 

simple to state but hard to remedy. Generally, existing design 
methods rely on exhaustive trial and error experimentation of 
the highest quality, energy, and imagination to check reason 
able guesses. This approach to design is inefficient and rarely 
works in complex systems. 

There are literally thousands of laboratories doing experi 
ments onion channels every day all over the world. Almost all 



US 8,335,671 B2 
3 

of this work is done without theoretical guidance, or rationale, 
using the trial and error methods of exploration and discovery 
of traditional biology. Such trial and error methods are essen 
tial for learning “the lay of the land’, for describing the 
systems and their components, but they are very inefficient 
for design. If it was possible to replace trial and error methods 
with any systematic design tool, the efficiency of thousands of 
laboratories would be dramatically increased, from nearly 
Zero (which is the efficiency when design is unsuccessful) to 
a reasonable number. 
More recent attempts at design have used simulations of 

atomic motions, calculations of the movement of every atom 
of a protein. Such calculations, despite heroic efforts and 
enormous computers, are unlikely to Succeed because bio 
logical function occurs on millisecond time scales or slower, 
and atomic motions occur on 0.0000000000000005 sec time 
scales (femto seconds and faster). Biological function occurs 
(in many cases, e.g., in the channels of the heart) only when 
certain chemicals are present in definite concentrations. 
Some of these chemicals must be present in micromolar con 
centration. Thus, atomic scale simulations of these chemicals 
must include enormous numbers of atoms for many seconds, 
with motions on the time scale of a femtosecond being 
resolved. Thus, at this time, atomic scale simulations serve as 
metaphors and inspiration for design, but not as specific quan 
titative design methods. While there have been some attempts 
to use reduced models of channel function that do not include 
all atomic motions, they have not succeeded in designing a 
channel of a desired selectivity or in discovering the structure 
of an ion channel from data taken from the operation of a 
channel in vivo or in vitro. 

Presently, the design theory of ion channels generally ana 
lyzes ion channels by linking a model for the electric field in 
and near the ion channel with a model for ion transportin and 
near the channel. Generally, such studies are currently con 
ducted using what are termed "one dimensional models.” 
which model an ion channel as a line with charges placed 
along it in fixed locations. These placed charges are often 
referred to as “fixed charge” or “stationary charge' to distin 
guish these charges from the charges of the ions that are 
moving around and through the channel. The most commonly 
used models for the ion transport in the vicinity of the channel 
are built from either the Poisson-Boltzman equations or the 
Poisson-Nernst-Planck (PNP) equations. Other models used 
include, but are not limited to, simulations of Brownian 
motion, simulations of Brownian motion with Poisson equa 
tion, and transport Monte Carlo. Viewed in terms of physical 
chemistry, the models attempt to describe energetics of anion 
moving through an ion channel. Viewed mathematically, 
these equations form what is called a system of non-linear 
differential equations. 

In searching for ion channels with a particular selectivity, 
different approaches can be taken. One way of Solving the 
selectivity problem would be to hypothesize an ion channel 
and ask how it might perform for different ions. Efforts to 
design ion channels by Solving ensembles of possible ion 
channels in the hope of finding Suitable structures have not 
been productive, as illustrated by references 93-128. 

The ion channel Scientists have yet to predetermine a par 
ticular selectivity for an ion channel, and then Successfully 
attempt to determine what a channel that would have that 
selectivity would look like. Many kinds of scientists under 
stand that problems can often be viewed or approached in 
more than one way depending on the type of information that 
is available and the type of solution that is desired. Thus, 
mathematicians know that one may know a cause or stimulus 
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4 
and wish to predict what will happen, or one may be observ 
ing effects and wish to infer the cause. 
When searching for causes of observed or desired effects 

the problems are termed “inverse problems” which are likely 
to be difficult to solve. Two problems are called inverse to 
each other if the formulation of one problem involves the 
solution of the other one. These two problems then are sepa 
rated into a direct problem and an inverse problem. At first 
sight, it might seem arbitrary which of these problems is 
called the direct and which one the inverse problem but this 
arbitrariness is more apparent than real. The problems have 
quite distinct properties and can be distinguished based on 
those properties. 

Usually, the direct problem is the more “classical' one, in 
that it usually has a single, obtainable solution, which is 
termed “well-posed. According to Hadamard, a mathemati 
cal problem is called well-posed if 

for all admissible data, a solution exists, 
for all admissible data, the Solution is unique, and 
the solution depends continuously on the data. 

Much of the mathematical theory of partial differential equa 
tion deals with the question what “admissible data” means 
and in which sense “solution' is to be understood for specific 
classes of partial differential equations. 
The direct problem usually is to predict the evolution of the 

studied system (described e.g. by a partial differential equa 
tion) from knowledge of its present state and the governing 
physical laws including information on all physically relevant 
parameters including boundary conditions and initial condi 
tions. Boundary conditions are parameters that describe the 
behavior of the physical system or set of equations at the 
edges of a simulation region. Conditions imposed at the start 
ing time for a problem where the conditions change over time 
are called initial conditions. 

Those of ordinary skill in the art will appreciate that bound 
ary conditions and initial conditions are much more important 
than they may seem at first to the uninitiated. Boundary con 
ditions and initial conditions describe what is put into the 
system and what comes out of it. They describe the flow of 
energy, matter, electric charge, et cetera that are forced to 
enter and leave the system. Boundary conditions are fully as 
important as the system itselfin determining the overall prop 
erties of a practical system. Indeed, there are many engineer 
ing systems that are designed to have specific inputs and 
outputs (i.e., initial and boundary conditions) only. That is to 
say, there are many engineering systems designed so the user 
does not need to be concerned what is inside the “blackbox' 
(i.e., inside the system) but only needs to be concerned with 
the inputs and outputs (i.e., boundary and initial conditions). 
Thus, in electronics, a well designed amplifier has a simple 
relation between input and output (called gain) and the user 
does not have to worry if the amplifier uses field effect tran 
sistors, bipolar transistors, or even old fashioned tubes to 
make that gain. 

If the number and type of boundary/initial conditions is 
correct and the parameters are sufficiently smooth, then the 
direct problem is almost always well-posed and therefore 
easier to solve than the related inverse problem. Indeed, if the 
problem is not amenable to classical methods of Solution 
(when given correct boundary/initial conditions, and reason 
ably smooth parameters), most scientists would conclude the 
theory and problem were mistaken and should be abandoned. 
Thus, it is characteristic of established models that their for 
ward problems are well posed. 
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There are also intrinsic mathematical properties that permit 
one to decide which of the problems is called the “inverse' 
one, namely the fact that the inverse problem is usually "ill 
posed.” 

If one of Hadamard's conditions for terming a problem 
well-posed is violated, then the problem is called ill-posed. 
For an ill-posed problem neither the existence nor the unique 
ness of a solution to an inverse problem is guaranteed. A 
unique solution necessarily denies the problem solver the 
ability to select which properties to favor in a solution. There 
is only one solution. However, ill-posed problems may lack 
any solution, or solutions may exist but are not unique (which 
is to say there may be more than one answer), and/or (unique 
or non-unique) solutions are not stable with respect to noise, 
modeling errors or other, even numerical, inaccuracies. 
The process of bringing stability back to these problems is 

termed regularization. Often, regularization is done by 
imbedding an ill-posed problem into a collection of well 
posed problems depending on Some parameter, where the 
original ill-posed problem is a limiting case of this family of 
well-posed problems with respect to this parameter. 

Non-uniqueness is sometimes an advantage, because non 
uniqueness can allow a choice among several strategies all of 
which achieve a desired effect. The non-uniqueness of the 
Solution can be advantageous because one strategy might 
have better properties than another. When solving design 
problems there is a Substantial value to having a choice of 
solutions because that allows the problem solver to choose 
from different possible designs based on practical advantages 
not included in the mathematical model itself. This is in 
contrast to an identification problem where having a choice of 
solutions means that the identification is ambiguous. 

In the case of designing ion channels it is advantageous to 
look for values of parameters (possibly fulfilling additional 
constraints) that achieve certain design goals (like selectivity 
in ion channel design). In contrast, in an identification prob 
lem, one wants to infer (identify) values of parameters from 
indirect measurements, i.e., parameters are estimated not 
from direct measurements of the parameters but from mea 
surements of other quantities from which estimates of the 
parameters are made. These other quantities appear in the 
mathematics as quantities in the output of the forward prob 
lem (and its boundary conditions). The inverse problem is 
used to estimate these parameters from measurements of the 
output under some conditions or other, or from multiple mea 
Surements of the output under a set of conditions (to give more 
information and reduce sensitivity to, for example, mistakes 
and noise). Here, in Solving this inverse problem, uniqueness 
(“identifiability') is of great importance. 

Uniqueness questions are dealt with explicitly in one part 
of the mathematical literature of inverse problems, but as 
Soon as one wants to compute solutions of inverse problems, 
one almost always has to deal with the issue of (in)stability: In 
practical applications, one never has exact data, but only data 
perturbed by noise produced by Systematic or statistical 
errors in the measurements or produced by errors in the math 
ematical model itself. Models are often only a representation 
of reality with limited accuracy. Even if the random and/or 
systematic deviation from the data is small, or the error in the 
model is small, algorithms developed for well-posed prob 
lems will fail if they do not address the instability in the 
overall process of estimation of parameters. If they do not 
address the instability of the inverse problem due to a viola 
tion of the third Hadamard condition, data as well as round 
off errors can then be amplified by an arbitrarily large factor 
(depending on error characteristics) arising from this lack of 
continuous dependence, the violation of the third Hadamard 
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6 
condition. This is the main effect of the lack of continuous 
dependence. One can quantify this effect, thus classifying 
ill-posed problems roughly into mildly and severely ill-posed 
problems depending on how strong the error amplification is. 
This classification has to do with the rate at which the spec 
trum (for a linear problem, or for the linearization of a non 
linear problem) tends to 0, see, e.g., 23. 

Important and well studied classes of inverse problems 
which provide technical solutions to technical problems are, 
C.2. 

(Computerized) tomography (cf. 56), which involves the 
reconstruction of a function, usually a density distribution, 
from values of its line integrals and is important both in 
medical applications and in nondestructive testing 28. 
Mathematically, this is connected with the inversion of the 
Radon transform. 

Inverse scattering (cf. 17, 65), where one wants to 
reconstruct an obstacle oran inhomogeneity from waves scat 
tered by those. This is a special case of shape reconstruction 
and closely connected to shape optimization 41: while in the 
latter, one wants to construct a shape such that some outcome 
is optimized, i.e., one wants to reach a desired effect, in the 
former, one wants to determine a shape from measurements, 
i.e., one is looking for the cause for an observed effect. Here, 
uniqueness is a basic question, since one wants to know if the 
shape (or anything else in some other kind of inverse prob 
lem) can be determined uniquely from the data (“identifiabil 
ity'), while in a (shape) optimization problem, it might even 
be advantageous if one has several possibilities to reach the 
desired aim, so that one does not care about uniqueness there. 

Inverse heat conduction problems like Solving a heat equa 
tion backwards in time or "sideways” (i.e., with Cauchy data 
on a part of the boundary) (cf. 30). 

Geophysical inverse problems like determining a spatially 
varying density distribution in the earth from gravity mea 
surements (cf. 27). 

Inverse problems in imaging like deblurring and denoising 
(cf. 14, 55, 60]) 

Identification of parameters in (partial) differential equa 
tions from interior or boundary measurements of the Solution 
(cf. 3, 46), the latter case appearing e.g., in impedance 
tomography (cf. 45). If the parameter is piecewise constant 
and one is mainly interested in the location where it jumps, 
this can also be interpreted as a shape reconstruction problem. 
Some common features of inverse problems that provide 

technical Solutions to technical problems are problems such 
as amplification of high-frequency errors, a need to use one or 
both of a priori information and regularization to restore 
stability, errors of differing natures that require separate treat 
ment, and intrinsic information loss even if one does every 
thing in the mathematically best way. Examples of errors 
requiring different treatment are errors of approximation, 
which are how closely the model is hewing to the actual 
system, and the propagation of data error, wherein errors in 
earlier calculations cause greater errors in later calculations. 

Detailed references for these and many more classes of 
inverse problems can be found e.g., in 23, 20, 22., 37. 
53, 50, 44, 16. In order to overcome these instabilities 
and design solution techniques for inverse problems which 
are robust (i.e., stable with respect to data and numerical 
errors), one has to design and use regularization methods, 
which in general terms replace an ill-posed problem by a 
family of neighboring well-posed problems. 

