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Computation of living processes creates great promise for the everyday life of mankind and great challenges
for physical scientists. Simulations of molecular dynamics have great appeal to biologists as a natural extension
of structural biology. Once a biologist sees a structure, she/he wants to see it move. Molecular biology has
shown that a small number of atoms, sometimes even one messenger ion, like Ca2+, can control biological
function on the scale of cells, organs, tissues, and organisms. Enormously concentrated ions, at number densities
of ∼20 M, in protein channels and enzymes are responsible for many of the characteristics of living systems,
just as highly concentrated ions near electrodes are responsible for many of the characteristics of electrochemical
systems. Here we confront the reality of the scale differences of ions. We show that the scale differences
needed to simulate all the atoms of biological cells are 107 in linear dimension, 1021 in three dimensions, 109

in resolution, 1011 in time, and 1013 in particle number (to deal with concentrations of Ca2+). These scales
must be dealt with simultaneously if the simulation is to deal with most biological functions. Biological
function extends across all of them, all at once in most cases. We suggest a computational approach using
explicit multiscale analysis instead of implicit simulation of all scales. The approach is based on an energy
variational principle EnVarA introduced by Chun Liu to deal with complex fluids. Variational methods deal
automatically with multiple interacting components and scales. When an additional component is added to
the system, the resulting Euler-Lagrange field equations change form automatically, by algebra alone, without
additional unknown parameters. Multifaceted interactions are solutions of the resulting equations. We suggest
that ionic solutions should be viewed as complex fluids with simple components. Highly concentrated solutions,
dominated by interactions of components, are easily computed by EnVarA. Successful computation of ions
concentrated in special places may be a significant step to understanding the defining characteristics of biological
and electrochemical systems. Indeed, computing ions near proteins and nucleic acids may prove as important
to molecular biology and chemical technology as computing holes and electrons has been to our semiconductor
and digital technology.

Mark Ratner has been part of at least two enormous
revolutions in science. Semiconductor electronics has allowed
computer technology to grow by Moore’s law,1 giving us pocket
computers with more capacity than anyone imagined possible
in a room or in a computer of any size, at any price, in Mark’s
youth. Molecular biology2 has allowed us to manipulate the
molecules of life with an ease and power equally unimagined
in the 1950s.

These two revolutions combined to allow what many view
as a new revolution, the computation of proteins in atomic detail.
Simulations can be made of the thousands of atoms in a protein,
and the tens of thousands of water molecules around it, including
a few of the ions in those solutions. Simulations running
nanoseconds in full atomic detail are being done all over the
world as I write these words. The promise is that these
simulations can directly compute biological function in atomic
detail and thus give us control of biology comparable to our
control of semiconductors with all that implies for medical
science and our daily lives.

Molecular dynamics (MD as we will call it) takes the static
structures of X-ray crystallography and makes them living
objects, reaching toward the real molecules of life in the full
reality of their function. Reaching is not grasping, however, as
all of us of Mark Ratner’s generation were taught in high school.
This article is about what is needed to extend the reach of MD

so it can grasp the reality of biology. I argue that scaling issues
make grasping reality nearly impossible, if MD is done in full
atomic detail of real biological systems, as most of them actually
function.

Grasping biological function is both easier and harder than
grasping physical function. It is easier because there are definite
scales for many biological functions. There is no definite a priori
scale for physical systems but biological systems often have a
definite scale, like engineering systems, namely the scale of their
inputs and outputs. An amplifier is interesting on the (quite
limited) scales that it works. An amplifier is not interesting when
light is focused on its input. The time varying potential of light
is too fast for it. The function of the amplifier is on a definite
time scale. Simulations of amplifiers must deal with rapidly
changing voltages, but not so rapidly changing as in light.

Biological systems also work on a definite scale. The output
of biological systems occur in seconds and micrometers to
meters. Of course, the underlying mechanism spans many scales
(as we shall see in some detail) and involves a whole range of
scales. But, no matter what the scales of the mechanisms,
simulations must also calculate the functions of life on the scale
that those functions actually occur.

