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Abstract

Osmotic coefficients of solutions represent experimentally observable measures of the interac-

tions between dissolved species and are particularly important metrics for biophysical experiments

in which the concentrations of solutes control biological function, as in ion-channel proteins. The

computational expense associated with all-atom molecular-dynamics (MD) simulations makes it

difficult to connect these data to detailed molecular models directly. It is therefore generally

impractical to ensure that MD force fields are parameterized consistently with the full range of

available data. Several approaches to coarse graining these systems make the estimation of os-

motic coefficients more tractable. In this paper we explore one such approach, the inverse Monte

Carlo (IMC) method of Lyubartsev and Laaksonen, for estimating osmotic coefficients of aqueous

solutions with dissolved sodium chloride. The IMC method is used to calculate effective pairwise

potential functions for the ion-ion interactions, taking as input the ion-ion radial distribution func-

tions calculated from all-atom MD simulations. Our results show that the IMC method converges

robustly and reproducibly, and we conclude that IMC and related approaches hold promise for

validating force fields against experimental data, though further refinements will be important

to ensure practical viability for use in parameterization. In particular, we have found that the

estimates of the osmotic coefficient, which is an intensive quantity, are size dependent, but the

size dependence can be corrected with a simple linear fitting procedure. Also, the Monte Carlo

procedure explores the phase space extremely slowly, and it may be valuable to use accelerated

sampling procedures; performance may also be improved significantly by using more sophisticated

Newton–Raphson methods. It is well known that osmotic coefficients are highly sensitive to the

pair potentials involved, and thus methods for their estimation must be studied and validated

carefully.
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1. FINITE-SIZE CORRECTION

Some time after writing this manuscript, we found that the osmotic pressure Posm, defined

by the virial expression

Posm =
NkT

V
−

〈

∂U

∂rij

rij

〉

(1)

where the ensemble average involving the pair potential U(rij) incorporates the volume-

dependence of the Ewald expression1, was usually not just a linear function of the number

of particles, but affine. That is, the osmotic coefficient φ = PosmV/NkT , which is an intensive

quantity, instead has a size dependence that looks like

φSD(N) = φ +
B

N
, (2)

where φSD(N) denotes the (size-dependent) estimate obtained from a simulation with N

particles and B is the offset. The second term obviously decreases in magnitude as the

Monte Carlo (MC) simulation uses increasing numbers of particles. Thus, ultimately one

recovers the correct osmotic coefficient as the number of particles grows. We investigated

the causes of this size dependence and attempted to find ways to eliminate it. We found

that B is dependent on the particular inverse Monte Carlo (IMC) protocol used, including

truncation parameters associated with the Ewald summation (as would be expected), the

number of MC steps at each iteration, and the criterion used to choose a final IMC solution.

More work will be needed to establish definitive protocols for removing this size dependence.

This report does not describe details regarding the new finding.

2. INTRODUCTION

Aqueous ionic solutions represent an ongoing modeling challenge for theoretical and com-

putational scientists2, with substantial motivation provided by problems throughout biology

and chemistry3. Gradients of ionic solutions are the energy source of many of life’s functions,

from signaling in the nervous system to vital parts of oxidative phosphorylation in mitochon-

dria4,5 and photosynthesis in chloroplasts6. Ions carry the charge and current responsible for

the electrical properties of neurons and muscle fibers, which (for example) allow the heart

to function as a pump7. Ions can activate and deactivate proteins8 and act as messengers

carrying signals that control a wide range of biochemical pathways9. One can hardly find
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a biological function that does not involve ions, and so chemists have long dreamed that a

physical theory of ions near and in proteins could provide decisive help in understanding

biological function10–17.

In physical chemistry, aqueous electrolyte solutions have been studied experimentally and

theoretically for more than a century (see historical Refs. 2,18–26). The osmotic coefficient

of a solution is a thermodynamic variable that captures a sense of the solution’s deviation

from ideality—that is, how strongly the solute ions interact with one another. The osmotic

coefficients of myriad solutions have been tabulated for decades27–31, with aqueous ionic

solutions representing a significant subset, although many other solutes and solvents have

been studied. For example, osmotic coefficients have been measured for solutions of amino

acids and short peptides32 as well as monosaccharides33.

For experimental studies of ion-channel proteins, the measurement of osmotic coefficients

(or their thermodynamic equivalents, the activity coefficients) of the solutions on both sides

of the membrane is a critical step in verifying that the desired ionic mixtures have been

achieved. Furthermore, a characteristic signature of ion-channel proteins is the reversal po-

tential (the electrical potential at which the current is zero34), which depends sensitively

on the electrochemical potential gradients created by the different ionic compositions and

therefore on the osmotic coefficients. Complementary to the thermodynamics of aqueous

solutions, experimental methods such as neutron and x-ray scattering provide substantial

structural information about the solvent molecules surrounding the ions and about the dis-

tributions of the ions themselves (see, e.g. Refs. 35–37). However, it is still difficult to obtain

significant information beyond the first few nearest neighbors, and the thermodynamics can

be sensitive functions of the structural details38.

Rapid growth in computer power and the advent of all-atom explicit-solvent molecu-

lar dynamics (MD) simulation methods have been enabled by programs such as NAMD39,

CHARMM40, and AMBER41, augmented with either non-polarizable42–46 or, in some cases,

polarizable47–51 force fields. Together these technologies bring unprecedented possibilities

for studying molecular phenomena such as ion solvation43,52–54. However, fully atomistic

simulations present challenges because of the large number of parameters that must be

self-consistently determined prior to simulation55. Many widely used force fields have been

designed so that solvation free energies of particular solutes match experiment. The sol-

vation free energy is a conceptually simple quantity and therefore an appealing metric for
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parameterization, but unfortunately this quantity can be difficult to measure accurately56.

Shortcomings in current force fields have been pointed out57,58, providing more motivation

to improve and verify parameters. In a similar spirit of parameterizing ionic solutions on

the basis of systematic measurements, Smith and collaborators have parameterized an atom-

istic force field using Kirkwood–Buff (KB) integrals59,60. The KB force field has met with

remarkable success, but the necessary experiment measurements can be difficult to obtain.