It would be desirable to be able to control the structure and 
selectivity of ion channels, and even more desirable to be able 
to reliably design ion channels with specifically predeter 
mined selectivity. More desirably, such methods would not 
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use trial and error approaches that require solving ensembles 
of possible ion channels in the hope offortuitously finding the 
desired result. This would be especially advantageous where 
existing ion channels are less than optimal for the function 
that they perform. This would be of greatest importance if the 
technology were able to characterize and design the selectiv 
ity of ion channel functions that are important to the life and 
health of animals, including humans. 

Further, if the methods could pioneer the identification and 
design of selectivity through in vitro and in vivo experiments, 
the technical horizons of laboratory work in the field would be 
significantly broadened accelerating not only design, but also 
manufacture and testing. Similarly, if the technology that 
solved the problems of the identification of structure and 
design of selectivity could be applied to a broad range of 
models, the ability of theoretical workers to contribute to the 
Solution of existing technical shortcomings of existing ion 
channels would be similarly amplified. 

BRIEF SUMMARY OF THE INVENTION 

A model for determining a structure of permanent charge 
for an ion channel from information formulates an abstract 
operator describing ion channel parameters comprising equa 
tions that are ill-posed for determining the structure of per 
manent charge of an ion channel. The model of ion channel 
behavior relates the function of the ion channel to the struc 
ture of permanent charge within the ion channel and the 
concentrations of ion species present in the region in and 
adjacent to the ion channel given that certain properties and 
boundary conditions are known. The model also includes the 
regularization of the abstract operator by approximating the 
equations that are ill-posed for determining the structure of 
permanent charge of an ion channel with a family of well 
posed equations to provide a regularized solution of ion chan 
nel parameters. An estimate of the closeness of the regular 
ized solution to the solution is provided via the abstract 
operator to obtain an accuracy of the regularized solution. 
Providing stable and convergent algorithms allows the model 
to determine a stability for the regularized solution, so that 
when at least one regularization parameter is provided, the 
regularization parameter can determine a balance between 
the stability stability of the regularized solution and the accu 
racy of the regularized solution. 

In one embodiment of the invention, formulating the 
abstract operator includes providing a forward model of ion 
channel behavior, information regarding the structure of per 
manent charge for a control ion channel, and a plurality of sets 
of mobile species concentration information, where a set of 
mobile species concentration information comprising a con 
centration of the first mobile species and a concentration of 
the second mobile species. Then, a corresponding ensemble 
of data for the relationship of current to voltage for the control 
ion channel can be provided for each of the plurality of sets of 
mobile species concentration information. The forward 
model of ion channel behavior can then be solved for the 
control ion channel based on the mobile species concentra 
tions and the relationship of current to Voltage. 

In another embodiment of the invention, the forward model 
of ion channel behavior for the control ion channel further can 
be solved by providing a fast and accurate algorithm for the 
forward mode, and providing an accuracy for the forward 
model. 

In another aspect of the invention, a structure of permanent 
charge of anion channel can be determined from indirect data 
comprising mobile species concentration data, applied Volt 
age data, and current-Voltage relationship data. If a model for 
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8 
determining the structure of permanent charge as previously 
mentioned is provided, then control data comprising control 
permanent charge data, control mobile species data, control 
applied Voltage data, and control current-Voltage relationship 
data can also be provided. This allows the model for deter 
mining the structure of permanent charge to be applied to the 
control data. 

In an exemplary embodiment of the present invention, the 
ion channel model is a Poisson-Planck-Nernst model. In 
another exemplary model of the present invention, regulariz 
ing the abstract operatoruses regularization methods from the 
group consisting of variational and iterative approaches. One 
application of the invention is to design a structure that 
includes a selectivity of the ion channel between at least a first 
mobile ion and a second mobile ion, and the structure is 
determined from the selectivity. Optionally, a structure is 
identified based on indirect data that is experimental data 
derived from measuring an actual ion channel. Alternatively, 
an ion channel can be constructed according to a design 
created by the methods described. 
The invention further contemplates using an ion channel 

according to the disclosed methods, such that the ion channel 
has a first opening and a second opening, and the ion channel 
is installed in a membrane, such that if the membrane has a 
predetermined electrical potential across the membrane, the 
ion channel will select, relatively, for the transport of the first 
mobile ion species relative to the transport of the second 
mobile ion species. 

In another aspect of the present invention, the model for 
determining the structure of permanent charge includes deter 
mining the manufacturability of a the determined structure of 
permanent charge for the ion channel from the structure of a 
pre-existing ion channel. This can be done by providing the 
structure of a pre-existing ion channel; and applying the 
model to the structure of the pre-existing ion channel. This 
alternatively includes constructing an ion channel for a pre 
determined function by designing an ion channel Suitable for 
carrying out the predetermined function using the methods 
described, and constructing an ion channel that approxi 
mately embodies the ion channel designed for carrying out 
the predetermined function. 
One benefit of the present invention is that workers in the 

field will be able to control the structure and selectivity of ion 
channels, and be able to reliably design ion channels with 
specifically predetermined selectivity. More beneficially, 
Such methods would not use approaches that require solving 
ensembles of possible ion channels in the hope offortuitously 
finding the desired result. The invention is especially advan 
tageous where existing ion channels are less than optimal for 
the function that they perform. This would be of greatest 
benefit in areas where the ability to characterize and design 
the selectivity of ion channel functions that are important to 
the life and health of animals, including humans. 

Scientific benefits are also available. The methods permit 
identification and design of selectivity through in vitro and in 
Vivo experiments, accelerating the technical horizons of labo 
ratory work in the field, as well as manufacture and testing. 
Because the present technology can be applied to a broad 
range of models, the ability of theoretical workers to contrib 
ute to the Solution of existing technical shortcomings of exist 
ing ion channels will also be similarly amplified. 

Still further benefits and advantages of the invention will be 
apparent to the skilled worker from the discussion that fol 
lows. 
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BRIEF DESCRIPTION OF THE SEVERAL 

VIEWS OF THE DRAWING(S) 

FIG. 1 is a cartoon depicting a cross-section of an ion 
channel. 

FIG. 2 is a diagram illustrating how the function F relates 
the structure of permanent charge, the concentrations of the 
mobile species and the current-Voltage relationship. 

FIG. 3 is a diagram illustrating how theory, models, algo 
rithms, and the computer program are related to each other. 

FIG. 4 is a plot of ion densities and electric potential as 
functions of spatial location, for an L-type Calcium channel 
with applied voltage 50 mV. 

FIG. 5 is a plot of how regularization error and propagated 
error data combine to provide an estimate of total error. 

FIG. 6 is a plot of the data propagation error term versus 
k—this term will go to infinity ask goes to infinity. 

FIG. 7 is a plot of the regularization error term versus 
k—this term will go to 0 ask goes to infinity. 

FIG. 8 is a plot of the total charge (relative to the exact 
value) during the iterations of the gradient method. 

FIG. 9 is a plot of the squared residual ||F(P)-III as a 
function of the iteration number for 4x2x2 measurements 
(above) and 6x3x3 measurements (below). 

FIG. 10 is a plot of the identification error ||P-P-II as a 
function of the iteration number for 4x2x2 measurements 
(above) and 6x3x3 measurements (below). 

FIG. 11 are the final reconstructions P* obtained at the 
stopping index determined by the discrepancy principle for 
4x2x2 measurements (above) and 6x3x3 measurements (be 
low). 

FIG. 12 shows the initial value Po used for all reconstruc 
tions of potentials. 

FIG. 13 is a plot of the residual (above) and identification 
error ||P-P-II (below) as a function of the iteration number 
without regularizing stopping criterion. 

FIG. 14 shows the objective functional J(P) for C.200 
and negative permeability ratio as a function of the iteration 
number. 

FIG. 15 shows the initial value (above) and computed 
optimal potential (below) for the functional J with C.200. 

FIG. 16 shows the objective functional J(P) equal to the 
negative permeability ratio as a function of the iteration num 
ber. 

FIG. 17 shows the initial value (above) and computed 
optimal potential (below) for the functional J. 

FIG. 18 illustrates the relationship of the permanent charge 
region to the ion channel as a whole. 

FIG. 19 illustrates the positioning of possible ions in an 
example permanent charge region of an ion channel. 

FIG. 20 illustrates an application of piecewise constant 
functions which are constant within an interval to model the 
electrical potential and flux region by region. 

FIG. 21 illustrates an application of ramped linear func 
tions that form a continuous series of ramps to model the 
electrical potential and flux region by region. 

DETAILED DESCRIPTION OF THE INVENTION 

1. Introduction 

For the purposes of the present disclosure, solving the 
forward problem derives a current-voltage relationship from 
a predetermined structure of permanent charge (synonymous 
with “fixed charge') and predetermined concentrations of 
mobile species, and the electrical potential (sometimes 
referred to as “voltage') across the ion channel. 
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The forward problem of calculating the voltage-current 

curve from the permanent charge can be reversed to present 
two similar, but distinct, inverse problems. The first inverse 
problem is the identification of the structure of permanent 
charge in an ion channel. The second inverse problem is the 
design of the structure of permanent charge for an ion chan 
nel. While the mathematical problems presented in solving 
the identification and design problems are different, these 
problems relate to each other because they are directed to the 
same model system, the model established by the forward 
problem. 

Referring to FIG. 2, a cartoon illustrates the distinctions 
between the forward problem and the inverse problems. The 
structure of permanent charge, 202, illustrated by a line with 
charges distributed along an X-axis, defines the locations of 
charge in a one-dimensional space. The concentrations of 
mobile species, 204, define the concentrations of different 
mobile species to be modeled, and constitute inputs to both 
the forward and inverse problems, along with V. applied volt 
age. Generally, this will include the solvent, the ions to be 
selected for and against, and counterions for the ions that are 
Subject to selection or non-selection. The current-voltage 
relationship, 206, describes the line, or set, of relationships 
that describe how many ions move through the channel at a 
particular voltage. It should be noted that for each structure of 
permanent charge, there are infinite ensembles of relation 
ships between the ion concentration and applied Voltage 
inputs and the Voltage-current relationships. 
The structure of permanent charge, 202, is the electrical 

structure of the system. Like any structure it provides the 
framework for what a system can do but it does not tell what 
the system does until driving forces and control signals are 
applied to the system. Think of a car. The structure of the car 
tells a lot about the car and knowledge of the structure is 
necessary to understand and improve the car. But the car does 
not move unless gasoline is in the tank, water in the radiator, 
lubricants and oils in the right places (etc), and the car does 
not move until a control signal is given telling it to move. The 
automobile needs driving forces (the gasoline), Supporting 
items (water and oil), and a control signal too. Ion channels 
are similar. They need driving forces. The driving forces for 
ion flow through channels are the concentrations of ions 
outside the channel and the electrical Voltage across the chan 
nel. The supporting forces are the dielectric properties of the 
lipid membrane and various biochemicals. The control signal 
is different for different types of channels. In some it is a 
specific chemical; in others it is pressure; in others the control 
signal is Voltage. Thus, we see that the properties of any 
channel structure correspond to a multitude of ensembles of 
properties of current voltage curves. Each different driving 
force gives a different current voltage curve. Each different 
biochemical or dielectric property gives a different current 
Voltage curve. Each chemical or pressure gives a different 
current Voltage curve. And each driving force at each pressure 
gives a different current voltage curve. Thus, the number of 
current Voltage curves is as large and disparate as the number 
of trips a car can take. The car has only one structure but it can 
go many places in many different ways. 