Grasping biological function is harder than grasping some
physical functions because so many scales are involved simul-
taneously in most important biological systems. I argue that
scaling issues make grasping biological reality nearly impossible,† Part of the “Mark A. Ratner Festschrift”.
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if MD is done in full atomic detail of biological systems as
they actually work and are controlled. I argue that an approach
that embraces these multiscale realities will show how MD
should be used as one of several indispensable tools in the
understanding of biomolecules and their function. Of course,
there are exceptional systems that do not require analysis on
all these multiscales, but these are rare and not central to biology
as a whole.

The scaling issues facing molecular dynamics involve space,
time, concentration, and voltage and we go through them one
by one (Table 1) using biological function and molecular reality
as our guides.

We need to focus on biological function because biological
systems are only interesting on the scale (and in the conditions)
in which they actually work. Physical systems are interesting
on all scales. Engineering and biological systems are not. They
are only interesting when they perform their natural functions.
They must operate within their design limits or they do not
operate at all. With the wrong power supply, amplifiers do not
amplify. With the wrong gradients of salt, proteins and ion
channels do not conduct. Both engineering and biological
systems are robust in one range but delicate in another. We
must compute them both in their functioning robust range.
Biological systems should be studied only in their functioning
robust range because nothing else is interesting. Outside that
range, biological systems are dead and of limited interest.

The operating limits of biological systems define the scales
on which they must be studied. (Almost all) biological function
starts around 100 µs, reaching to 3 × 109 s (∼100 years) in
fortunate cases. Those are the time scales on which biological
function must be studied. Biological structure starts at 10 pm
(0.1 Å) and reaches to 10 µm in cells, centimeters in tissues,
and meters in organisms. Those are the length scales on which
biological structure must be resolved.

Scales of length involve the size of biological systems in one
and three dimensions and the resolution needed to deal with
those sizes. The smallest important scale of life is found in its
molecules, and particularly in the proteins that do so much of
life’s work.

Scaling in Space (One Dimension). Side chains of proteins
control an enormous range of biological function. Changing one
side chain can completely alter the function of a protein or ion
channel. In some cases, changing one atom can do the trick,
just as one (atomic) ion in a channel of a Ca2+ sensing protein
can switch function entirely. The experimental reality is that
structural changes of 1 Å can change biological function on
the molecular (nanometer), then cellular (micrometer), tissue
(centimeter), and animal (meter) scales. So, simulations in

atomic detail must reach from 10 pm (to give decent resolution
of one atom) to say 100 µm, if we stop at a representative sample
of a nerve fiber and its axon, or much larger if we want to
simulate the properties of the real nerve fiber reaching from
foot to spinal cord in a human or elephant. (I use the example
of a nerve fiber because its main function is understood from
atom, to molecule, to membrane, to cell in considerable detail3

in the form of theory and computations that a physical scientist
would recognize. Nerve function can be understood without
much use of arbitrary “arrow models” with undefined physical
basis.) Lengths in one dimension range over 7 orders of
magnitude in this realistic example.

Scaling in Space (Three Dimensions). The scaling require-
ments of MD in three dimensions are greater. The frightening
range of linear scales of 107 become the daunting range of 1021

if one proceeds without approximation or simplification.
Confronted with length scale ranges of 1021, it seems obvious

that one must try to approximate and simplify. This paper
focuses on the underlying problems of the full resolution
problem, because so many young scientists assume that is
possible. But the general goal, reaching beyond this particular
paper, is to motivate, construct, and test multiscale models that
use appropriate methods at individual scales and combine those
methods in a mathematically defined consistent way. Our goal
is to motivate systematic simplifications and approximations to
make the problems manageable, and we will discuss how to do
that toward the end of the paper.

Resolution in Space (Three Dimensions). Structures in
biology exist in three dimensions and must be resolved in all
three dimensions, independent of scale. Resolving a three-
dimensional structure takes at least 0.1% resolution in each
dimension, implying an overall resolution of 10-9 independent
of the particular scale. This resolution is needed to describe a
protein well enough to compute its volume, surface area, or
the electrical potential around it, if it were a solid macroscopic
charged object. The same resolution is needed to reconstruct a
cell, tissue, or animal. In fact, the difficulties of dealing with
three-dimensional structures with this resolution are not resolved.