In contrast to fully atomistic methods, models with few parameters such as the primitive

model of electrolytes61–63 and statistical-mechnical integral equations based on the Ornstein–

Zernike equation have proven to be highly successful in predicting the osmotic coefficients

of ionic solutions61,62,64,65. The success of simple, reduced models in predicting osmotic

coefficients makes it imperative that more detailed MD models predict these quantities at

least as well. Unfortunately, the computational expense associated with estimating osmotic

and activity coefficients has limited the opportunity for their use; the difficulty of calculating

activity coefficients was reviewed several years ago by Lazaridis and Paulaitis66. The rapid

growth in available computing resources since then has greatly alleviated this constraint

and led to a recent upswing in publications detailing calculations of osmotic and activity

coefficients67.

Much recent theoretical work has explored estimates of osmotic coefficients of salt solu-

tions, most often sodium chloride56,68,69. However, numerous studies have been performed

on larger systems. Druchok et al. have studied protein solutions70. Yu et al. have stud-

ied DNA-electrolyte solutions using classical density functional theory (DFT)71, and Li and

Wu72 have also used classical DFT to study asymmetric electrolytes. Hansen, Podgornik,

and Parsegian73 have shown the inadequacy of simple charge-condensation theories to pre-

dict the osmotic coefficients of solutions of B-DNA. Binding affinities can also be analyzed by

using activity coefficients74, and therefore methods for estimating quantities such as osmotic

or activity coefficients may be useful in studying molecular binding.

Estimating the osmotic coefficient of an aqueous electrolyte requires large numbers of ions

and extensive sampling of phase space56,68. Direct MD is feasible, as demonstrated recently

by Kalcher and Dzubiella69, though it is extremely computationally intensive. An alternative

is to estimate effective potentials that can then be used in reduced-model simulations such

as Monte Carlo (MC) methods68,75 or stochastic dynamics56, which account implicitly for

the solvent. These effective potentials arise when one replaces the original Hamiltonian with
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a reduced Hamiltonian by integrating out the solvent degrees of freedom (DOF)75,76. Even

if the original Hamiltonian is pairwise additive, however, the reduced Hamiltonian will not

be, in general. That is, by integrating out the solvent DOF, one introduces new three-body

potentials, new four-body potentials, and so forth, up to the full N-body potential. Because

the computational work required to determine and to employ the non-pairwise potentials can

be prohibitive, the reduced Hamiltonian is often approximated instead as a sum of effective

pairwise potentials.

Lyubartsev and Laaksonen presented an inverse Monte Carlo (IMC) algorithm for finding

effective pairwise potentials (EPPs) given the radial distribution functions between the ionic

species68,75,77,78. This is a computational approach to solving the inverse problem in which

many-body effects are incorporated directly into the pairwise potential functions. That is,

the calculated EPPs are not actually the potentials of mean force at infinite dilution, which

would be the actual pairwise potentials from the reduced Hamiltonian. The IMC approach

is therefore one estimator for the thermodynamics of the solution. This approach is similar79

to hypernetted chain-based approaches80,81. In contrast, Hess et al. explicitly determine the

ion-ion potentials of mean force at (effectively) infinite dilution, and include many-body

effects (that is, the effects of the other ions for finite concentration simulations) using a

concentration-dependent dielectric constant56. Kalcher and Dzubiella found empirically that

MD-generated potentials of mean force at different concentrations could be separated into a

short-range potential that was concentration independent and a (concentration-dependent)

Debye–Hückel long-range interaction to describe screening69. Several other types of coarse-

graining methods have been reported recently, most notably the force-matching approaches

of Parrinello, Voth, Izvekov, and collaborators82–84.

In this paper, we focus on the robustness of the IMC approach for estimating osmotic

coefficients, with a primary goal of establishing the parameters required to obtain converged

estimates of osmotic coefficients from MD simulations. This assessment seems appropriate

given the enormous growth in computing power since the original IMC work was presented,

along with results suggesting size-independence and convergence requirements68,75. Fur-

thermore, a detailed reproducibility analysis of much larger systems for the MD, MC, and

IMC combination appears timely given the increasing interest in the use of coarse-graining

methods as an approach to force-field validation. Another interest is the development of

reduced-model approaches that can include solvent-packing effects for inhomogeneous sys-

6

Argonne/Math and Computer Science 
Reprint ANL/MCS-P1764-0610  06/09/2010



tems such as ion-channel proteins, where the primitive model of electrolytes has proven

surprisingly successful at describing selectivity85–89 despite the primitive model’s neglect of

the seemingly important structural and chemical details.

We explore the effects of the Monte Carlo parameters, such as the number of steps

and the number of ions employed, as well as the IMC parameters themselves, such as the

number of IMC iterations. We obtain for 4 M NaCl solution an estimate of the osmotic

coefficient that appears to have an uncertainty of approximately 0.03, or a few percent of a

typical experimental value between 0.80 and 1.20; however, this level of convergence should

be sufficient to illustrate whether a given MD force field captures essential features of the

osmotic coefficient as a function of salt concentration.

The following section describes the inverse Monte Carlo method for deriving effective

interaction potentials from MD simulations at finite concentrations, as well as the estimation

of osmotic coefficients from Monte Carlo simulations. Section 4 presents the results of our

calculations, establishing simulation parameters under which the IMC-calculated osmotic

coefficients appear to be converged. Section 5 concludes the paper with a discussion.

3. THEORY

3.1. Inverse Monte Carlo Algorithm

The central theoretical basis for the IMC method is due to R. Henderson, who showed

that for any set of radial distribution functions (RDFs), a set of pairwise potentials that

reproduces the RDFs must be unique90. Chayes, Chayes, and Lieb later supplied the proof

that such a set of potentials always exists91,92. Lyubartsev and Laaksonen proved that

these effective pair potentials (EPPs) maximize entropy over all reduced energy functions68.