It is often useful to solve a problem such as illustrated in 
FIG. 2 for a variety of different concentrations of mobile 
species and Voltages, which can be referred to as an ensemble 
(or set) of conditions. In solving the classical version of the 
ion channel system (or “forward problem” in the mathemati 
cal language), physical chemists typically calculate a current 
voltage relationship (or “curve'). These curves rectify (i.e., 
they are not straight lines) but they do not oscillate wildly. 
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Thus, each current Voltage curve can be described adequately 
by a complicated polynomial equation with 5 parameters or 
thereabouts. The current Voltage curves are generally studied 
from the smallest detectable currents, say 0.1 p.A, to the 
largest allowable applied voltage which is typically 150 mV. 
No time dependence is involved when only open channels are 
studied. Open channel currents are independent of time from 
approximately 1 usec to the longest times that can be studied, 
e.g., seconds. Current Voltage curves vary depending on the 
ions present to carry current. Thus current Voltage curves are 
typically measured first in a “pure' systems consisting of one 
electrolyte (like NaCl) on one side of the channel and the 
same electrolyte on the other side of the channel. Measure 
ments are then made for a series of different concentrations. 
First, the concentrations are the same on both sides, so typi 
cally measurements would be made at 20 mM, 50 mM, 100 
mM, 500 mM, 1 M, 2 MNaCl. Then different concentrations 
would be used on the two sides, with all combinations being 
explored, e.g., 20 mMonone side with 50 mM, 100 mM, 500 
mM, 1 M, 2 MNaCl on the other. Lower concentrations than 
20 mM would be avoided because they tend to damage the 
channel protein. Then the ion would be changed. Typically, 
Li", Na', K", Rb", and Cs" would be studied. Then mixtures 
of ions would be studied, starting with two at a time, e.g., 
NaCl and KCl mixtures on both sides of the channel but at 
different concentrations (in most cases). Work would then be 
done on divalent ions. Here concentrations would often be 
much lower because biological channels work better in low 
divalent concentrations. Typical ions would be Ca' and Ba'" 
but others are often used as well. Current can be carried by 
hydrogen ions and hydronium ions so pH is often varied as 
well. Finally, 'exotic organic cations like choline or tetram 
ethylammonium are often used as well as less exotic organic 
anions like amino acids. 

In the middle of FIG. 2 is a box that represents the physics 
that relates the structure of permanent charge, mobile species 
and applied Voltage inputs, and the current-Voltage-relation 
ship to each other. In describing the physics of ion channels, 
how the structure of permanent charge of an ion channel 
relates to the current-Voltage relationship as a function of 
mobile species concentrations and for the purposes of the 
present discussion is embodied in a function F, which, in an 
abstract sense, symbolizes how structure is transformed into 
the observable or desired output. Referring to FIG.3, F can be 
described on a variety of levels, with a variety of resolutions. 
At the highest level is the theoretical physics or chemistry 
selected for describing the interactions of the parts. However, 
in order to solve the problem a more concrete level of descrip 
tion is needed that necessarily imposes some degree of 
approximation in order to create a model to describe F. A 
model is a set of equations that are selected to concretely 
describe the interactions indicated by the theoretical physics 
and chemistry. Before the model can be implemented com 
putationally, a set of algorithms is selected in order to make a 
solution computable, and preferably, efficiently computable. 
Making the solution computable or efficiently computable 
will usually require yet another level of approximation. Last, 
the model as implemented with the selected algorithms is 
embodied in computer code so that a result can be obtained 
from a computer having a processor to execute the calcula 
tions and a memory to store inputs and outputs for the pro 
cessor. The result may be used in any way that is common for 
computer implemented Solutions, for example by displaying 
the result (such as on a monitor or projector), saving the result 
(into non-volatile memory, Such as hard disks or flash 
memory), transmitting the result to another program to con 
duct further calculations (via local area networks, wide area 
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networks, or modem, serial or other connection). The choice 
and design of algorithms may involve approximations so the 
problem will fit in the available memory and run with reason 
able speed on the processors available. Each aspect of this 
invention should be understood to be operable at all of these 
levels, from the most abstract to the useful, tangible and 
concrete results. 

Mathematically, the present approach for identifying and 
designing ion channels formulates the inverse solution of 
permanent charge as an abstract operator equation or optimi 
zation problem involving models for the flow of electrical 
charge through the channel. The abstract operator equation is 
ill-posed and can be regularized (used in the most general 
sense) using several methods, exemplarily in this disclosure 
by using iterative methods with appropriate stopping crite 
rion. Alternatively, or in addition, the abstract operator equa 
tion can be regularized by using an additional penalization of 
the objective functional in the formulation as optimization 
problem, in order to be able to solve the problem numerically 
in an efficient, stable and robust way. Because the inverse 
problems are ill-posed in the sense that small differences in 
the electrical current can correspond to large differences in 
the permanent charge, regularization is necessary. In the con 
text of identification, the regularization methods are desirable 
to allow one to compute a stable approximation of the real 
permanent charge in the channel. In the context of design, 
regularization methods are desirable so one can introduce 
a-priori ideas of Suitable designs, such as attempting to con 
form Suitable designs to being easily engineered variations of 
existing designs. 

This disclosure describes, among other things, how to per 
form ion channel design and identification. First, a class of 
models is used that is believed to reasonably describe the 
function of ion channels if all of the parameters and boundary 
conditions are known. Second, a class of algorithms that can 
be used to efficiently and stably solve the related “inverse 
problem” is described. Finally, the disclosure shows by 
examples that these methods succeed in both the tasks of 
identification and design. While the steps of solving the prob 
lem are described from beginning to end, those of ordinary 
skill in the art will appreciate that each of the steps influences 
the others, and that the solution to this class of problems, and 
the example in particular, may be performed partly or wholly 
out of the listed order. As will be appreciated by those of 
ordinary skill in the art, or have studied the field of applied 
mathematics, much of the education of an advanced under 
graduate or graduate student in applied mathematics is 
devoted to teaching how the steps influence each other, and 
how to vary the order of the particular steps of the solution. 
The first class of models that describe the function of ion 

channels is termed here the “direct problem” or “forward 
problem.” This includes selecting interactions to describe the 
physical system, mathematically describing those interac 
tions in a model or models, selecting computational schemes 
or algorithms to implement the models, and then program 
ming the necessary computer code, with its attendant limita 
tions, to reach a result. 

2. Modeling Ion Channels 

Models for ion transport through channels presently incor 
porate the following effects: 

Electrostatic interaction between the charged particles, 
whether mobile or permanent 

Generation of net charge by the mobile ions and a conse 
quent change of the electric field and electrical potential 
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Generation of ion flux by the electric field and concentra 
tion gradient 

Direct electro-chemical interactions between the ions; for 
example, interactions caused by the finite diameter of ions. 
The exemplary embodiment is described as a “one-dimen 

sional model. Therefore, referring to FIG. 2, permanent 
charges are described in terms of an amount of charge placed 
along a line. Referring to FIG. 1, from URL:fig.cox.mi 
ami.edu/~cmallery/150/memb/ion channels.htm, if one 
visualizes an ion channel as a tube, then, the structure of 
permanent charge can be understood as locating charge along 
the line in the center of the tube. The one dimensional solution 
tells one how far into the tube the charges are, but not how far 
away from the center line or at what angle the charge is 
located at. This one-dimensional model of a three-dimen 
sional ion channel is an approximation that reduces the com 
putational complexity and hence computation time for solv 
ing the model. However, at the expense of significantly 
complicating the computations, the one-dimensional model 
can be replaced by those of ordinary skill in the art with 
two-dimensional or three-dimensional models, and the 
present invention is not limited to one-dimensional models, or 
even any particular one-dimensional model. Indeed, students 
and postdoctoral fellows in molecular biophysics and com 
putational biology learn to Switch between one, two and three 
dimensional models to choose what is needed to solve the 
particular problem at hand with available computational 
SOUCS. 

Further, in the exemplary embodiments, models for vari 
ous physical aspects of the systems such as electric field orion 
transport are used. The models selected are believed to be the 
best approach to solving problems of this sort at this time, but 
other models could be used to model the various physical 
behaviors in this invention. Accordingly, the present inven 
tion should not be considered to be limited to particular mod 
els for the systems analyzed. 

Turning to the definition of the class of models that are the 
forward problem, a first model is selected to describe the 
electric field, and a second model is selected to describe the 
diffusion of ions in the region of the ion channel. These two 
models interact with each other. In the exemplary embodi 
ment of the present invention the model for the electric field is 
a Poisson equation with a source term equal to the charge 
generated by the ions. Also in the present exemplary embodi 
ment, differential equations are usually used to describe the 
continuum description of ion transport, in particular the so 
called Nernst-Planck (NP) equations, which are an applica 
tion of the usual laws of diffusion (Fick's laws) to charged 
particles like ions. The solutions of the Nernst-Planck equa 
tions are the number densities of ions expressed as functions 
of their spatial location, in the channel and Surrounding baths. 
The Nernst-Planck equations can involve a diffusion term, a 
drift term caused by the electric field (ideal electrostatic 
potential), by an external constraining potential, and by the 
excess electro-chemical potential. Alternative models for the 
electric field could be Coulomb's law applied to all charges in 
the system, Coulomb’s law applied to periodic boundary 
conditions, Coulomb's law with Ewald sums applied to peri 
odic boundary conditions, Particle-Particle-Particle Mesh, 
Particle-Particle-Particle Mesh with double counting correc 
tions. Alternative models for the description of ion transport 
could be Brownian dynamics, Langevin dynamics, molecular 
dynamics, Transport Monte Carlo, and barrier models. 
When the Poisson equation and the Nernst-Planck equa 

tions are used together to create a model, the coupled system 
for electric field and ion densities is then commonly called a 
Poisson-Nernst-Planck (PNP) model. At equilibrium, the 
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14 
solution of the model can be characterized as the minimum of 
an energy minimization problem. However, in most practi 
cally relevant situations—with an applied Voltage and a con 
trol of the ion densities in the bath—the system is perturbed 
from from equilibrium. Alternative model systems to the PNP 
models are: CPNP, i.e., correlated PNP; improved PNP 
Brownian dynamics, Langevin dynamics, molecular dynam 
ics, Transport Monte Carlo, and barrier models all with Pois 
son. While not all alternative model systems may be ame 
nable to the particular methods exemplified in this disclosure, 
those of ordinary skill in the art of solving non-linear differ 
ential equations can identify methods appropriate to those 
models. Much of training students and postdoctoral fellows in 
the art of solving nonlinear differential equations is devoted to 
learning how to apply well established methods to different 
models. 
The PNP model can be set forth as follows. Though there 

are many known variations of the PNP modeling approach, 
the present invention is not limited to a particular model of the 
interactions. In a computational domain S2 modeling the bath 
and ion channel region, the general structure of the model for 
describing the unconstrained electrical behavior of the 
mobile species of interest is of the form of the linked equa 
tions: 

-AAV =X3 p. (1) 
k 

-V (pi Valia, ... , p.m., VI) = 0 (2) 

where V is the electric potential, p denotes the density of 
mobile species k with charge Z and mobility m. W is a 
dimensionless parameter whose size is inversely proportional 
to the scaling of the permanent charge in the channel. In 
particular, for a large permanent charge relative to the scaling 
to the system size one can expect w to be small, and hence 
equation (1) becomes a singularly perturbed Poisson equa 
tion, which creates various mathematical and computational 
complications. The complications include, but are not limited 
to different forms of the solution, multiple values of the 
Solution, computational difficulties arising from the singular 
or nearly singular form of the problem, and other problems 
characteristic of singularly perturbed systems of partial dif 
ferential equations as will be well known to those of ordinary 
skill in the art of Solving singularly perturbed non-linear 
differential equations. 
The potential L is the functional variation of energy func 

tional E with respect to the density p i.e., 

3 
= - EA1, ... (3) W. Öpk , OM, V) k 

The Poisson equation (1) is an equilibrium condition for 
the energy functional, i.e., 

O = E V (4) av Ip1, ... , p M. V. 

As previously mentioned, the total equilibrium is usually 
perturbed by boundary conditions—otherwise flow and cur 
rent would be identically Zero for all mobile species, includ 
ing linear combinations of chemical mobile species of like 



US 8,335,671 B2 
15 

charge which fact is evident from the Nernst-Planck equa 
tion (2), which does not enforce equilibrium of the ions (1-0) 
in general, but only for special boundary values such thatu-0 
on CS2. Ion channels do not function at equilibrium and so 
equilibrium analysis alone is not sufficient. 
The energy functional can be written in the form 

E?p,..., p. V7 (-).VY^+z Yp+Dp log 
p-t|lp)dx+Ep1, ..., p. (5) 

with D denoting a diffusion coefficient, E denoting the 
excess electro-chemical energy and u" denoting the external 
constraining potential acting on mobile species k. Those of 
ordinary skill in the art will appreciate that the energy func 
tional could be written in other forms, and that while the 
present invention is exemplified by this energy functional, it is 
not limited to this form of the energy functional. The energy 
functional is a subject of active investigation in the field of 
statistical mechanics of simple and complex fluids. Some 
forms of it are given in the Mean Spherical Approximation 
and Hypernetted Chain Theories, others in various versions of 
Rosenfeld’s Density Functional theory, including those opti 
mized to include electrical potential, and in the White Bear 
Functional. 
The system defined this way is coupled to a constitutive 

model showing how the potentials arise from the structure 
and physics of the channel. Again, while the invention is 
exemplified by a particular model, it is not limited to the 
particular model. The excess electrochemical potentials (ob 
tained as variations of the excess free energy with respect to 
the particle densities) describe the direct interactions between 
the ions, and are usually obtained from hard-sphere models or 
Lennard-Jones potentials. The external constraining potential 
describes the external forces on the ions due to the structure 
and chemical nature of the channel. The external constraining 
potential is of particular relevance for the ions creating the 
permanent charge of the channel because the external con 
straining potential determines the confinement to the selec 
tivity filter, thereby having a large effect on the selectivity of 
the channel. 