The implications of these resolution requirements are large.
Many gigabytes of memory are needed to describe a static three-
dimensional structure with 0.1% resolution in all directions with
double precision floating point numbers as are required for
robust computation. Arrays of this size are difficult to store in
memory even today, particularly when various versions are
needed for mathematical manipulation. Memory bandwidth does
not allow rapid handling of these arrays even in present day
computers. Much of the interest of biological systems is in their
time evolution. The memory needs for static computation are
multiplied by the number of time steps needed to compute time
evolution. If the time step is tiny (10-15 s), and the time duration
is as short as that of the quickest functions of a nerve fiber (10-7

s), the dynamic problem is 108 times more demanding than the
static one. Simulations of structure reaching to 1 s are 1015 times
more demanding than the static one.

The static problem itself is demanding. It is not possible yet
to solve the partial differential equations of electrostatics in three
dimensions with this 0.1% resolution for surfaces as complex
as those that define proteins in any way approaching routine,
although the makers of computer games are trying their best
and will surely succeed soon (i.e., within a decade, three or
four iterations of Moore’s law). The issue is not the complexity
of the surface of the protein. For the purposes I have in mind,
the surface of a rigid protein would need somewhat less
resolution than the surface of an animal. The issue is the

TABLE 1a

computational scale biological scale ratio

time 10-16sec 10-5 s 1011

vibrations of bonds action potential

space 10-11 m 10-4 m 107

side chains of protein large cell

volume 1021

spatial resolution 109

solute concentration 10-11 to 2 × 101 M 1012

a Scaling restrictions implied by the long range electric field are
not clear because the accuracy of the Ewald sum treatment of
periodic boundary conditions is not clear. See text.
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limitations of Poisson solvers presently available. One imagines
that numerical procedures to solve three-dimensional partial
differential equations with 0.1% resolution exist “behind the
fence(s)” in weapons laboratories where the nuclear fusion
weapons of our nightmares are designed but that capability is
not generally available to outsiders.

Scaling in Time. The scaling requirements in time are easy
to define for biological simulations. MD simulations must be
done with step sizes less than femtoseconds to resolve atomic
vibrations. Step sizes of 10-16 s are best but 10-15 s will do.
The fastest biological functions (that do not involve light) occur
in about 10-4 s. (I have the signals in nerve cells in mind.) There
are of course many special properties of proteins that occur in
10-5 s or even faster with proteins involved in photosynthesis
and vision being very fast indeed. But the great majority of
living processes start around 1 ms and reach as long as 3 × 109

s (∼100 years).
The gap in time scales between a full resolution treatment of

atomic motion and a typical nerve signal is then 11 orders of
magnitude, 10-15 to 10-4. One hundred billion (1011) is a very
large gap indeed. It corresponds to the gap between a few days
on the earth when it was forming 109 years ago, and today.
Few would think to compute the properties of the earth today
by starting with its properties a billion years ago, computing
on a time scale of days for the whole way and the entire time.
The reach needed to compute biological function in full detail
challenges the imagination, and evades the grasp, of scientists
in other fields.

Arguments have sometimes been made that computations on,
for example, a picosecond time scale can explore “phase space”
and thus deal with biological phenomena on the millisecond
time scale. These arguments have been heard and half-believed
by many students and beginning scientists and so I present a
counter example here. I hope to make clear the obvious, that if
one wishes to study something that takes 1 ms, one must
compute on at least a 1 ms time scale.

Imagine a system computed to 100 ps. Imagine another
identical system to which a spring, mass, and dashpot are added
that create a mechanical resonance that becomes measurable at
only 500 ps. All properties computed after 1000 ps will depend
dramatically on the resonance. The resonance is not detectable
in the short time system. Thus, the short time system cannot
reproduce the properties of the resonance. It is obviously
possible to make this counter example as realistic and explosive
as desired by replacing the resonance with a nonlinear triggered
process that can be discontinuously sudden. The conclusion is
that computations to a short time will miss long time phenom-
ena. Thus any system must be computed on the time scale on
which it functions.