The IMC algorithm is essentially a Newton–Raphson method for determining the EPPs

associated with a given set of RDFs, which in this work we take from molecular dynamics

simulation. The utility of the relation between EPPs and RDFs also depends on practical

issues such as sensitivity to error in the input data, as do all inverse problems93,94. We

investigate some of those here as we compute and use EPPs and RDFs.

For simplicity of notation we describe the IMC process in the context of a single-

component system for which we know a priori that the particle-particle RDF is g(r), where
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r is the Euclidean distance between particles. This model assumes that the particles are

interacting in bulk; that is, we are studying the homogeneous fluid, and the interaction

between two particles does not depend on their locations but only on the relative distance

between them. The Hamiltonian associated with the single EPP Ψ(r) may be written

H =
∑

i,k

Ψ(|qi − qk|), (3)

where qi denotes the position of the ith particle and the sum is taken over all (nonidentical)

pairs75. In the multicomponent case, such as in studying sodium and chloride, each type of

interaction has its own EPP.

The IMC software of Lyubartsev approximates an EPP as a weighted combination of

piecewise-constant basis functions75; we discuss the advantages and disadvantages of this

approach, as well as other possible representations, in Section 5. Representing the EPP as

a scaled sum allows the single-component Hamiltonian to be written as

H =
∑

l

KlSl(q1, q2, . . .), (4)

where term l of the sum is associated with the scaling constant (Kl) and a function of the

particle positions, Sl({qi}). In the present implementation of IMC75, the basis function

Sl({qi}) captures the number of particle pairs separated by a distance r satisfying

l∆r < r < (l + 1)∆r, (5)

where ∆r is the width of the piecewise-constant basis functions. Solving the inverse

problem—that is, finding the correct values of Kl—requires that the MC calculation es-

timates average counts at a distance r, which we denote by < S(r) >, proportional to the

radial distribution function g(r):

< S(r) >= 4πr2g(r). (6)

In practice, these conditions are enforced by ensuring the pair counts are matched in the

bins defined by Eq. 5.

The iterative Newton–Raphson procedure for calculating the zero of a vector-valued func-

tion of several variables f(x) proceeds as follows. In the IMC problem, we seek to find the

zero of the function that maps the weights Kl to the difference between the reference and
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computed RDFs. Writing the iterate at the kth iteration as xk, one calculates the function

value f(xk) and the Jacobian of f at xk, Jf . The update ∆xk is calculated according to

Jf∆xk = −f(xk), (7)

and the next iterate is set to

xk+1 = xk + γ∆xk, (8)

where γ can be set to one for all iterations. One can also set γ to a smaller value to improve

robustness and trade off the rate of convergence75. For the IMC problem, the initial guess

for the weights Kl is taken to be the sampled potential of mean force:

K0
l = −kBT ln g (l∆r) . (9)

At every iteration a Monte Carlo simulation is performed to calculate the RDFs by

using the current set of weights (i.e., the current EPPs), from which the error relative

to the reference RDFs is easily computed to provide the right-hand side of Eq. 7. Using

piecewise-constant basis functions, the i, j entry of the Jacobian matrix is defined by the

statistical-mechanical relationship75

Ji,j = −β (〈SiSj〉 − 〈Si〉 〈Sj〉) , (10)

where β−1 = kBT and one averages over all of the sampled MC configurations. Note that

other types of basis functions can also be used to approximate the effective pair potentials95.

Lyubartsev’s implementation of IMC represents the short-range potential (the potential

at particle separations r < rc for some cutoff distance rc using a weighted combination of

basis functions as described above. The long-range potential for r > rc is represented with

a Coulombic potential, where the dielectric constant used to scale the 1/r potential is an

input to the IMC software75. The IMC software uses Ewald summation to evaluate these

potentials.

3.2. Osmotic Coefficient Definition and Estimation

Kalcher and Dzubiella have discussed the two approaches to estimation of φ: the com-

pressibility approach and the virial approach69. Here we use the virial method, in which the
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use of concentration-independent effective potentials allows φ to be written as

φ = 1 −
NkBT

3

〈

∑

i,j

∂U

∂rij

rij

〉

, (11)

where N is the number of particles (here, ions), kB is the Boltzmann constant, and T is the

temperature. Because the total effective potential is written as a sum of short-range and

long-range potentials, the virial can be decomposed easily into short-range and long-range

contributions68,69. Hummer et al. have described a correction to the virial estimation pro-

cedure for Ewald summation methods1, which reduces the dependence of estimated results

on the system size. The IMC code incorporates this correction, and therefore the virial

estimates should not suffer from this size-dependence issue.

The average in Eq. 11 is taken over all the MC snapshots saved over the entire IMC

process, rather than just the snapshots saved during the current Newton iteration. Thus, at

each successive iteration, the osmotic coefficient is estimated more accurately (with respect

to the EPP at the iteration in question).

4. RESULTS

Our results are organized as follows. We first establish the parameters needed to ensure

that the Monte Carlo calculations are reasonably converged. We then demonstrate that

the IMC software, given essentially identical inputs, generates highly reproducible results

but that one should assess possible pitfalls in the MC procedure by running an ensemble of

IMC calculations. This is an important factor in considering the use of a Newton–Raphson

method driven by stochastic simulation, particularly when the inputs are necessarily noisy

RDFs taken from MD simulations. We also present results that suggest the origin of the

slow convergence of the IMC procedure. In the final set of results we explore the convergence

properties of the IMC approach for RDFs computed from independent MD trajectories.

4.1. Monte Carlo Parameters

Three user-specified parameters govern the Monte Carlo procedure that drives the IMC

process and is used to estimate the osmotic coefficient: the system size (that is, the number

of ions), the number of Monte Carlo steps used in the equilibration phase, and the number
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FIG. 1: Convergence of quantities derived from EPP-driven Monte Carlo simulation, as a function

of the number of production MC steps attempted, using 200 ion pairs and attempting 8 million

equilibration steps. See text for details on the EPPs used. Symbols denote where measurements

were taken. Lines are included only as an aid to visualize trends. (a) Osmotic coefficient esti-

mate. (b) Average energy per particle. (c) Short-range contribution to the virial. (d) Long-range

contribution to the virial.

of steps in the production phase. The size of the simulation box used in the MC procedure is

fixed by the combination of the desired salt concentration and the number of ions to be used.