In the exemplary embodiment, a specific model based on 
density-functional theory (DFT) and mean-spherical 
approximations (MSA), as described in 34, 35, 59 is used, 
but as will be appreciated by those of ordinary skill in the art, 
the treatment of other models for excess electro-chemical 
potentials can be carried out with similar computational 
schemes and leads to the same kind of inverse problems as 
described below. Graduate students and postdoctoral fellows 
in statistical mechanics of simple and complex fluids are 
ordinarily trained in the skill of constructing and using similar 
models. 
The standard computational schemes for PNP-systems can 

be based on an iterative (sequential) decoupling of Poisson 
and Nernst-Planck equations (Gummel-type methods) or 
coupled Newton-iterations. See references (77-91. The 
disadvantage of Gummel-type iterations is a non-robustness 
with respect to certain parameters in the selected model, in 
particular Vandu. Newton-type methods are more robust, but 
still the (non-symmetric) linearized problem to be solved in 
each iteration step is not well-posed for large parameters. 
Moreover, as usual for Newton methods, one needs additional 
globalization techniques. 
The present disclosure presents an approach based on a 

symmetric linearization of the problem, which is motivated 
by the energy minimization approach used in equilibrium 
situations. In the non-equilibrium case some modifications 
are necessary, but the symmetry of the system can be pre 
served. Moreover, the form of the energy functional illus 
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trated here permits a so-called mixed finite element approxi 
mation, i.e., where the densities are approximated by 
discontinuous functions (e.g., piecewise continuous ones) 
across a partition of the domain (into Subintervals in one 
dimension), and the fluxes J. Zmp All are approximated 
by continuous functions (e.g., piecewise linear ones). While 
those of ordinary skill in the art of solving differential equa 
tions are familiar with mixed finite element approximations, 
those workers from other fields seeking information can find 
an adequate references in 129. 

For the electric potential V a standard finite element dis 
cretization with continuous Ansatz functions (e.g., piecewise 
linear) can be used, because the gradient of V also appears in 
the energy functional. With this discretization, an iterative 
scheme is obtained, where a symmetric linear system has to 
be solved in each step, with the unknowns being the coeffi 
cients of the finite element basis functions. 

With standard finite element discretization with continu 
ous Anzatz, functions and computations of the excess electro 
chemical potential as in 34, an iterative scheme based on the 
Solution of symmetric linear systems in each iteration step is 
constructed. The iteration constructs a sequence (p". . . . . 
p", V') and additionally fluxes (J". . . . . J.") by Solving 
coupled linear systems of the form 

A°AV+X 3. p = 0 (6) 
k 

st-ve, -u 
n, (p;-p;) - V. J. (8) 

or more precisely their mixed finite element discretizations. 
Here m20 is a damping parameter that can be adapted to 
obtain global convergence, and u?" is a linear approximation 
of Lip". . . . . p'V' (linear with respect to the sequence 
p". . . . . p", V*). It turns out that this scheme is not only 
robust with respect to the major parameters, but even leads to 
decreasing iteration numbers with decreasing Debye length 
W, which is an important feature since the scaling of most 
interesting systems yields a small value of this parameter. As 
disclosed below, the solution of inverse problems will force 
the forward problem to be solved a very large number of 
times, so that efficiency in the computational methods for the 
forward problems is crucial. 
To solve the forward problem, data about a particular ionis 

needed. The solution of the forward model for an L-type 
Ca-channel (described in detail in 34) is illustrated in FIG. 
4. The data from 34 is used to provide values for the param 
eters identified by fixing the locations of the fixed or perma 
nent charges. In this channel, there are three mobile ion spe 
cies, Ca", Na", Cl, a neutral mobile species H2O, and one 
confined species (the permanent charge species), namely 
half-charged oxygens O'. Half charged oxygens are typi 
cally not free oxygen, but instead are portions of functional 
groups on organic molecules in the protein Such as carboxyl 
groups. K' could be included, but is left out in this disclosure 
only to simplify the presentation of the invention. The 
demarked central regions correspond to the ion channel, the 
exterior region to the left and right the model bath that corre 
sponds to the contents of the inside or outside of a cell mem 
brane. In this example (with an applied voltage of 50 mV and 
ion densities controlled in the baths away from the channel 
region, by either the experimental apparatus or other systems 
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in the biological cell) one observes many typical effects, in 
particular the selectivity properties of the channel. Due to the 
negative permanent charge (oxygens O'), there is an attrac 
tive electrostatic force on the positively charged ions (Na'and 
Ca") and a repulsive force on the negatively charged ions 
(Cl). Moreover, there are additional chemical forces (impor 
tant in particular due to the narrow cross section of the chan 
nel) which cause an additional decrease of the densities in the 
channel region. This decrease can be observed in particular in 
the plot of the water density, since it is the only force acting on 
this species, there being no net electromagnetic interaction 
due to overall charge neutrality. The permanent charge of this 
channel is represented by the half-charged oxygens O', 
which are confined to the channel. The confinement is caused 
by the external constraining potential, which is represented 
by u" (with k being the index of the oxygens), the shape of the 
oxygen density inside the channel is determined by this 
potential, the total number N=8 of the O'oxygens, as well 
as the interactions with the other species. The inverse prob 
lems discussed in the following section will deal with the 
determination of the properties of the permanent charge, i.e., 
the oxygens in this example: 

3. Regularization Methods for Nonlinear Inverse 
Problems 

As those of ordinary skill in the art will appreciate, usually 
the mathematically most efficient way to formulate inverse 
problems involving partial differential equations uses con 
cepts and methods from functional analysis. Nonlinear 
inverse problems can then be cast into the abstract framework 
of nonlinear operator equations 

where the operator Facts between two function (e.g., Hilbert) 
spaces X and Y. The basic assumptions for a reasonable 
theory are that F is continuous and is weakly sequentially 
closed, i.e., for any sequence X, CD(F), X, eX weakly in X 
and F(x)->y weakly in Y imply that x6D and F(x)=y. (cf. 
23, 24). As opposed to the linear case, F is usually not 
explicitly given, but represents the operator describing the 
direct (also sometimes called “forward') problem. For 
example, for the ion channel model described previously, F 
would be the operator F mapping the constraining potential 
Lt. (with being the index corresponding to the permanent 
charge) into the outflow current used later to describe the 
inverse problem of identifying the constraining potential 
related to the permanent charge. Thus, computing a value of 
the operator F for a given input x involves solving the problem 
(1), (2), which is quite a difficult task. The values of a deriva 
tive of For values of an approximation to the derivative need 
to be computed, which involves solving a linearized partial 
differential equation. These computations appear in Solution 
methods for inverse problems several, possibly many, times, 
so that efficient solution techniques for the direct problemand 
for its linearizations have to be found and efficiently coupled 
with solution strategies for the inverse problem. 
As a relatively simple example (not related directly to the 

ion channel problem) to illustrate this point (and also to 
illustrate a specific algorithm below), we use the following 
model problem. The problem, in its one-dimensional version 
described further down, describes the heat and temperature in 
a bar of material that is kept cold at either end, but may be 
heated in the middle: 

The temperature u (as a function of location after suffi 
ciently long time, i.e., in equilibrium) of a conducting mate 
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18 
rial occupying a three dimensional domain G2 whose tempera 
ture is kept zero at the boundary can be described by 

u=0 on 392, (10) 

where f denotes internal heat sources and q is the spatially 
varying heat conductivity. If one cannot measure q directly, 
one can try to determine q from internal measurements of the 
temperature u or from boundary measurements of the heat 
flux 

dit 
4, 

Note that (10) with unknown q is nonlinear, because the 
relation between this parameter and the Solution u—that 
serves as the data in the inverse problem is nonlinear even if 
the direct problem of computingu with given q is linear. For 
this parameter identification problem, the parameter-to-out 
put map F maps the parameter q onto the solution u, of the 
state equation (10) or to the heat flux 

dit 
4, 

Thus, computing F(q) means to (numerically) solving (10) 
with the parameter value q. We will come back to this model 
problem later. 

Neither existence nor uniqueness of a solution to (9) is 
guaranteed for the problem posed in (10). Assuming for the 
sake of simplicity that the exact data y are possible (i.e. 
attainable)—i.e., that (9) in fact has a solution and that the 
underlying model is thus correct we use a generalized solu 
tion concept (see 4 for the general, non-attainable, case): 
For x*eX, we call a solution x of (9) which minimizes 
Ix-X among all solutions an X-minimum-norm solution of 
(9) (x*-MNS for short). The element X* can and should 
include available a priori information like positions of singu 
larities in X if they happen to be available. 
One main issue in Solving an inverse problem (9) is that its 

Solution or solutions do not depend continuously on the data 
y. This can be seen easily if one considers the one-dimen 
sional version of (10). The one-dimensional version of (10) is 

This can be solved explicitly: 

For S e 0, 1: (-gu')(s) = I findi 
O 

the parameter q in terms of U is obtained via 

I findi O 

U(s) 

Consider the effects of small but high frequency oscilla 
tions (errors) in the measured data U. Such errors in U may 
lead to arbitrarily large in errors in its derivative U" and hence 
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also in q. In addition, where the temperature gradient U" is 
close to Zero, errors in the Source term fand in the integration 
are heavily amplified since U"-0 is in the denominator of 
equation. 

That issue implies that standard methods cannot solve 
problems like (9) with discontinuous dependence on data. For 
the inverse ion channel problem, we will show the discon 
tinuous dependence on data below in examples in Section 5.3. 
Thus, methods have to be developed which allow the stable 
solution of (9)—they are called “regularization methods.” 
Regularization methods replace an ill-posed problem by a 
family of well-posed problems; their solutions, called regu 
larized solutions, are used as approximations to the desired 
solution of the inverse problem. These methods always 
involve (a) Some parameter measuring the closeness of the 
regularized to the original (unregularized) inverse problem; 
(b) rules (and algorithms) for the choice of these regulariza 
tion parameters. These parameter(s) and rules and algo 
rithms—as well as the convergence properties of the regular 
ized solutions—are central issues in the theory of these 
inverse methods. The right balance between stability and 
accuracy is determined by adjusting the parameter(s), rules 
and algorithms, in order to obtain optimal convergence prop 
erties. While the theory of regularization methods for linear 
ill-posed problems is by now rather comprehensive, it is still 
evolving and far from complete in the nonlinear case. Indeed, 
the nonlinear case is so general, that in Some sense it can never 
be complete: one imagines one can always find some nonlin 
ear system and operator with a property not covered by the 
complete theory. Since the inverse problems involved in our 
invention are nonlinear, we do not describe the theory of 
linear inverse problems, but refer the reader to 23. 

Those of ordinary skill in the art will appreciate that two 
widely used methods of regularization are disclosed for solv 
ing the present problem. While these types of methods are 
known and used for other types of problems, they have not 
been used to solve the problems like the subject of this dis 
closure. 
The following considerations are relevant for both classes 

of methods. For numerically solving an inverse problem, any 
regularization method has to be realized in finite-dimensional 
spaces. In fact, a regularization effect can often be obtained 
simply by making a finite-dimensional approximation of the 
problem. The approximation level plays the role of the regu 
larization parameter: at least for linear problems, a projection 
of an inverse problem into a finite dimensional space makes 
the problem well-posed (in the sense of continuous depen 
dence of Solutions on the data if a Suitably generalized solu 
tion concept is used). However, these approximate finite 
dimensional problems become numerically more and more 
unstable, which is no Surprise, since in the limit they approxi 
mate an ill-posed problem. Error estimates for the case of 
noisy data and numerical experience show that at least for 
severely ill-posed problems, the dimension of the chosen 
subspace has to be low in order to keep the total error small. 
Hence, for obtaining a reasonable accuracy, projection meth 
ods should be combined with an additional regularization 
method; e.g., with one of those to be discussed now, see 29, 
23, 63. 