Scaling in Parameters. Scaling issues occur in the “ther-
modynamic” parameters used to describe life, as well as in time
and space. Everyday experience and experimentation show that
life involves variables like concentration, average electrical
potential, and thus electrochemical potential. The importance
of these variables has been known a very long time by Aristotle
and by Galvani and Volta, all of whom were as much biologists
(really physiologists) as they were physicists. In a particularly
vital example, the heart beat is sensitive to changes in the type
and concentration of Na+, K+, Ca2+, and Cl-. Quite small
changes in these concentrations make large changes in function
and large changes in concentration are incompatible with normal
function: the heart stops.

Na+, K+, Ca2+, and Cl- ions make the plasma needed to
sustain the life of cells and proteins. Ions in water are the “liquid

of life” without hyperbole. Anyone who has placed a protein,
a tissue, or a cell in distilled water has watched the tissue, cell,
or protein quickly die or denature. Biological experiments on
any scale show that ions in water, not water itself, are the liquid
of life. Simulations must then include ions with reasonable
realism because ions are needed to keep living things alive,
whether the things are proteins, nucleic acids, cells, or tissues.
Living systems require ions.

Simulating ions in water, as they are necessary for life, is
particularly difficult. Most biological systems require mixtures
of ions (“Ringer solutions”) to exist. Ringer solutions must have
Na+, K+, Cl-, and Ca2+ each within a certain concentration
range. If the ions are absent, or are outside this concentration
range, the function of the system is compromised, or in fact
the system changes (nearly) irreversibly. Simulations must
include realistic concentrations of ions if they are to reproduce
experiments. It is not just enough to have one or two ions
present. One or two samples of a random variable obviously
cannot represent the properties of that variable. That is the entire
point of probability theory. “All” the members of the ensemble
must be considered because each member differs from the other.
That is what is meant by stochastic. Studying one or two
members of that ensemble do not reveal the properties of the
ensemble.

One or two ions cannot represent the properties of an
ensemble of ions. An ensemble of ions must be simulated if
the average properties of an ionic solution are to be computed.
Computing the properties of a protein in a Ringer solution, or
a mimic of an intracellular solution, requires computation of
the (experimentally significant) ions in the solution in the
presence of all the others in realistic concentrations and with
statistical reliability.

In fact, gradients of concentration of these ions are the energy
sources for an enormous range of cellular signals and processes.
The ions have to be present with the right free energy (per mole)
in the right place. Ion concentrations are dramatically different
outside and inside cells, with “10:1” gradients of K+ and Na+

between the inside and outside of cells, but 104:1 gradients of
Ca2+. Ca2+ is less than 10-7 M inside cells but,for example, 2
× 10-3 M outside. Ca2+ concentration is an important control
variable for most proteins that are exposed to the intracellular
environment. Variations of a factor of 10× have dramatic often
irreversible effects on many of these proteins.

All electrical signaling and a very large fraction of all
signaling in cells and tissues are driven by gradients of electrical
and chemical potential and not by more “chemical” processes
involving ATP hydrolysis. ATP hydrolysis is used to create these
gradients but is rarely used as control signals themselves. A
separate set of “pumps” and transporters are used by biology
to maintain gradients of electrochemical potential just as an
automobile uses one system (an alternator) to create gradients
of electrical potential, and another (battery) to store and allow
their use. Gradients of electrochemical potential are used by
nearly every cell and organelle in an animal.

In general, MD simulations must deal with thermodynamic
variables, including concentration and electrical potentials and
ionic currents. Why? Because the concentrations and electrical
potentials and ionic currents are the actual function of channel
proteins. The channel proteins use concentrations and (average
macroscopic) electrical potentials to control (macroscopic) ionic
currents that in turn control the electrical signals across nerve
and muscle cells, the contraction of cardiac and skeletal muscle,
secretion of hormones, and an enormous range of biological
functions. Concentrations determine the chemical and electrical
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potentials that are found inside and outside cells. Membranes
define cells and separate compartments with different chemical
and electrical potentials. Nanovalves called ion channels control
the flow of material through the otherwise impermeable
membranes that define cells.