To establish the parameters required to converge the osmotic coefficient, we used an effective

pair potential obtained from 50 iterations of IMC using 18 salts, following Lyubartsev and

Laaksonen75. The input RDFs for this simulation were those generated previously75. Our

assumption in using this EPP is that the MC process will exhibit essentially the same
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convergence behavior for all reasonable pair potentials.

Figure 1(a) is a plot of the osmotic coefficients estimated after varying numbers of produc-

tion MC steps, using 200 ion pairs and 8 million equilibration steps. The osmotic coefficient

appears to oscillate between 1.02 and 1.025 after 30 million iterations. Similar requirements

for the number of iterations were observed by Abbas et al.65, who used 95 million iterations

in their primitive-model calculations, which used 300 ion pairs. Figure 1(b) is a plot of the

average energy per particle as a function of the number of MC steps. This plot suggests that

at least 50 million iterations are required for convergence. Figures 1(c) and (d) are plots of

the short-range and long-range contributions to the osmotic coefficient as more MC steps

are employed. Note that the scales on the ordinate axes are of very different magnitudes; the

short-range component clearly converges much more slowly than the long-range component,

and the variation in the osmotic coefficient is dominated by the short-range component’s

slower convergence and larger-magnitude changes.

The osmotic coefficient is estimated by taking snapshots of the RDFs every 50 attempted

MC steps; sampling as frequently as every 8 attempted steps, so as to increase the sampling

(the number of snapshots) by a factor of 6, did not improve the stability of the estimated

osmotic coefficients (by stability, we mean an empirical observation of convergence rather

than the definition of stability employed in numerical analysis). The fact that more frequent

snapshots do not reduce the number of snapshots required to converge the osmotic coefficient

suggests that the limiting factor in convergence is not necessarily the number of samples but

rather the rate at which the MC procedure explores phase space by moving a single ion at

each attempted step. The slow convergence of the osmotic coefficient therefore immediately

presents a practical difficulty, that of computational expense, and suggests that a worthwhile

development in future work would be a more rapidly convergent MC procedure.

4.2. Inverse Monte Carlo Parameters

We now illustrate the basic convergence behavior of the IMC procedure. Figure 2 shows

the osmotic coefficients estimated after each of 100 IMC iterations for two IMC realizations,

one of which used 18 ion pairs and the other 75 pairs. The RDFs used as input for these

IMC realizations are from Lyubartsev and Laaksonen68, which are from an MD simulation

of 4 M NaCl using Smith–Dang ions43,44 and flexible SPC water96. Three important details
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FIG. 2: Convergence of two realizations of IMC, one using 18 ion pairs and one using 75 ion pairs.

Both osmotic coefficients vary nonmonotonically with increasing iteration number, and converge

to different final estimates, which suggests a size dependence in the IMC procedure.

are evident: both realizations converge; the realizations converge to different values; the

convergence is nonmonotonic. For both realizations, the number of production MC iterations

at each step was 6 million, and the number of equilibration steps was 105. Because the

estimation of the osmotic coefficient actually uses all the snapshots taken during the IMC

realization, estimates of the osmotic coefficient accurately reflect the current set of EPPs

after the first six or seven iterations.

Figure 3 shows the size dependence of the IMC process, visible in Figure 2 as the IMC

simulations appear to be converging to EPPs with different estimates of the osmotic coeffi-

cient. Since the osmotic coefficient is an intensive quantity, it is problematic that the number

of ions used in the MC simulation at each IMC iteration can have a significant impact.

Table 1 illustrates these dependencies in more detail. The rightmost column indicates the

IMC iteration at which the IMC realization reached its first minimum; quantities tabulated

in the other columns, such as osmotic estimates φSD(N) and the average energy per ion,
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TABLE I: Dependence of IMC-computed quantities on the number of ions in the MC simulations.

Ion Pairs Osmotic Coeff. Energy / NOP RDF Error (×10−3) -VIRS/NOP -VIRE/NOP Iteration

18 1.034850 -2.2638 2.17 -0.0283 0.0632 7

25 1.071426 -1.9234 1.96 0.0098 0.0616 7

36 1.133333 -1.7235 2.44 0.0734 0.0599 7

50 1.138834 -1.6410 3.56 0.0810 0.0579 8

75 1.165253 -1.5656 6.07 0.1089 0.0563 9

100 1.166433 -1.5254 9.26 0.1109 0.0555 9

150 1.178856 -1.5111 14.15 0.1238 0.0550 13

200 1.182512 -1.4626 23.22 0.1269 0.0556 9

225 1.176065 -1.5036 18.74 0.1214 0.0547 17

250 1.188518 -1.4702 24.70 0.1330 0.0555 9

275 1.199162 -1.4429 32.51 0.1437 0.0554 9

300 1.183036 -1.4800 15.99 0.1272 0.0558 9

325 1.177499 -1.4789 17.33 0.1219 0.0556 9

350 1.168518 -1.4776 20.35 0.1127 0.0558 9

have been calculated from the effective pair potentials at that particular iteration. Figure 3

is a plot of the osmotic coefficient estimate as a function of the number of ion pairs. Clearly,

in estimating osmotic coefficients, it is important to thoroughly assess size-dependence ef-

fects. The number of ions appears to be a principal factor in the estimation of the osmotic

coefficient—that is, regardless of the number of MC steps or the number of IMC iterations,

the EPPs calculated by using 18 or 200 ion pairs will give rise to substantially different

osmotic coefficients.