3.1. Variational Regularization 

In general, although mathematicians can solve problems 
with idealized data, when dealing with Systems that are 
intended to work with measurements obtained from real 
world instruments, the data y in (9) are not known precisely, 
but only perturbed (“noisy”) datay are known that are close 
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to the perfect data. The noisy data are separated from the 
perfect data at most by the norm bound 6: 

The present invention contemplates using variational regu 
larization to identify the structure of existing ion channels, 
and then to design them. In variational regularization, prob 
lem (9) with data satisfying (11) can be replaced by the 
minimization problem 

with a suitable penalty function R, where x* 6X is an initial 
guess for a solution of (9). The most prominent example is 
“Tikhonov regularization”, where R(x)=|x|, i.e., 

These functionals combine the “residual' i.e., the output 
error ||F(x)-y with a penalty term. For Tikhonov regular 
ization, the following holds: for a positive regularization 
parameter C. minimizers always exist for (13) (under the 
above-mentioned assumptions) but need not be unique. For 
that reason, we call any global minimizer of (13) a regularized 
solutionx...One can show that x., depends continuously on 
the data for C. fixed and that X., converges towards a solution 
of (9) in a set-valued sense with C.(8)->0 and ö/o.(8)-> as Ö 
tends to Zero; see 24. 

It is a consequence of the ill-posed nature of the problem 
that Smallness of the residual alone does not imply Smallness 
of the identification error |x-x|, where x always denotes 
an x*-minimum-norm solution x*-MNS of (9); compare also 
FIGS.9 with 10 and FIGS. 6 with 7, where the behavior of the 
residual is compared with the identification error. 

Other methods of variational regularization exist besides 
Tikhonov, and the present invention extends to the use of 
them as well. A few examples, to which the invention is 
likewise not limited, of variational regularization include 
maximum entropy regularization 

(t)l x(t) (it X O- -> * Diogen l, 

see 25, 19, 26, 51, 66 or bounded variation regularization 
(15) 

which enhances sharp features in X as needed in, e.g., image 
reconstruction, see 67, 54, 69, 9, 60. Quite general conver 
gence results about variational regularization can be found in 
9, 66. 
In any regularization method, the regularization parameter 

a plays a crucial role. As those of ordinary skill in the art will 
appreciate, the choice of the weight to give the terms con 
trolled by the regularization parameter represents a compro 
mise between accuracy and stability: if C is too large, the 
modeling error made by adding a penalty termin (12) leads to 
a poor approximation. If C is chosen too small, on the other 
hand, data errors may be immediately amplified too strongly. 
There are two general classes of options for choosing the 
parameter: A-priori rules define the regularization parameter 
as a function of the noise level only, i.e., C.C.(8), while in 
a-posteriori rules, C. depends both on the noise level and the 
actual data, i.e., C. C.(8,y). 

It should be kept in mind that error-free strategies, where 
C. C.(y) does not depend on 8, cannot lead to convergence 
(see 23). This is an asymptotic absolute statement which 
does not directly apply to the case of finite noise. With finite 
noise, error free strategies can occasionally lead to good 
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results. As those of ordinary skill in the art will appreciate, 
care is needed, however, to achieve good results (for finite 
noise level), because of the lack of an underlying convergence 
theory (the same is true in the linear case; one can even prove 
non-convergence). These error-free strategies include the 
popular methods of generalized cross-validation (76) and 
the L-curve method (40); for its non-convergence, see 21 
and 75. Convergence rates and how to choose regularization 
parameters to obtain optimal convergence rates are questions 
in applying regularization methods that need to be addressed 
in solving any inverse problem and certainly this problem 
concerning ion channels. 

FIG. 5 illustrates the typical total error behavior of a regu 
larization method. The regularization error, i.e., the error in 
the solution caused by adding the penalty termin (12), goes to 
0 as C.->0, while the propagated data error grows without 
bound as C.->0. The optimal regularization parameter would 
be determined by the minimizer of the combined curve in 
FIG. 5, but is not computable from this curve, since the 
concrete computation of these curves would require knowing 
the exact solution of the inverse problem, in which case no 
further study would be required. 

For Tikhonov regularization, a widely used a-posteriori 
rule is the “discrepancy principle", where C.(Ö,y) is defined 
as the solution of 

If this equation (16) has no solution, which my happen for 
nonlinear problems, it can be replaced by a two-sided 
inequality. A quite complicated a posteriori strategy that 
always leads to optimal convergence rates can be found in 
71. The papers quoted above concerning more general 
variational regularization methods also contains information 
on Suitable strategies for choosing parameters. 

With respect to the numerical implementation of Tikhonov 
regularization (and more general variational regularization 
methods), one can relax the task of exactly solving problem 
(13) to looking for an element X. satisfying 

for all x6D(F) with m a small positive parameter, see 24. 
Tikhonov regularization combined with finite dimensional 
approximation of X (and of F, see also Section 3.2) is dis 
cussed e.g., in 57, 58. 

3.2. Iterative Methods 

A first candidate for solving (9) in an iterative way could be 
Newton's method 

starting from an initial guess X. Even if the iteration is well 
defined and F'() is invertible for every x6D(F), the inverse is 
usually unbounded for ill-posed problems (e.g., if F is con 
tinuous and compact the inverse of F" is also discontinuous). 
Hence, (18) is inappropriate in this form since each iteration 
requires one to solve a linear ill-posed problem, which would 
be unstable, and some regularization technique has to be used 
instead (see 23 for regularization methods for linear ill 
posed problems). For instance Tikhonov regularization 
applied to the linearization of (9) yields the Levenberg Mar 
quardt method (see 38) 

where C is a sequence of positive numbers. Augmenting (19) 
by the term 

(19) 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
for additional stabilization gives the iteratively regularized 
Gauss-Newton method (see 2.5) 

(x-x) (21) 

Usually, X* is taken as Xo, but this is not necessary. 
Also, quasi-Newton methods—where F" is suitably 

approximated have been developed for ill-posed problems 
(see 47). Equations (19) and (21) are based on solving the 
normal equation of the linearized problem (18), as are most 
iterative methods for solving the nonlinear ill-posed problem 
(9) 

via successive iteration starting from X Equation (22) is the 
first-order optimality condition for the nonlinear output least 
squares problem 

1 (23) sly - F(x)|| - min, x e D(F). 

An alternative to Newton type methods like (19) and (21) 
are methods of steepest descent like the Landweber iteration 

see 39, where the negative gradient of the functional in (23) 
determines the update direction for the current iterate. From 
now on, we shall usex, in our notation of the iterates in order 
to take into account possibly perturbed datay as defined in 
(11). 

In the ill-posed case, the iteration must not be arbitrarily 
continued because of the instability inherent in (9). Terminat 
ing the iteration properly is important to all iterative methods. 
An iterative method only can become a regularization 
method, if it is stopped “at the right time', i.e., only for a 
suitable stopping index k does the iterate x, yield a stable 
approximation to the solution x of (9). Due to the ill-posed 
nature of the problem, a mere minimization of (23), i.e., an 
on-going iteration, leads to unstable results and to the typical 
error behavior shown in FIGS. 6 and 7. FIG. 6 is a plot of 
|F(x)-y7 vs. k, while FIG. 7 is a plot of x-x vs. k. 
While the error in the output decreases as the iteration 

number increases, the error in the parameter starts to increase 
after an initial decay. The stopping index plays the role of the 
regularization parameter. 

Again, there are two classes of methods for choosing the 
regularization parameter, i.e., for the determination of the 
stopping index k, namely a-priori stopping rules with k=k. 
(8) and a-posteriori rules with k=k.(Öy). Once more, the 
discrepancy principle is a widely used representative for the 
latter a-posteriori rules, where k, now is determined by 

(24) 

for some sufficiently large td-0. As opposed to (16) for 
Tikhonov regularization, (25) now is a rule easy to imple 
ment, provided that an estimate for the data error as in (11) is 
available. The discrepancy principle for determining the 
index k is based on stopping as soon as the residually'7-F 
(x)|| is on the order of the data error, which is somehow the 
best one should expect: All approximate solutions which give 
a residual not much larger than the data error are equally good 
or bad if one has no other information, since the data are also 
only know within this accuracy. For solving (9) when only 
noisy data y with (11) are given, it would make no sense to 
ask for an approximate solution X with ly-F(x)|<ö. The price 
to pay would be instability. Convergence analysis for iterative 
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regularization methods has been a hot topic in research 
recently, see, e.g., 31, 18, 49. 

At first sight, Newton type methods might be thought to 
converge much faster than Landweber iteration; this is of 
course true in the sense that an approximation to a solution of 
(9) with a given accuracy can be obtained by fewer iteration 
steps. However, a single Newton type methods step (see (19) 
or (21)) is more expensive than a Landweber iteration (see 
(24)) and also the instability shows its effect earlier in Newton 
type methods and so that the iteration has to be stopped 
earlier. Thus, it cannot be said that Newton type methods are 
in general preferable for ill-posed problems to the much sim 
pler Landweber method. If especially efficient methods are 
used to solve the linear problems involved in each step of a 
Newton iteration, see 6, 12, Newton methods may be 
preferable but even that is not assured automatically. 
Many iteration schemes for Solving inverse problems are 

formulated in terms of the Fréchet derivative and its adjoint 
operator. There are several notions of derivatives of nonlinear 
operators; all have in common that they are approximations of 
the nonlinear operator by linear operators in some “best 
possible' way; a convergence theory for direct and inverse 
problems for nonlinear equations usually requires conditions 
how this approximation is measured, the simplest and mostly 
used conditions summarized in the term Fréchet derivative. 
We show how, e.g., Landweber iteration is realized for the 
prototype parameter identification problem (10). The ideas 
presented then also apply in a similar way to other methods as 
(19) and (21). In a first step, we translate the problem into a 
Hilbert space framework and therefore consider the underly 
ing partial differential equation in its weak operator formula 
tion 

For a set D(F) CX=H'(S2) (with s>d/2 whered is the dimen 
sion of S2) of admissible parameters q, the direct problem (26) 
admits a unique solution A(q)'feHo"(S2) which will be 
denoted by u?in order to emphasize its dependence on q. If we 
regard for simplicity the case of distributed L-temperature 
measurements, the parameter identification problem can be 
put into the form (9) with 

and y–Eu, where E.H. (S2)->L (S2) is the embedding 
operator. 

Forgiven q6D(F), a formal linearization of the direct prob 
lem (26) in direction peX yields 

where the right-hand side is due to the linearity of A(i) with 
respect to q. Therefore, the Fréchet derivative of (28) is given 
by 

(29) 

F'(q):X-Y, p->Eup, 

where upeHo"(S2) denotes the solution of (29), i.e., 
up=-A(q)'A(p)u 

Hence, if we build the inner product in (24) with an arbi 
trary test function peX, the k-th iteration step becomes 
(where we omit E for reasons of readability) 

(30) 
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Because of 

the iteration can also be written as 

(a,p)=(a,p)-(w. A(p)us) 

where we denotes the solution of the linear adjoint problem 
A(q)* wy-us (34) 

Hence, each iteration step in (24) requires solving the 
direct problem (26) in order to obtain u and the adjoint 
problem (34) with the residual y-u as right-hand side. 
Eventually, the update according to (33) can be numerically 
realized as follows: if {p, p. . . . , p, is an n-dimensional 
basis of the parameter space X, X with q denoting the 
vector representation of q., then (33) means to solve the 
linear system 

Ms-r, 
where M is the Gramian Matrix 

M(i,i)=(pp.) 

and the vector r is defined via 

and to update the parameter via 
& 8. & 

(iii.S. 

Note that the approach (32) would require to solven linear 
problems (29), clearly showing the advantages of (33) which 
gets by with solving a single problem (34). 

Returning to our general discussion, we note that some 
iterative regularization methods can also be derived from 
certain initial value problems for abstract evolution equa 
tions, which are then in turn called continuous iteration meth 
ods. For nonlinear problems, some of these methods are ana 
lyzed and related to their discrete analogues (especially (21)) 
in 1 and 48. The asymptotic regularization method 

is studied in the nonlinear setting in 74; it is also called 
inverse scale-space method in the context of imaging prob 
lems, see 72, 70, 64. In 52, it is shown that (35) applied to 
(9), where F is the concatenation of a forward operator and a 
certain projection operator, can in fact be considered as a level 
set method. Level set methods, see 61, 73 have been suc 
cessfully used for shape reconstruction problems e.g., in 68. 
I62, 8, their role as regularization methods for inverse 
problems has been analyzed in 7. 