Gradients of chemical and electrical potential drive the
movement of ions through these nanovalves (nearly picovalves,
since the diameter of their charged pore is typically 600 pm,
and changes in diameter and charge location of 10 pm are
significant) called ion channels. Ion channels are specialized
proteins with a hole down their middle that control the flow of
ions and electricity through otherwise impermeable membranes.
Ion channels have much the same role in living systems that
transistors have in engineering systems.4 Transistors are the
fundamental control elements of our digital technology. Ion
channels are the fundamental control elements of biology.

Simulations must include the concentrations and conditions
in which ion channels work. Simulations must deal realistically
with ion channels if they are to be useful. If channels do not
function in a particular set of conditions, successful simulations
in those literally deadly conditions cannot show them alive. For
example, most ion channels “inactivate” (nearly irreversibly)
if the electrical potential across them (the transmembrane
potential) is kept near zero. The properties of inactivated
channels are difficult to study (if they are inactivated too much)
and of limited interest even if they can be studied because they
are not functioning the way channels do in real biological
situations. MD simulations with zero transmembrane potential
must produce inactivated channels if they reproduce the
properties of real channel proteins. MD simulations done at
equilibrium are likely to have zero transmembrane potential.

Everyday experience and experiments show that these are
the variables that biology uses and so these are the variables
needed in a direct simulation of ion channel function. The role
of electrical potential in nerve conduction and (stimulating)
muscle contraction was more obvious to Galvani and Volta than
its more physical roles. That is why Galvani and Volta studied
nerve muscle preparations. The role of chemical potential
(concentration) is just as obvious to every physician. Small
changes in K+ concentration, for example, are enough to stop
the heart. The concentrations of ions and their free energy per
mole (called their “activity”) must be simulated correctly with
some precision, as it turns out, because living processes are
sensitive to quite small changes in activity of ions.

Scaling in Concentrations of Ions. The concentrations of
Na+, K+, and Cl- range across a large scale. Inside and outside
cells, concentrations range from millimolar to 500 millmolar.
Inside ion channels or active sites of enzymes, however, the
concentration of ions is very much larger.

Ion channels and active sites of enzymes typically contain
cracks or crevices, for example, 300 Å3 in diameter lined by
amino acids with acidic (negative) or basic (positive) side chains.
The concentration, that is, number density in molar units, is
some 20 molar, compared to the concentration of H2O in of
some 55 molar in distilled water. Nucleic acids are surrounded
by narrow regions with enormous densities of ions (typically
10 M). This enormous density of charge in active sites, channels,
and nucleic acids means that the most important locations in
proteins are crowded with ions.

Channels and active sites (and the region immediately outside
nucleic acids) are very special environments in which the forces
of excluded volume and electrostatics are extraordinarily large.

Indeed, any biologist looking at such a special situation on a
macroscopic scale would instantly recognize it as an evolution-

ary adaptation. Just as evolution uses the special properties of
certain cells to make a transparent lens or a rapidly conducting
squid axon, so it can use the special properties of crowded ions.
The special properties of ions crowded into channels or active
sites, or near DNA, can be used to make a nanovalve (ion
channel) or a chemical factory (enzyme). The special properties
of crowded ions have useful properties that are responsible for
the characteristics of channels and enzymes. The special
properties of channels and enzymes create biological functions
that allow an animal to reproduce more successfully. The special
properties of crowded ions are thus a biological adaptation used
by evolution. Evolution selects structures that use these proper-
ties and makes them an adaptation useful for function.

Biologists start the scientific process of “guess and check”
with an evolutionary guess. They guess the adaptation and see
if that guess leads to useful understanding of function and
structure. Biologists think this way for good reason. When they
observe unusual structures, they can often guess function, and
then design efficient experiments to check that guess. Seeing
that a hip joint is a ball and socket leads to an immediate
hypothesis about how that joint works, which is far more
efficient way to study the joint than writing general mechanical
equations for bone.

Most physical scientists are uncomfortable with the idea of
adaptation and that is the audience I am writing to, so perhaps
I need to be more formal. In my view, unusual adaptations
provide productive working hypotheses to investigate, using
well-defined physical and chemical models, theories, and
simulations, then checked by direct experiment.