Tables 2, 3, and 4 contain structural information on the EPPs at the IMC iterations listed

in Table 1 and illustate that structural details of the EPPs, such as the location and depth

of wells, are well converged even for relatively small numbers of ion pairs, even though the

estimate of the osmotic coefficient is still changing by experimentally significant amounts.
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FIG. 3: Variation of the osmotic coefficient estimated from IMC using different numbers of ion

pairs. For small numbers of particles the answer deviates substantially from the estimated 1.16–1.20

observed in larger simulations. See text for details of the IMC procedures used.

4.3. Reproducibility Study with Identical Input

The IMC process, like other reverse Monte Carlo methods97,98, is essentially a stochas-

tically driven optimization algorithm, with the input RDFs taken from a necessarily finite

sample (i.e., the MD simulation). Consequently, one must establish the magnitude of errors

introduced by stochasticity. In a reproducibility experiment, ten independent realizations of

IMC were computed. Each used exactly the input RDFs from Lyubartsev and Laaksonen,

with only the seed value for the random number generator varied between IMC realizations.

The IMC realizations were terminated at 100 iterations and performed by using an MC box

of length 19.4 Å and a cutoff of 9.7 Å. The MC simulations in these IMC processes were

conducted by using 18 ion pairs and 6 × 106 production Monte Carlo steps. The default

IMC dielectric constant of 78 was left unchanged.

The average osmotic coefficient over the 10 realizations was 0.726, with a standard devi-

ation of 5.34 × 10−3. The average 2-norm error from the reference RDFs was 1.38 × 10−3,
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FIG. 4: Reproducibility of the IMC procedure given identical RDF inputs from Lyubartsev and

Laaksonen68. See text for details about the IMC parameters used. (a) Typical convergence be-

havior for a single IMC realization, measured according to the squared-norm difference between

the reference (MD) RDFs and the MC-determined RDFs. (b) Osmotic coefficients as a function

of IMC iteration number for three representative realizations. All exhibit qualitatively the same

behavior, although differences exist in the period of oscillation and the rate at which the oscilla-
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TABLE II: Structural details of the Na-Na effective pair potentials, determined at the first minimum

in the deviation between reference radial distribution functions (RDFs) and the RDFs generated

from the EPP-based Monte Carlo simulations. The first column contains the number of ion pairs.

The second and third columns represent the location and potential at the first potential well; the

fourth and fifth columns represent the location and potential at the first potential barrier. The

sixth column is the depth of the first well as measured from the well-potential value (second column)

to the barrier potential (fourth column). All locations are in angstroms, and all potentials are in

kBT .

No. Ion Pairs 1st Well (Loc.) 1st Well (Val.) 1st Barrier (Loc.) 1st Barrier (Val.) Well Depth

18 3.710 1.1802 4.826 2.1426 0.9653

25 3.710 1.1429 4.826 2.1447 1.0018

36 3.710 1.1071 4.826 2.1126 1.0055

50 3.710 1.0687 4.826 2.1216 1.0529

75 3.710 1.0555 4.826 2.0824 1.0269

100 3.710 1.0243 4.826 2.0633 1.0390

150 3.710 1.0047 4.826 2.0479 1.0431

200 3.710 1.0232 4.826 2.0575 1.0432

225 3.710 0.9751 4.826 2.0137 1.0386

250 3.710 0.9925 4.826 2.0404 1.0479

275 3.710 0.9942 4.826 2.0364 1.0422

300 3.710 1.0351 4.826 2.0455 1.0103

325 3.710 1.0168 4.826 2.0453 1.0285

350 3.710 0.9963 4.826 2.0634 1.0671

with standard deviation 9.66 × 10−5. The scale of the standard deviation indicates that

when independent IMC realizations are given exactly the same RDFs as input (here, the set

of RDFs computed by Lyubartsev and Laaksonen75), the IMC procedure generates highly

reproducible results despite the use of different random seeds. Figure 4(a) contain plots

of the 2-norm of the difference between the MC-generated RDFs and the reference (input)

RDFs as a function of iteration, for one realization of the IMC procedure. All realizations

exhibited the same qualitative behavior; the nonmonotone convergence is analyzed in more
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TABLE III: Structural details of the Na-Cl effective pair potentials, determined at the first mini-

mum in the deviation between reference radial distribution functions (RDFs) and the RDFs gen-

erated from the EPP-based Monte Carlo simulations. The first column contains the number of

ion pairs. The second and third columns represent the location and potential at the first potential

well; the fourth and fifth columns represent the location and potential at the first potential barrier.

The sixth column is the depth of the first well as measured from the well-potential value (second

column) to the barrier potential (fourth column). All locations are in angstroms, and all potentials

are in kBT .

No. Ion Pairs 1st Well (Loc.) 1st Well (Val.) 1st Barrier (Loc.) 1st Barrier (Val.) Well Depth

18 2.837 -3.2758 3.613 1.0029 4.2787

25 2.837 -3.2237 3.613 1.0478 4.2715

36 2.837 -3.1620 3.710 1.1393 4.3013

50 2.837 -3.1396 3.613 1.1653 4.3049

75 2.837 -3.1142 3.662 1.1869 4.3011

100 2.837 -3.0888 3.662 1.2135 4.3023

150 2.837 -3.0234 3.662 1.2459 4.2693

200 2.837 -3.0404 3.662 1.2649 4.3053

225 2.837 -2.9866 3.662 1.2966 4.2832

250 2.837 -3.0269 3.662 1.2538 4.2807

275 2.837 -3.0100 3.662 1.2532 4.2632

300 2.837 -3.0599 3.662 1.2331 4.2929

325 2.837 -3.0206 3.662 1.2246 4.2452

350 2.837 -3.0307 3.662 1.2543 4.2850

detail in the following section. Figure 4(b) contains plots of the osmotic coefficients of three

of the IMC realizations as a function of iteration. Figure 4(c) is a plot of the mean osmotic

coefficient as a function of iteration, as well as the standard deviation. Thus, although the

different IMC realizations may follow different paths, they do converge to the same EPPs

(though not within a small number of iterations). Figures 4(d), (e), and (f) are plots of

the mean effective pair potentials at iterations 5, 20, and 100, along with the standard de-

viations. We note that the standard deviations do not seem to decrease significantly with

18

Argonne/Math and Computer Science 
Reprint ANL/MCS-P1764-0610  06/09/2010



TABLE IV: Structural details of the Cl-Cl effective pair potentials, determined at the first minimum

in the deviation between reference radial distribution functions (RDFs) and the RDFs generated

from the EPP-based Monte Carlo simulations. The first column contains the number of ion pairs.