(35) 

4. Regularization of Inverse Ion Channel Problems 

As discussed for general inverse problem in Section 1, we 
consider two classes of inverse ion channel problems which 
have different practical motivations: 

Identification problems determine properties of a “real 
channel (permanent charge and structure) from measure 
ments of the channel output (in a standard experimental mea 
Suring the total current) at various different conditions (ap 
plied Voltages, bath concentrations of the ions, types of ions, 
pH, drugs, modulators). This contrasts with design problems 
that determine properties of “in-silico' (meaning the result of 
computations presumably performed in a computer made 
from integrated circuits in silicon chips) channels constructed 
to specification. These include, but are not restricted to arti 
ficial channels made by site directed mutagenesis from pro 
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teins, e.g., by mutating the (nearly) nonselective bacterial 
protein ompl. or by chemical modification of omple, or by 
artificial channels made from in polyethylene terephthalate 
(PET) abiotic membranes and by chemical (NaOH) etching 
of ionization tracks produced by heavy ions. Such channels 
are designed so they have optimal characteristics with respect 
to Some criterion (e.g., selectivity between certainion species 
like Na" and Ca"). 
The unknowns to be identified or designed are related to the 

permanent charge, i.e. the ion species that is always confined 
to the channel because it is part of the channel protein (i.e., 
covalently linked to the channel protein). First of all, an 
important number is the total amount of permanent charge, 
i.e. the number of charged particles confined to the channel. If 
k is the density of a confined species, then the total number is 
given by the integral 

N. lop-dy 

A second important quantity determining the permanent 
charge is the external constraining potential u", which rep 
resents the forces acting on the permanent charge that keep it 
within the channel and thereby encodes this property of the 
channel structure. In absence of an electrical field and of 
electrochemical interaction with other ions, the permanent 
charge density is given by 

(36) 

with a constant c determined from the above integral condi 
tion. Hence, the number N. and the constraining potentialu." 
determine the permanent charge p, and subsequently the 
selectivity properties of the channel. In the solution of the 
inverse problem, these two quantities lead to a different 
degree of difficulty. The total charge N is a single positive 
integer number for which an upper bound is available (since 
too large a number of permanent charges would destroy the 
channel); thus it could even be determined by sampling all its 
possible values. The constraining potential..." is a function of 
space, so that an inverse problem of determining the potential 
has always to be formulated as an infinite-dimensional 
inverse problem in a suitable function space. Since ill-posed 
ness in the strict sense of discontinuous dependence on data 
arises only for infinite-dimensional problems and numerical 
instability becomes more severe as the number of unknowns 
and/or design parameters in the inverse problems increases 
(cf. 23. See also the paragraph preceding Section 3.1 above), 
instability effects are expected to be more significant for 
determining the constraining potential u," than for determin 
ing the total charge N. As a consequence of the ill-posedness, 
Suitable regularization methods have to be used to compute 
stable approximations of the potential as explained in the 
previous sections. In the following we will describe the com 
putational Solution of the inverse problems of determining 
total charge and potential in detail, both in the cases of iden 
tification and of design. Note that our main interest is in the 
total charge when doing identification, but we must determine 
the potential as well to determine the total charge reasonably 
accurately. 

4.1. Identification 

The aim of the identification problem is to find one or both 
of total charge and potential from measurements of the out 
flow current I taken at different bath concentrations of the 

mobile ions (boundary values of the densities p.) and at dif 
ferent applied Voltages (boundary values of the electric poten 
tial V) with perhaps different types of ions present as well. 
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The outflow current is a boundary integral of the total current 
JXJ, one real number for each combination of Voltage and 
bath concentrations. The underlying forward model creates a 
relation between the input P=(u".N.) and the output I. Since 
the output I also is a function of Voltage and bath concentra 
tions, the input-output relation has to be set up as an operator 
F: PHY I between function spaces. Note that the evaluation of 
the operator F for a specific value of P involves the solution of 
forward problems with given P. for each combination of volt 
age and bath concentrations. In the idealized setting, this 
makes an infinite number of forward problems. 
The identification problem can be formulated as an opera 

tor equation as in (9) 

where I denotes the noisy version of the current obtained 
from measurements. Due to the ill-posedness, the operator 
equation might not be solvable for noisy data and moreover, 
the dependence of the solution on the data is discontinuous. 
Therefore we use regularization schemes to approximate the 
Solution. 
One of the most frequently used class of regularization 

methods for nonlinear problems are variational methods 
(12)—e.g., Tikhonov regularization (13) where the inverse 
problem (38) is approximated by the variational problem 

with a Suitable regularization functional Rand a positive real 
regularization parameter C. As explained in Section 3.2, an 
alternative is iterative regularization methods, based on an 
iteration procedure of the form 

with a linear or even nonlinear operator G depending on Pin 
general. The regularization parameter for an iterative scheme 
is the stopping index n. The iteration is continued until in 
reaches its stopping value n. We mention that an analogous 
iteration method can be used to solve the variational problem 
appearing in variational methods. 

In practice, one has to discretize the function I of the bath 
concentrations and Voltages, so that one only computes a 
finite number M of function evaluations, denoted by I,..., 
I, and the operator F can be written in the form F=(F, ..., 
F). The evaluation of a single part F, amounts to a single 
solution of the forward problem for a specific combination of 
the bath concentrations and the applied Voltage, and the Sub 
sequent computation of the outflow current from the solution. 

In our test example we carried out a gradient-based 
method, which is an iteration procedure of the form 

P-T.J., (P), (41) 

which can be interpreted as a minimization method for the 
variational problem (39) or, with CL=0 and an appropriate 
choice of the stopping index, as an iterative regularization 
method of the form (40), namely the Landweber method (24). 
Here F", R', and J. denote the derivatives of the operator F and 
the functionals R and J, respectively, in the appropriate 
function spaces. Moreover, F(P)* is the adjoint of the 
derivative (which is a linear operator between these function 
spaces). 
The simplest, but already relevant, inverse problem to be 

solved in this context is to determine the number N. charac 
terizing the total permanent charge (i.e., PN in the above 
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setting). As noticed above, this problem is one-dimensional as 
an inverse problem (although, of course, the direct problem is 
still a system of partial differential equations) and hence, the 
instability is expected to be less pronounced. Also, this prob 
lem is not very challenging with respect to the optimization 
algorithm. The main issue in the optimization is the evalua 
tion of the functional J, and the concomitant regularization of 
the operator F, which involves the solution of several forward 
problems. Since the implementation of the adjoint operator 
F'(P)* is a complicated task we approximated the gradient by 
finite differences 

P = P, - (J.P., +8).-J., (P.), (42) 

for 6 sufficiently small. This means that each iteration step 
requires two evaluations of the functional J, and conse 
quently the solution of 2M forward problems. Since the aim is 
to identify a single real number only, it seems reasonable that 
this is possible for M rather low, and indeed our computa 
tional experiments indicate that this is possible with high 
accuracy for M=10 and even for M=5. 
The next level with respect to complexity is the identifica 

tion of the constraining potential u", which keeps the perma 
nent charges within the channels and so is closely related to 
the distribution of those charges within the channel. This 
problem turns out to be severely ill-posed so that regulariza 
tion is of fundamental importance. In our computational tests 
we use iterative regularization as outlined above with the 
discrepancy principle as a stopping rule, i.e., the iteration is 
stopped when the residual reaches the order of the noise level. 
For the implementation of the method, an additional discreti 
Zation of the constraining potential is needed, which we also 
perform by piecewise linear functions. The computational 
complexity of this inverse problem is much higher also due to 
the fact that a much higher value M of different setups is 
needed in order to obtain a reasonable reconstruction of the 
potential u". 
We mention that inverse problems for PNP-systems mod 

eling semiconductor devices have been considered before (cf. 
10, 11 and the references cited there). However, there are 
many fundamental differences to the case of PNP models for 
ion channels. First of all, in semiconductor models all chemi 
cal interactions are ignored, i.e., the excess energy term E. 
and the corresponding potential are ignored. Moreover, there 
are several other differences in the models, e.g., in semicon 
ductors there are at most two different charged species, one of 
them negative and one positive (electrons and holes) and no 
uncharged species in semiconductors, whereas a reasonable 
ion channel has at least three different charged species, and 
therefore two with same sign. A fundamental consequence of 
these effects is the absence of selectivity in semiconductor 
devices, which on the other hand is the most attractive prop 
erty of ion channels as technological devices. There are also 
several significant differences in the identification process. In 
particular not only measurements of currents but also of 
capacitances can be used to identify and design semiconduc 
tor devices, and on the other hand only the applied Voltage can 
be varied in semiconductor devices. (There is no equivalent of 
varying bath concentrations.) Since the measured currents 
and capacitances are functions of a single variable—the Volt 
age—in semiconductors, the evaluation of the forward map F 
involves significantly fewer solves of the PNP-system (1), 
(2), and consequently the computational complexity of the 
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identification problem for semiconductors is by far lower than 
for ion channels, though still huge compared to many other 
inverse problems. 

4.2. Design 

The general remarks and notations of Section 4.1 are also 
valid here. However, as explained above, in the case of (opti 
mal) design there is an objective to be achieved instead of an 
equation to be solved. In the applications to ion channels we 
have in mind, the prime objective is to increase selectivity of 
one species over another. As discussed in detail in 33, selec 
tivity has to be defined by its dependence on experimental 
measurements of particular currents and or electrical poten 
tials, and several different selectivity measures are available. 
A selectivity measure S, of a species can be defined as a 
functional of ion densities and fluxes (possibly at varying 
voltage, see 33). Since the densities and fluxes depend 
implicitly on the unknowns Prelated to the permanent charge 
(either the total number of charges or the constraining poten 
tial), the selectivity measure can also be rewritten as a func 
tional S-S,(P) of these parameters. If the aim is to increase 
selectivity of species a overb, which is frequently the case, 
then one can minimize a relative selectivity measure 

Q(S.(P), S,(P)) ? min, (43) 

A choice which we also use in our computational experi 
ments is the selectivity quotient Q(S.S.)=-S/S (Note that 
minimizing the negative quotient is equivalent to the original 
aim of maximizing the relative sensitivity). Analogous treat 
ment is possible for other choices of Q, e.g., Q(S.S.) -S/S, 
or Q(S.S.) --S+S. 

Like identification tasks, significant instabilities appear 
also in the optimal design tasks. In this case there is no input 
data, but if one minimizes a functional Q as above, then first 
of all the minimizer might not exist, which makes the norm of 
P tend to infinity in a minimization algorithm. Even if a 
minimizer exists, it is not robust with respect to Small pertur 
bations of the problem (Small changes of applied Voltage and 
concentrations, modeling errors, numerical errors, . . . ), so 
that a computed solution becomes useless in practice. 
To overcome the instabilities, similar regularization 

approaches as described above have to be used. In an analo 
gous way one can define variational and iterative regulariza 
tion methods by just changing the objective functional to Q. 
In our computational tests, we specifically use a variational 
method of the form 

where P is an a-priori guess. In an in-silico ion channel this 
a-priori guess could introduce additional criteria into the 
minimization, e.g., P can represent a total charge or a poten 
tial that is easy to manufacture, so that the regularization term 
would introduce a criterion for the minimizer to be close to 
easily manufacturable states. For example, the minimizer can 
constrain the solution to be near an existing known ion chan 
nel in order to facilitate manufacture from a known starting 
point. In this way robustness is introduced to the problem, 
which can also be observed in the results of our computational 
experiments. 
From a computational viewpoint, the minimization of the 

regularized variational problem is an analogous task to the 
minimization appearing in identification problems. The main 
steps are the evaluation of the objective functional (by solving 
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forward problems and Subsequently evaluating selectivity 
measures) and the computations of gradients of the objective 
functional with respect to P. The latter task can again be 
carried out by finite differencing, which reduces to additional 
Solves of the forward problem and creates a high computa 
tional effort, or by Solving appropriate adjoint problems. The 
total computational effort for solving optimal design prob 
lems is usually much less than for Solving identification prob 
lems, since the selectivity measure is only computed for very 
few different combinations of bath concentrations and volt 
ages, so that significantly less forward problems have to 
solved for evaluating the objective functional than in the case 
of identification. 
We finally mention that optimal design problems for PNP 

systems have also been investigated before in applications to 
semiconductor devices (cf. 42, 43, 13), but again there are 
many significant differences to the case of ion channels. 
Besides all the differences in the forward problem, the opti 
mal design of semiconductors (and in particular the objective 
functional) is always related to currents, there is no analog of 
a selectivity measure in semiconductors. Hence, the optimal 
design task for ion channels is a completely new problem that 
connects only loosely to previous literature. 