In the “guess and check” of science, good guesses are far
more productive than poor ones. Unusual properties of a
biological system provide good initial guesses. The crowded
ions near DNA, RNA, active sites, and in ion channels should
not be ignored. It seems certain to a biologist that evolution
has put such special conditions there for a special reason, namely
to help the molecules perform their functions. Structural biology
provides guesses, experimental biology provides checks. Com-
putational biology is the link between structures and experiments.

(I should add parenthetically that many of the difficulties of
doing science arise because the human characteristics of a good
guesser are nearly orthogonal to the human characteristics of a
good checker. Both wild imagination and compulsive analysis
are required to do good science. Both are rarely found in one
person. Indeed, one type of person often does not understand
the other and finds the other hard to deal with. Guessers and
checkers do not always get along.)

Molecular dynamics must then deal with concentration scales
from millimolar to many molar, a range of 104. This is the range
of concentration of the metal ions Na+, K+, and Cl- that energize
so much of life.

Scaling in Concentrations of Messengers. But biology uses
ions in another quite different way. It uses some ions as signals,
not just as energy sources. Ca2+ is used by literally hundreds,
probably thousands, of different and distinct signaling pathways
in a cell, as a glance at the experimental literature will quickly
show. Thousands of papers are written on signaling molecules
every year. Nearly all of these signaling molecules are ions.

The biological systems that use Ca2+ as a signal are as
different and distinct as the different wires in a computer. The
consequences of cross talk between wires in a computer are
replicated in biology. If wires talk to each other loudly in a
computer, the computer stops. We say “the computer died”. If
Ca2+ signals of different systems are confused in cells, cross
talk between otherwise disjoint systems results, and illness and
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death are a likely consequence. Thus, many biologists study
the mechanisms that ensure the integrity of Ca2+ signals and
that keep different Ca2+ signals separate.

Indeed, some of these signaling molecules (particularly Ca2+)
are necessary for life as well as for function. That is, many
intracellular proteins stop functioning, sometimes irreversibly,
usually for seconds, minutes, or hours if they are exposed to
unnatural concentrations of Ca2+. In general, enzymes, binding
proteins, and channels are damaged if their substrate is entirely
removed, certainly if there is nothing to replace the substrate
in the binding sites. Many, even most channel proteins, “die”,
in the sense that they drastically (and more or less irreversibly)
change properties if they do not have the right mixture of
chemicals surrounding them or if they are not maintained with
the right electrical potential across them.

In fact, there are hundreds of hormones, vitamins, messengers,
and other organic ions that control the function of proteins,
enzymes, and ion channels and these go by many names. They
were called enzyme cofactors in Mark Ratner’s undergraduate
years as summarized in the classic tome.5 The important point
is not what they are called. The important point is that the
concentration of these signaling molecules controls biological
function and the concentrations of these signaling molecules
are small, ranging from 10-7 to 10-11 M.

Finding the right conditions to ensure survival of (function
in) proteins is the art of much experimental biology, from
microbiology (growing bacteria), to immunology (where it is
particularly hard to establish reproducible conditions for various
immune responses), to enzymology, to channel biophysics.

Simulations must establish the same conditions for survival
as experiments, if one wishes to simulate living functioning
proteins. Simulations if successful must reproduce the phenom-
ena of life. Thus, simulations must reproduce the essential
conditions of life. If experiments require less than 10-6 M
calcium to maintain function, then simulations must contain less
than 10-6 M calcium. If a channel requires a maintained
electrical potential close to -90 mV across it, the simulation
must maintain that potential. Simulations of protein folding are
likely to be confusing if they do not include the ions needed to
allow normal folding in an experimental system. If conditions
are unphysiological, the living system will die (i.e., change
irreversibly into another system that does not function).

Simulations of channel proteins are likely to give strange
results if they do not maintain a resting potential. Maintaining
a resting potential across a channel protein is a challenge in
simulations using equilibrium assumptions that preclude flow;
in real biological systems, membrane potentials are nearly
always accompanied by flow. In biological jargon,6 not all
permeable ions have the same reversal (i.e., equilibrium)
potential. Most real proteins require a maintained potential. Most
real proteins “inactivate” more or less irreversibly to a non-
functional state if there is no electrical potential across them,
as we have mentioned.