The second and third columns represent the location and potential at the first potential well; the

fourth and fifth columns represent the location and potential at the first potential barrier. The

sixth column is the depth of the first well as measured from the well-potential value (second column)

to the barrier potential (fourth column). All locations are in angstroms, and all potentials are in

kBT .

No. Ion Pairs 1st Well (Loc.) 1st Well (Val.) 1st Barrier (Loc.) 1st Barrier (Val.) Well Depth

18 5.165 0.8423 6.135 1.3321 0.4898

25 5.311 0.8541 6.135 1.3394 0.4853

36 5.165 0.8455 6.135 1.3397 0.4942

50 5.165 0.8588 6.135 1.3477 0.4889

75 5.165 0.8409 6.135 1.3439 0.5030

100 5.165 0.8186 6.135 1.3488 0.5302

150 5.165 0.8113 6.135 1.3265 0.5152

200 5.165 0.7811 6.135 1.3333 0.5521

225 5.165 0.7655 6.135 1.3020 0.5365

250 5.165 0.8057 6.135 1.3252 0.5195

275 5.165 0.8232 6.135 1.3345 0.5113

300 5.165 0.8106 6.135 1.3445 0.5339

325 5.165 0.8055 6.135 1.3369 0.5314

350 5.165 0.8214 6.135 1.3436 0.5222

increase in the number of IMC iterations.

The oscillations in the estimates of the osmotic coefficient and the deviation from the

reference RDFs have different periods. The osmotic coefficient varies on a longer period

than the deviation; and, for both metrics, the periods get longer with increasing iteration

count and as one increases the number of ion pairs in the Monte Carlo simulations.
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4.4. Analysis of the Nonmonotone Convergence

To analyze the convergence behavior more carefully, and in particular the presence of

multiple minima in the RMS deviation between the reference and MC-calculated RDFs as

a function of iteration, we examine the two IMC experiments of 100 iterations described

previously, one using 18 ion pairs and the other using 75 ion pairs. Kalcher and Dzubiella69

and others38 have noted that the overall thermodynamics are not easily interpretable in

terms of particular features of the EPP such as well depths, and our results support that

view. Figure 5 is a plot of the RMS deviations as a function of iteration, and Figure 6

contains plots of the 18-pair and 75-pair EPPs at the first four minima (iterations 5, 20, 42,

and 69 for the 18-pair problem and iterations 8, 29, 55, and 87 for the 75-pair problem).

Note that running the IMC procedure until four minima in the deviation have been observed

gives two intervals for bounding the osmotic estimates φSD(N). In all our experiments the

bounds become tighter with more iterations.

The nonmonotone (oscillatory) convergence observed in Figure 5 suggests that the normal

IMC procedure, which takes full Newton–Raphson steps at every IMC iteration, may not

be ideal. In particular, nonmonotonicity suggests that the Jacobian changes significantly

over the iterations, with some search directions (in the space of effective pair potentials)

possessing small curvature. These directions with small curvature lead to the calculated step

being larger than it would be if the full nonlinearity of the optimization problem were taken

into account. Line-search methods that ensure monotonicity99 may accelerate convergence;

they present an interesting subject for future work.

We have examined the EPPs associated with the IMC iterations that are local minima in

the 2-norm deviation between the reference RDF and the IMC RDF. The four anion–cation

EPPs from the 18-ion-pair calculation are plotted in Figure 6(a). The EPPs at iterations 5

and 42 clearly are similar, as are those at iterations 20 and 69, with the differences between

pairs much larger in magnitude than the differences between the members of each pair. The

four anion-cation EPPs from the 75-pair iterations are plotted in Figure 6(b) and show a

similar grouping.

The difference between the 75-pair EPPs at iterations 55 and 87 is plotted in Figure 6(c),

as is the difference between the EPPs of iterations 20 and 69. Except at short distances,

the search directions of small curvature appear to be associated with a slowly decaying
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FIG. 5: The IMC process converges nonmonotonically. The squared-norm deviation between the

reference RDFs (from MD) and the EPP-driven MC-based RDFs are plotted as a function of IMC

interation number. Results are plotted only for 18 and 75 ion pairs, but the nonmonotonicity

was observed in all calculations. Note that the period of the oscillation increases with increasing

number of ion pairs.

smooth function (albeit with some added noise). This result is not surprising in light of

the interpretation of nonmonotonicity given above, considering that such a smooth function

contributes little to the RDF and thereby little to the virial and the osmotic coefficient. For

example, from the 18-ion-pair calculation, the osmotic coefficients at iterations 6, 21, 43,

and 70 are 1.0465, 1.0508, 1.0455, and 1.0530, respectively; similarly, the osmotic coefficients

of the 75-pair calculation at iterations 9, 30, 56, and 88 are 1.178, 1.160, 1.160, and 1.163.

Thus, the variations are within the targeted uncertainty tolerance of about 0.02.