It should be noted that a significant difference between the 
tasks of identification and design is that any freedom in the 
solution tends to be undesirable in the identification problem 
where accuracy is highly valued. On the other hand, in the 
design task freedom is desirable because it allows a range of 
possibilities for optimizing manufacturability. 

5. Proof of Concept 

In order to verify that the proposed approach works in 
concrete and biologically relevant applications, we disclose 
examples related to L-type Cachannels. L-type Cachannels 
(abbreviated LCC below) area desirable place to start work in 
this field, because they are one of the most well investigated 
channel types and moreover, the forward models we use have 
been calibrated well against real-life experiments (cf. 34. 
35). The forward problem here is directly relevant to the 
function of L-type calcium channels. The forward problem 
calculates the current carried for each mobile ion species, and 
of course the total current through the channel for a given 
potential and set of concentrations. Thus, the forward prob 
lem calculates the selectivity of the channel. Because the 
amount of calcium current (in particular) through the L-type 
calcium channel is a direct determinant of the contraction of 
the heart, and thus the pumping of blood, the forward problem 
allows control of a biological and medical system of great 
importance. The specific solution clearly shows the feasibil 
ity of our approach. 

5.1. Forward Model 

The forward model of the L-type Cachannels involves the 
electrical potential V and five densities p, modeling the five 
different species Ca", Na", Cl, H2O, and half-charged oxy 
gens, the latter corresponding to the permanent charge. This 
means that each forward problem consists of a coupled sys 
tem of six partial differential equations, the Poisson equation 
(1) and five Nernst-Planck equations (2) for the densities 
p, ..., ps (see Table 1 for the assignment of densities to the 
species). 
The channel is modeled as cylindrical with radius 0.4 nm 

(y-Z plane) and length 1 nm (X-direction), embedded in two 
baths both of length 1.7 nm. This yields a total length of 4.4 
nm for the system, and therefore the computational domain is 
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chosen as (-L, L) with L=2.2 nm. FIGS. 18 and 19 are 
sketches of the system geometry. FIG. 18 illustrates the role 
that the charge-crowded region plays in an ion channel, and 
FIG. 19 illustrates how differently sized ions interact with the 
charge-crowded region. 

TABLE 1 

Parameter Settings for the L-type Cachannels Example 
Lising elementary charge e = 1.602 x 10 °C. 

k = 

1 2 3 4 5 

Species = Cat Na C HO O-1/2 
Charge Z. 2e e -e O -ef2 
p(L) 6 nM 12 mM 24 nM 55 M OM 

From the geometry of the system it is rather obvious that 
the flow arises in the x-direction (down the center of the 
channel), and the model can be reduced by averaging in the 
y-Z plane to a one-dimensional problem with single spatial 
variable X; but note that our procedures are in no way 
restricted to the one-dimensional case. In this averaging pro 
cedure the shape of the channel has to be taken into account, 
which yields some spatially dependent coefficients in the 
reduced system of one-dimensional differential equations. 
The details of the averaging and an exact statement of the 
equations to be solved for the L-type Cachannels example are 
given in Appendix I. 
We solve the forward problem on a regular grid with 

n=1251 (for data generation) and n=1000 cells (for the 
inverse problem) with a standard conforming finite element 
discretization of the electric potential and the Poisson equa 
tion, and a mixed finite element discretization of the continu 
ity equations for the five species (ions and water). This means 
we choose points x, j/(n-1) for j=0,..., n-1 as the grid, and 
then approximate the electric potential Vas well as the fluxes 
J by continuous functions that are linear in each of the inter 
vals (x,x). The densities r, and potentials m are approxi 
mated by functions that are continuous in each of the intervals 
(x,x). Since we have the electric potential and 5 different 
species (water, Ca", Na', Cl, Oxygens, each indicated with 
a respective value for the species index, k), this yields 1252+ 
5x1251–7507 (for data generation) respectively 
1001 +5x1000-6001 (for the inverse problem) degrees of 
freedom in the forward problem. 
The measurements are the currents, taken as functions of 

the voltage and of the left bath concentrations p(-L) for k=1, 
2, whereas the right bath concentrations p(L) are kept fixed. 
The water concentration is fixed in both baths, and due to the 
confinement in the channel, ps(t)=0. The concentrations 
p(t) are finally determined from the charge neutrality XZ. 
p(t)=0. The parameter settings for the boundary values are 
given in Table 1, the values of p(-L) are varied in the iden 
tification process. 

Drawings 20 and 21 show different approximations to the 
electrical potentials and fluxes. Note that these functions must 
be continuous within the intervals but they can be discontinu 
ous at the boundaries of the intervals. Two different functional 
forms are shown that can be used to describe each of the 
spatial functions (densities and potentials) but with different 
parameters of course. 
Two are rectangular functions that are constant within each 

interval and discontinuous at the edge of the intervals. Two 
are ramp functions that are linear (slope not equal to Zero) 
within the intervals but continuous at the edge of the intervals. 
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The slopes of course are discontinuous at the edge of the 
intervals in the latter case. 

5.2. Identification I: Reconstruction of the Total 
Charge 

In this case one assumes that the structure of the channel is 
known, but the total charge of the crowded elements in the 
selectivity filter is unknown. The inverse problem consists of 
identifying the total charge based on measurements of the 
total current for different bath concentrations of the ions. As 
indicated before, the reconstruction of the total charge is the 
simplest case of an inverse problem for ion channels, so that 
we expect more accurate results than for the more compli 
cated inverse problems in the sections below. 

This inverse problem is a finite-dimensional one. The aim 
is to identify a single real number from a finite number of 
measurements. As mentioned above, this inverse problem is 
not ill-posed in the classical sense of inverse problems theory, 
see 23, because of the low dimension. The only possible 
instability is due to nonlinearity effects, but such effects did 
not appear in computational tests. In many applications the 
total charge is the most important single variable so the sta 
bility is an advantage of some practical significance. 

To test the inverse problem technique for ion channels, we 
generated synthetic data for the setup as used in the L-type 
calcium channel calculations 35, i.e., a crowded charge 
consisting of 8 half-charged oxygens. This means we solve 
the forward problem with the finer grid and then compute the 
resulting currents. Subsequently, synthetic noise perturbs the 
synthetic measurements to provide test data for Solving the 
inverse problem (the same technique is also used for the other 
inverse problems below). In this way a known reference solu 
tion is provided and can be checked to see if the algorithm 
yields reasonable reconstructions in a stable way. 

The reconstructions were carried out by a gradient method 
for the associated least-squares functional describing the 
residual. The gradients are approximated by finite differ 
ences. This is for illustration only; more efficient ways for 
approximating the gradient here and for related problems are 
possible, e.g., via adjoint problems. This approach has been 
illustrated for the model problem 10 in Section 3.2. 

In this case reconstructions of the exact total charge are 
very accurate even for noisy data and even for a rather low 
number of measurements. A typical test setup used 3 different 
applied voltages (0.1 V. OV, -0.1 V), and 2 different concen 
trations for Na and Ca (2 mM and 4 mM) in the left bath. With 
all combinations, this gives 3x2x2=12 measured values, i.e., 
the problem is already overdetermined. The noise level in this 
case is 0.1% corresponding to the noise level found in actual 
experiments. An illustration of the reconstruction process in 
this situation is given in FIG.8. Here the reconstructed mass 
of the crowded particles (scaled by the mass of the 8 half 
charged oxygens in the real structure) are plotted vs. the 
number of iterations in the optimization method. In this case 
a standard stopping criterion would stop between iteration 
number 90 and 100. The reconstruction does not change 
significantly afterwards. The difference between the scaled 
mass of the real total charge and the reconstructed one is less 
than 5%, although the initial value is quite far away from the 
solution. Similar behavior was found also in other tests with 
different initial values and parameter settings. 

5.3. Identification II: Reconstruction of the Structure 

The second inverse problem is related to the reconstruction 
of the structure of the channel. This is done indirectly by 
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identifying the constraining potential acting on the crowded 
ions (oxygens in our example), which models the way the 
structure interacts with the channel. 
The unknown in the above setting is given by P-us'. Now 

the inverse problem is to find a space-dependent function on 
the channel region, which is really an infinite-dimensional 
problem and can be argued to be ill-posed (this has been done 
for related (simpler) problems in semiconductors by the 
authors before, cf. e.g., 11). 

In an idealized setting the unique reconstruction of the 
constraining potential (as a function of space) would require 
an infinite number of measurements. Therefore any measure 
ment realized in practice (where of course only a finite num 
ber of measurements can be taken) has to be interpreted as a 
discretization of the problem with infinite number of mea 
surements. It therefore seems obvious that a higher number of 
measurements yields better reconstruction and this is also 
confirmed by all our tests. On the other hand a much higher 
number of measurements yields an extremely high computa 
tional effort. 

In the solution of the identification problem we use the 
a-priori knowledge that the variation of the constraining 
potential us" has a significant influence only in the channel 
region, and therefore approximate it by a constant function in 
the baths. Note that due to the large values of us" in the bath 
regions the concentration p is almost Zero there in any case. 
As a consequence, the degrees of freedom of the potential are 
concentrated in the channel region, and for computational 
purposes we discretize us" as a piecewise constant function 
on a grid over the channel region (with 11 degrees of freedom 
in the computations reported below). 
As representative examples of the behavior of the recon 

structions we illustrate the results for: 
4 applied voltages, 2 different left bath concentrations for 

Na and Cl, total 4x2x2=16 measurements (Voltages +10 mV. 
+5 mV, and concentrations 2 mM, 4 mM); and 

6 applied voltages, 3 different left bath concentrations for 
Na and Cl, total 6x3x3–54 measurements (Voltages +10 mV. 
+6.6 mV. -3.3 mV, and concentrations 2 mM, 4 mM, 6 mM); 
obtained with 0.1% noise. The resulting evolution of the 
least-squares functional during the iteration is plotted in FIG. 
9 (left for case (a) and right for case (b))—one observes they 
are quite similar in the two cases, the residual decreases to 
some value around the size of the noise level. As has to be 
expected from the discussion in Section 3.2 (cf. FIGS. 6 and 
7), the evolution of the reconstruction error, however, is com 
pletely different, as one can see in the plots of FIG.10 (left for 
case (a) and right for case (b)). In the first case (16 measure 
ments) the reconstruction erroris hardly reduced, while in the 
second case one already obtains a very significant decrease 
before the noise level is reached. This can also be seen from 
the final reconstructions obtained with a stopping of the itera 
tion dependent on the noise, which are shown in FIG. 11, 
plotting the negative potentials for illustration purpose, left 
for case (a) and right for case (b). The initial guess used in 
both cases is shown in FIG. 11. One observes that the second 
reconstruction is already rather close to the real potential, in 
particular in the left part of the channel. The reason for the 
better reconstruction in the left part is that the concentrations 
are varied in the left bath, so there is more sensitivity with 
respect to the data in this region. 

These results clearly indicate that the reconstructions will 
improve with increasing number of measurements. For a very 
high number of measurements, the computational complexity 
of the inverse problem dramatically increases and it will be 
necessary to implement very efficient (“adjoint’) methods to 
compute reconstructions 
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The instability of the identification problem in this case is 
illustrated in the plots of FIG. 13. Here we use the same setup 
as before (6x3x3 measurements), but a slightly higher noise 
level (1%). We start with an initial guess where the residual is 
in the order of the noise level; in Such a situation, a stopping 
rule for an iterative regularization Such as the discrepancy 
principle (cf. Section 3.2) would immediately stop the itera 
tion. If one iterates further (which one would do when using 
a standard optimization stopping criterion based on the gra 
dient of the residual), then the error starts to increase (and then 
possibly oscillates) although the residual is still decreasing. 
This situation is illustrated in FIG. 13, where the least-squares 
functional and the error are plotted as functions of the itera 
tion number. One observes that in this case the least-squares 
functional is still decreasing, but the error to the exact solution 
can increase. Note that this effect did not appear in the 
examples with a stopping criterion based on regularization 
theory as described in Section 3.2 (compare also FIGS. 9 and 
10 to FIGS. 6 and 7), which again illustrates the importance of 
regularization. 