What are the implications for scaling? The scaling require-
ments required to deal with trace concentrations of controlling
molecules are severe. Concentrations of 10-7 M Ca2+ must be
simulated for many systems. Concentrations of 10-11 M must
be simulated to deal with a range of hormones.

Simulating concentration this small requires a staggering
number of water molecules. For example, if a simulation needs
103 Ca2+ to have a decent estimate of concentration, then a
simulation needs 55 mols of water for every 10-7 moles of Ca2+,
meaning one needs 6 × 1011 molecules in the simulation, along
with the 103 Ca2+ ions. Simulations of proteins that depend on

Ca2+ as a signaling molecule typically need 2 × 1013 if all atoms
of water are included. Hormones might need as much as 2 ×
1017 atoms.

Scaling for Electrical Potential. Scaling requirements for
the electrical potential are hard to specify since the electric field
is both short and long-range. The electric field that controls nerve
function, for example, extends millimeters in vertebrate nerve.
There can be no ambiguity about this experimental reality.
The electrical potential at one location in a nerve fiber
controls the function of individual channels in the membrane
of the nerve millimeters away. Measurements of a single
channel in a nerve fiber demonstrate this experimental fact, as
verified everyday by laboratories doing patch clamp experi-
ments.7

The electric field of nerve cells is not screened in a Debye
length any more than the electrical signal in a telegraph cable
under the sea is screened. The assumptions used in the
calculation of screening in equilibrium ionic systems do not
apply. “Sum rules”8 for infinite equilibrium systems without
charge on their boundaries do not apply to membrane potentials
of cells because cells are finite size nonequilibrium systems with
significant charge on their boundaries. Life and experiments
occur in finite size systems and living systems and experimenters
go to enormous lengths to control the properties of the boundary
of these systems. Theorems that ignore boundary conditions may
not apply to experiments and living systems with finite
boundaries.

Systems without important boundaries occur in biology. The
bulk solutions outside cells do not have important boundaries
for the most part. Electrical potentials in bulk solutions also
spread very long distances on short time scales, before the
screening phenomena of the sum rules comes into play. Sum
rules and screening typically take tens of picoseconds to develop.
Before then, the spread of potential is more or less that in a
dielectric, and details of the shape and type of boundary
conditions very far from an atom are important.

The time scales on which screening develops are easily
measured experimentally. These are the time scales that
determine the linear electrical properties of an ionic solution,
its conductance and admittance (in the language of electrical
engineering), and its conductance and dielectric coefficient in
the language of classical electrochemistry. Many volumes of
such measurements have been published, for example, for ions
in water9,10 in many concentrations of many types of ions. Fewer
measurements of properties of mixtures are reported because
they are so hard to interpret, I suspect.

There is little discussion of the time course of screening in
the MD literature. Most of the calculations of MD are executed
in a time scale of femtoseconds, far faster than picoseconds.
Thus, at the times involved in every MD calculation, electric
fields spread very far; at long times, achieved only recently (i.e.,
the past decade) in MD simulations, electric potentials spread
a tiny distance.

At long times, ionic solutions are screened, and potentials
spread only a few Debye lengths (say 1 nm in typical biological
extracellular solutions). The spatial resolution needed in simula-
tions of ionic solution then is very different at short and long
times. At short times, the spatial resolution needed is very coarse
but the spatial domain is macroscopic and must include
boundary conditions on the electric field. At long times, the
spatial resolution needed is very fine but the spatial domain is
small and does not need the boundary conditions required at
short times. It is interesting that numerical methods used in
simulations of MD or Brownian dynamics have not taken
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advantage of these screening properties of electrolytes, as far
as I know. One would imagine that an integrator could be
constructed with coarse spatial resolution at short times and fine
spatial resolution at long times. Combining the two methods
would, of course, be a problem, but the fact that the long time
integrator would not depend on far (spatial) field boundary
conditions might be a great help. A natural multiscale integrator
and treatment might result.