In Figures 7(a) and (b) are plotted the EPPs and the resulting forces for the 18-pair and

75-pair IMC calculations at the first minima (iterations 6 and 9, respectively). All plots

were generated by first fitting the EPPs to 22nd-order polynomials, and the forces were

calculated by taking the analytical derivatives of the polynomial fits. These plots indicate

how sensitively the osmotic coefficient depends on fine details in the pair potentials and the
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FIG. 6: The Na-Cl effective pair potentials at the first four minima in the IMC iterations employing

18 and 75 ion pairs, illustrating how the potentials are grouped. (a) 18 ion pairs. (b) 75 ion

pairs. (c) The difference between the groups is dominated by a smooth, slowly decaying function

(increased noise at short distances is believed to be due to poorer statistics). All potentials are in

kBT , and the forces are in kBT/Å.
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FIG. 7: Comparison of effective Na-Cl potentials (a), and the forces derived from them (b), for

EPPs taken from 18-pair and 75-pair realizations of IMC. The EPPs are taken at the iterations

corresponding to the first minima in the 2-norm error between the reference and MC-generated

RDFs. The reference RDFs are from Lyubartsev and Laaksonen75. For clarity in plotting, the

potentials have been fit to polynomials of order 22, and the forces have been calculated analytically

from the polynomial representation. All potentials are in kBT , and all forces are in kBT/Å.
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RDFs: despite the substantial differences in the estimates of the osmotic coefficients, the

forces in Figure 7(b) are nearly indistinguishable to the eye, and both EPPs give excellent

fits to the reference RDFs.

For the remainder of the paper, we use 75 ion pairs except where stated otherwise.

4.5. Reproducibility Study with Different Inputs

Having shown that the stochastic IMC procedure converges robustly given the same

input and having analyzed the convergence behavior, we can study the performance of IMC

when provided with inputs from different MD simulations. We find that MD simulation

length required to achieve acceptable statistics on the estimated osmotic coefficient is, for

our 40 Å simulation cell, on the order of 10 ns. Such a time scale is not adequate to obtain

converged radial distribution functions. However, it is sufficient to reach a level of variation

in the reproducibility results that are comparable to 0.02, which is the variability observed

when simply changing the number of ions in the MC simulation (see Figure 3).

In this section, we use IMC to estimate the osmotic coefficients of sodium chloride so-

lutions of 1 M concentration. The force field was the same as described by Bouazizi et

al.35, who used the SPC water model and the Smith–Dang parameters for sodium and chlo-

ride43,44. Seven independent 12 ns MD simulations were conducted, of which the first 2 ns

were used for equilibration and the remainders for calculating RDFs. All IMC calculations

were conducted by using the static dielectric constant of 61, which is that estimated for SPC

water100. We discuss the use of concentration-dependent dielectric constants in Section 5.

The molecular dynamics simulations were prepared and analyzed by using VMD101, with

the actual MD trajectories calculated with NAMD39. For each simulation, the ionic solution

of interest was created by randomly placing the appropriate number of ions in a 40 Å sim-

ulation box filled with 1,899 water molecules. The resulting systems were equilibrated by

using 104 steps of energy minimization and then 0.5 ns of dynamics in the NPT ensemble,

prior to the 2-ns equilibration. Langevin dynamics were used in all simulations to maintain

constant temperature, with 2 fs timesteps and nonbonded forces evaluated every second

timestep. The rigidity of the water molecules was enforced by using SETTLE102. Long-

range electrostatic interactions were calculated by using the particle-mesh Ewald103 facility

of NAMD, using a grid resolution of 1 Å. All production calculations used the NPT ensem-
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FIG. 8: Reproducibility of the IMC method given different RDFs from seven independent MD

simulations. The mean estimated osmotic coefficients are plotted, with error bars denoting the

standard deviation at each iteration.

ble; pressure was maintained at one atmosphere by using a Langevin-dynamics-controlled

Nosé–Hoover barostat104,105. The Langevin piston period was 100 fs, and the decay was set

to 50 fs. Snapshots were taken every 100 fs. Radial distribution functions were calculated

by using VMD101.

Figure 8 contains plots of the mean and standard deviation of the osmotic coefficients

from two sets of IMC computations. The first set of IMC realizations used RDFs that

sampled the first 4 ns of the production MD, and the second set used all 10 ns. For each

set, the mean osmotic coefficient at each iteration is plotted along with the sample standard

deviation. The figure makes clear that the standard deviations are smaller in the longer

simulations, as would be expected. A similar phenomenon is seen in Figure 8 as was noted

for Figure 4: the standard deviation does not vary over the course of the IMC iterations.

We also computed the mean osmotic coefficients from the third minimum in the devia-

tions, because not all realizations gave four minima: averaging the osmotic coefficients at

the third minimum, the 4 ns simulations had a mean osmotic coefficient of 0.8659, with a

standard deviation of 0.036; the 10 ns simulations gave rise to a mean osmotic coefficient of

0.8857, with a standard deviation of 0.013. Thus, the 10 ns simulations reduced the standard

deviation to comparable magnitude as the deviation between the most recent extrema in

the osmotic coefficient, which was between 0.010 and 0.015 for all observed cases.
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5. DISCUSSION

In this paper we have detailed how to obtain reliable estimates of osmotic coefficients

of solutions by using the inverse Monte Carlo method introduced by Lyubartsev and Laak-

sonen75. Although the estimates are at this point size dependent, in contradiction to the

intensive nature of the osmotic coefficient, a simple correction eliminates this dependence

and will be detailed in further work. The IMC software takes as input radial distribu-

tion functions calculated from molecular dynamics simulations and determines effective pair

potentials for use in implicit-solvent Monte Carlo simulations. The inverse Monte Carlo

method, one of several methods that estimate these quantities66,106, is a straightforward

approach for connecting explicit-water MD simulations to experimental thermodynamics

and can be used for coarse graining much larger systems, which otherwise would be com-

putationally intractable107,108. Our use of IMC has the same goals as those apparent in

the work of Hess et al. and Kalcher and Dzubiella69, namely, to evaluate the viability of

coarse graining MD simulations and to improve our models of solute–solvent interactions,

particularly for simulations of biomolecules such as proteins and nucleic acids. Joung and

Cheatham pointed out that the chemical potential of an aqueous solution containing sodium

chloride changes by much less than 1 kcal/mol between infinite dilution and approximately

1 M concentration67, an energetic difference that represents a high standard for computa-

tion. It is remarkable that biological systems have evolved such sophisticated mechanisms

of controlling ionic concentration that these small differences can be exploited so robustly.