5.4. Design: Maximizing Selectivity 

The optimal design problem has yet to be considered, 
which aims at designing in-silico channels with at least 
improved sensitivity compared to a given initial design but 
possibly also close to a pre-existing ion channel, which can be 
used as an optional, additional constraining criterion. As a test 
case to preliminarily assess the techniques disclosed one of 
the three selectivity measures of the classical literature of 
electrophysiology can be used: 92, described and analyzed 
in 33, the so-called permeability ratio, at equal concentra 
tions for all ions in the left and right bath (for this sake we use 
the bath concentrations p(+L)–20 mM for k=1, 2 and 
p(L)= 60 mM). More precisely, the selectivity measure is 
the permeability ratio for Na' and Ca", where the perme 
abilities on the right side of the channel are computed (de 
tailed formulas for the computations of the permeabilities S. 
are given in the appendix). The unknown to be designed is 
again related to the structure of the channel, i.e., we set Plus" 
and use the same discretization as in the previous section. 
The design goal is to maximize or at least increase the 

sensitivity to a larger value. The present disclosure uses the 
negative permeability ratio as an additional regularization 
term, i.e., the objective is changed to the Tikhonov functional 
arising as a special case of (44) 

where Pus" is the potential to be optimized and P* is the 
initial guess of the potential (the one used in the simulations 
in 33). Besides its regularizing effect, the second term in the 
objective favors solutions as close as possible to the initial 
guess, which helps to obtain potentials that can be realized in 
practice. It should be clearly understood that attempts to 
maximize or improve selectivity by objective computation or 
by hand tuning will generally be unstable and therefore 
nearly useless if they do not include a regularization term. The 
difficulties in protein design by hand are known to those of 
ordinary skill in the art. 
The objective functional is then minimized with a gradient 

method and Suitable step size selection to guarantee decrease 
of the objective. The gradients are again approximated by 
finite differences (see above for a discussion of this point). 
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A special design case (with parameter C.200) is illustrated 

in the plot in FIG. 15, which shows the evolution of the 
objective functional (black) as well as its first part, the nega 
tive permeability ratio -S (P)/S (P) during the iteration 
until convergence. One observes that an increase in the selec 
tivity measure of more than 100% is achieved by the optimi 
zation. The initial value used for the optimization and the final 
result are plotted in FIG. 17. One observes that the two poten 
tials are still very close, so the structure has not been changed 
completely implying that the modification could be built 
without too much trouble using techniques of the field of 
site-selected mutagenesis. 

For comparison (and illustration of instabilities), also the 
classical approach of just minimizing the negative permeabil 
ity ratio is illustrated, with the same initial value and param 
eter settings, but with the objective functional J(P):=-S 
(P)/S (P). Again, FIG. 16 displays the objective functional 
during the iterations, the optimal solution is plotted in FIG. 
17. One observes that in this case the gradient method needs 
many more iterations than with penalization, but even then 
does not yield a dramatic increase of permeability (around 17 
instead of 14 for the penalized case). However, just one look 
at the optimal potential in the unpenalized case (FIG. 14) 
shows that the (Small) increase in the ratio is caused by a 
blow-up in the potential (notice the vertical scale of 10'). 
Obviously, such extremely high potentials and forces will not 
be easy to realize in actual structures and so the resulting 
channel design will not be useful in practice, which is another 
point in favor of our regularization approach. 
The regularization parameter a controls the balance 

between selectivity and departure from the initial design. If C. 
is very large, then the minimizer of J, will remain close to the 
initial guess. By solving the optimal design problem for 
smaller values of C, one could achieve a further increase in the 
permeability ratio, but also the optimal potential (i.e., the 
solution of the optimal design problem) will take higher val 
ues and become more and more difficult to be realized. As 
C.->0, one observes similar unphysical solutions as the one 
shown in FIG. 14. So, regularization gives (in addition to the 
advantages discussed) even more flexibility in finding a com 
promise between different design goals. 
We summarize by stating that our examples show that both 

the identification and the design goals can be achieved in a 
stable and efficient way by our approach based on regulariza 
tion, as illustrated by the special case of using Tikhonov 
regularization with an iterative minimization of the Tikhonov 
functional (13), and that such results are not possible by 
standard approaches due the ill-posed nature of the inverse 
problems considered. 
From the foregoing it will be observed that numerous 

modifications and variations can be effectuated without 
departing from the true spirit and scope of the novel concepts 
of the present invention. It is to be understood that no limita 
tion with respect to the specific embodiment illustrated is 
intended or should be inferred. Each of the patents and 
articles cited herein is incorporated by reference. The use of 
the article “a” or “an' is intended to include one or more. The 
disclosure is intended to cover by the appended claims all 
Such modifications as fall within the scope of the claims. 
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dis ({n(x)}) = (9) 

APPENDIX inity - it in 2 n: ( v2/v2 
no ln(1 - na) + - I -- in -- 24(1-2-n3)? 1 n; 

Model Equations for LCC Example 15 
Density Averages (C.O. 1, 2, 3, V1,V2) 

Involved species and related unknowns (see also Table 1): 
1. Ca": Density p, flux J, electrochemical potential LL R 10 
2. Na: Density p, flux J, electrochemical potential L. 20 no (x) = X ? p;(x)W(x-x)dy (10) 
3. Cl: Density ps, flux J, electrochemical potential us Ja-R; 
4. HO: Density p, flux Ja, electrochemical potential La 
5. O': Density ps, flux Js, electrochemical potential us Weights (i-1, 2, 3, 4, 5) 
6. Electrostatic potential (p 25 W2(r)=2atR, (11) 

Equations to be solved for Xe(-L,L) 
Poisson Equation W(r)=t(R-r?) (12) 

30 (v2), Y= 1 (i. did (1) W.4(r)=2atr(1,0,0) (13) TA(v) f(eA(x) = c), 3ip;(x) 
4tR. Wo(r)=4-tR. W.'(r)=W2(r) (14) 

Constitutive Laws (i-1, 2, 3, 4, 5): 
35 4at R.W. (r)=W2(r). (15) 

Electrostatic Componentsu, f(x) (i=1,2,3,4,5) 
1 dipt; (2) -J = D.(x)A(x)p(x): 

a u(x) = (16) 
Continuity Equations (i=1, 2, 3, 4, 5) e zzie 1 y-Rii , (1 uf (e." ()-X SAA, ?-Rii Ap(v)(R+AiR 

i 

dJ; O (3) 2 f 2 - 13 2. f 
45 AiR, + Ai(x-x)" - six - x - Aix -x}ax 

Electrochemical Potentials (i=1, 2, 3, 4, 5) Density Expansion 

I,(x)= 1.(x)+...'(x)+...(x) (4) so Ap,(x)=p(x)-p;(x) (17) 

Constraining Potential u'(x) (i=1,2,3,4) Radii (i,j=1, 2, 3, 4, 5) 

(x)=0 (5) R=R,+R, (18) 

Constraining potentialus'(x) to be determined as solution of 55 Capacitance Lengths (i, j=1, 2, 3, 4, 5) 
the inverse problem, therefore used with varying values dur 
ing the outer iteration for the solution of the inverse problem Ji-iv-vi (19) 

Ideal Components u,"(x) (i=1,2,3,4,5) 
60 (x) R-S(x) (20) 

a v) = zed(x) + KTIn fi(x) ) (6) Screening Length 
scale 

(21) 
Excess Components u(x) (i-1, 2, 3, 4, 5) 65 s(t) = 2, 

*-i-Sufis (7) 
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MSA Screening Parameter 

2 

4T(x) = ife Xe(s) 
i 

MSA Parameters 

1 t pi(x) Rizi 

t dpi 3 

A(x) = 1 - XY.to: 

Reference Fluid Component (k=1, 2, 3, 4, 5) 

Weight Function 

O if |x - y’ > Rite.(x) 

Filter Radius 

Auxiliary Densities 
p(x)=Cp*(x) (z20) 

p(x)=C. Bp.*(x) (z-0) 
Normalization Parameters 

if |x - vs Rite.(x) 
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Initial densities p determined through self-consistency 
iteration 

10 Boundary conditions for x +L 
(23) Values of p(+L) (k=1, 2, 3, 4) specified, see Table 1. Left 

boundary values varying due to varying concentrations in the 
different setups. Forps we have Neumann boundary condi 

24 tions (24) 15 

d d (25) (-L) = (L) = 0, 
2O 

and the condition 

E. 33 
(26) N5 = ? A(x)ps (x) dy, (33) 

25 -. 

with N=8, except for the first example. 
(27) Values of (p(L)-0, p(-L)=U, where U denotes the applied 

30 Voltage, varying in the different setups. 
Parameter Values 

Dielectric coefficient e-8.85x10'’ F/m 
Relative dielectric coefficient 6=78 

35 Elementary charge e=1.602x10'C 
Boltzmann constant k=1.381x10° joules/deg, 8.62x10-5 

(28) electron-volts/deg 
Temperature T-300 K. 

40 The further parameters needed in the above equation are 
given in the following table (value of Ds does not matter since 
the boundary conditions imply dus/dx=0): 

k 

1 2 3 4 5 

Species Ca2+ Na C-1 HO O-1/2 
D. (bath) 7.9 x 109 1.3 x 10' 2.03 x 10 2.13 x 109 
(units in m/s) 
D (channel) 7.9 x 100 3.25 x 1012 3.25 x 1012 2.13 x 10 
(units in m/s) 
R. 1 x 100 1 x 109 1.8 x 109 1.4 x 109 1.4 x 109 
(units in m) 

55 

The invention claimed is: 
(29) 1. A method for determining a structure of permanent 

charge for an ion channel from information comprising: 
(30) providing a computer having a memory, a processor having 

60 access to the memory; 
providing one or more computer programs comprising 

algorithms that: 
(31) implementa regularizing family of equations that approxi 

mate a model of ion channel behavior that relates the 
65 function of the ion channel to at least the structure of 

permanent charge within the ion channel, the concentra 
tion of at least one ion species present in the region 
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inside or adjacent to the ion channel, and boundary 
conditions to generate a regularized solution; 

algorithms implementing an abstract operator So as to pro 
vide a closeness of the regularized solution to a solution 
provided by the abstract operator; 

algorithms implementing stable and convergent algo 
rithms that determine a stability for the regularized solu 
tion; 

algorithms implementing a regularization parameter, the 
regularization parameter determining a balance between 
the stability of the regularized solution and the accuracy 
of the regularized solution; and 

algorithms to adjust the provided information in accor 
dance with the regularizing family of equations until a 
regularized solution of balanced accuracy and stability 
is obtained; 

providing the computer memory with the at least one com 
puter program; 

providing information including at least the concentration 
of the at least one ion species present in the region inside 
or adjacent to the ion channel and the boundary condi 
tions; 

providing the computer memory with the information; 
providing the processor with the computer program and the 

information stored in the memory; 
processing the information with the computer program to: 

obtain a regularized solution; 
estimate the closeness of the regularized solution to a solu 

tion provided by an abstract operator to obtain an accu 
racy of the regularized solution; 

determining the stability of the regularized solution; 
determining through computer code using the regulariza 

tion parameter, the balance between the stability and 
accuracy of the regularized solution; 
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46 
as necessary, adjust the provided information in accor 

dance with the regularizing family of equations until a 
regularized solution of balanced accuracy and stability 
is obtained. 

2. The method of claim 1, wherein the family of equations 
comprises: 

a forward model of ion channel behavior; and 
the information further comprises: 
information regarding the structure of permanent charge 

for a control ion channel; 
information for a plurality of sets of mobile species con 

centration information, a set of mobile species concen 
tration information comprising a concentration of the 
first mobile species and a concentration of the second 
mobile species; 

information for a corresponding ensemble of data for the 
relationship of current to voltage for the control ion 
channel for each of the plurality of sets of mobile species 
concentration information. 

3. The method of claim 1, wherein: 
the computer program for solving the forward model of ion 

channel behavior for the control ion channel further 
comprises; 

providing a fast and accurate algorithm for the forward 
model, and 

providing algorithms to determine an accuracy for the for 
ward model; 

and the processing further includes: 
solving the forward model; and 
determining an accuracy for the forward model. 
4. The method of claim3, wherein the ion channel model is 

a Poisson-Plank-Nernst model. 
5. The method of claim 1, wherein regularizing uses regu 

larization methods from the group consisting of variational 
and iterative approaches. 

k k k k k 