The results presented in the previous sections indicate that osmotic coefficients estimated

by using the IMC procedure are robust to approximately 0.02–0.03, whereas experimental

values for biological solutions are commonly between 0.80 and 1.20. Although this qualitative

error assessment falls far below the accuracy of experimental data, which are usually reported

to three digits beyond the decimal, such a confidence level ought to still have its uses in

verifying force fields. The confidence level is predicated on the following details of the

IMC calculation: that the MC simulations use at least 75 ion pairs and include at least 6

million production steps at each iteration and that at least 25 IMC iterations are performed,

although using more iterations allows the determination of an interval within which the

osmotic estimate will almost certainly lie. The reproducibility studies suggest that the RDFs

require a minimum of 10 ns of MD simulation in order for the estimated osmotic coefficient
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to be reproducible to the same level of accuracy as observed varying the number of ions in

the IMC procedure. With the current implementation of the IMC software, improving the

convergence of the estimates beyond this level requires significantly greater computational

work. Nevertheless, even an approximate osmotic coefficient may be useful for verifying

that force fields for MD simulations reproduce the measured thermodynamics of solutions of

differing concentrations and compositions. We have found that the IMC approach is in fact

very stable, although it tends to take many iterations for the EPP and osmotic coefficient to

be reasonably converged. In the work reported here, we did not adjust the cut-off distance

at which the long-range Coulomb potential was used, nor did we adjust the number of terms

retained in the Ewald sum; however, an exploration of the stability of osmotic coefficient

with respect to these parameters is warranted.

Because we have been most interested in the parameters required to obtain substantially

converged estimates of the osmotic coefficient, we have neglected some important aspects of

the inverse-potential problem. In particular, Lyubartsev et al. noted that thermodynamic

consistency, and thus the size-independence of the calculated osmotic coefficient, requires

that the IMC process should use the same number of ion pairs as the MD simulation used as

input68,75; as described by Murtola et al., the effective (coarse-grained) Hamiltonian defined

by the effective pair potentials is a function of the thermodynamic state at which it was

determined108. However, results demonstrating which effect dominates error, the ensemble

inconsistency or MC convergence, do not seem to have been published, and this represents

one area for future work. Also, the observed variations in calculated quantities suggest

that single-point calculations are inadequate and that multiple EPPs should be computed

independently, with the statistics of these computations reported.

Lyubartsev and Laaksonen also emphasize the viability of the IMC algorithm for estimat-

ing osmotic coefficients at salt concentrations other than the one at which the IMC process

was conducted68. We have found in our own work that when different numbers of salts are

used in the MD and MC calculations, extrapolation (that is, evaluating the osmotic coeffi-

cient at a concentration other than at the concentration of parameterization) gives estimates

of the osmotic coefficient that are inconsistent with the estimates from EPPs parameterized

at the new concentration. These findings do not contradict the earlier results because, as

mentioned above, they emphasized the importance of using the same number of salt pairs

in the MC iterations as in the MD simulations68,75,77, whereas our emphasis on detailed
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empirical convergence analysis led us to explore using a wide range of different numbers of

salts in the MC iterations. However, the ability to perform such extrapolations would be

valuable for estimating the quality of force fields (by reducing the required MD simulation

time at different concentrations); a serious effort should be made to establish the precise

conditions under which the EPPs can be used at multiple concentrations with confidence.

As described in Section 2, the IMC software approximates the EPPs using piecewise-

constant basis functions. This approach is straightforward to conceptualize and implement,

but may be computationally inefficient. In particular, the relatively smooth nature of the

potentials away from the limits r → 0 and r → ∞ suggests that linear or polynomial basis

functions may allow significant reductions in the dimensionality of the Newton–Raphson

problem. Furthermore, the use of global basis functions (say, orthogonal polynomials) rather

than the highly localized piecewise-constant basis functions may be a means to accelerate

convergence. The demonstrated performance and robustness of the IMC approach107,109

establish the merit of going to the effort to actually implement these more sophisticated

techniques. Such implementations may be important for extensions to multicomponent

solutions or for studying three-body and higher-order correlations68. Other advances in

the inverse method also seem to argue for the use of as efficient a basis set as possible,

as recent work by Murtola and Karttunen et al. has incorporated constraints110 as well

as internal states108 in the inverse problem. Furthermore, convergence of the IMC process

can also be improved by using a potential-splitting approach similar to that of Kalcher and

Dzubiella69. The original IMC method solves for a total effective potential at a distance

less than the cutoff distance, with the short-ranged solvent-packing component of the total

effective potential converging much more quickly than the smoother component of the total

effective potential. Kalcher and Dzubiella, in contrast, perform the splitting directly between

the short- and long-range components, and the apparent concentration-independence of

the short range potential suggests a possible path to efficient computation of extrapolated

osmotic coefficients69.

It is also worth noting from the theoretical viewpoint, rather than the numerical view-

point, the differing treatments of the long-range interactions in IMC75, in the work of Kalcher

and Dzubiella69, and in that of Hess et al.56,111. The IMC procedure described by Lyubartsev

and Laaksonen employs the bulk static dielectric constant of the solvent at all concentra-

tions68. Hess et al. use concentration-dependent dielectric constants56,111. This difference
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is similar to the the difference between the original primitive model, which used the bulk-

solvent dielectric constant in all solutions, and the modified primitive model proposed by

Simonin et al.64, who demonstrated that incorporating a concentration-dependent dielectric

constant increased the concentration range over which the model made reasonable predic-

tions for osmotic coefficients. Kalcher and Dzubiella, in contrast, used a Debye–Hückel

potential at long range. These approaches are not all equivalent, and a detailed comparison

of their strengths and weaknesses remains to be performed. It may be easier to identify

inconsistencies between these models by performing such a comparison in a medium with

lower dielectric, owing to the rapid decay of Coulombic forces in high dielectrics, which may

mask important differences between models of long-range interactions. A wealth of experi-

mental thermodynamic data exists to help parameterize and refine force fields and to resolve

questions of how to most efficiently calibrate models against reality.
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