Most MD simulations involve short times, before screening
is established. The electric field involves macroscopic numbers
1023 of ions. The electric field also involves macroscopic
numbers whenever it is involved in functions of life in nerve
and muscle cells, for example, because those functions are
known experimentally to extend over macroscopic distances,
even meters in extreme cases, like the motor or sensory nerves
of large mammals.

These macroscopic effects of the electric field are customarily
handled in MD by periodic boundary conditions implemented
with Ewald sums of various types that are supposed to compute
the macroscopic electric field correctly even though they
compute in an atomic scale domain (involving, for example,
50 000 atoms and, for example, cubes 100 Å on a side). These
procedures are difficult to extend to nonequilibrium situations
where gradients of electrical potential are important. Nonequi-
librium systems have flows. Equilibrium systems calculated in most
MD simulations do not have flows. Flows are found in channels,
membrane transporters, and membrane proteins, in nearly all cells,
under nearly every natural condition.

Nonequilibrium conditions cannot be easily finessed. Flows
are directly involved in a wide range of biological function.
Ion channels almost always work away from equilibrium.
Transporters and pumps are far from equilibrium. Many
enzymes work away from equilibrium. If MD wishes to simulate
ion channels, transporters, pumps, many enzymes, and living
systems, it must include flows of ions and charge, and so it
must be extended to nonequilibrium systems. Extension of
equilibrium analysis to near equilibrium by a Green-Kubo type
treatment is not very helpful if nonlinear behavior is used to
create a device with properties distinct from an equilibrium
linearized system. That is the reason Green-Kubo treatments
of transistors are not prominent in the semiconductor literature.
Transporters, pumps, and channels with significant coupling
behavior between fluxes (e.g., “single file” channels) are likely
to be too far from equilibrium to allow simple analysis. Simple
channels with nearly linear IV relations might be better targets
for this approach. However, most channels show quite nonlinear
IV relations in some sets of ionic solutions and those are often
the solutions most useful in solving the inverse problem, namely
in measuring the distribution of fixed charge in a channel.11

Nonequilibrium Simulations in Computational Electron-
ics. Semiconductor physics and computational electronics12-14

have studied nonequilibrium situations in particle simulations
for a very long time. Semiconductor physics and computational
electronics have simulated swarms of holes and electrons, using
entirely classical approaches, in which quantum mechanics does
not appear at all, since the 1980s.

It is striking that periodic boundary conditions are never used
in the calculations of computational electronics.12 The reason
is clear. Devices cannot be (spatially) periodic systems if they
have inputs and outputs. The essence of a device is its distinct
inputs and outputs. The potential is not the same at the input
and output (nor is the current flow). Spatially nonuniform
boundary conditions are needed to describe devices. Semicon-
ductor simulations are designed to deal correctly with inputs

and outputs to be sure that the boundary conditions are always
simulated correctly-because those boundary conditions are the
essence of a device, its inputs and outputs, and power supply-
even when the simulations are done with swarms of interacting
particles.

The periodic boundary conditions used in MD may or may
not adequately represent the electric field over long ranges in
equilibrium systems. I cannot tell because I cannot find simple
checks of Gauss’ law that analyze these conditions. The
semiconductor community checks its computation of the electric
field by verifying Gauss’ law on a variety of scales, some
comparable to the particle size, some much larger. Gauss’ law
is checked with surfaces that are not parallel to the natural
surfaces of the system or to surfaces assumed in periodic
boundary conditions. It would be comforting if the various
Ewald sum methods were shown to satisfy Gauss’ law on scales
comparable to atoms, on scales comparable to the period
assumed in the periodic boundary conditions, and on scales
much larger than that period.

These uncertainties in the treatment of the electric field in
MD are large and so I will not consider problems of scale arising
from the electric field further; I do not want to speculate in an
argumentative way. I confine my scaling arguments to simple
cases where it is clear what is involved.

Summary of Biological Scales. Aside from the electric field,
we are thus confronted with scale issues of 107 in linear
dimension, 1021 in three dimensions, 109 in resolution, 1011 in
time, and 1013 in particle number (to deal with concentrations
of Ca2+).

All Scales Appear at Once. These many and different scales
occur all at once in functioning biological systems. Indeed,
typical proteins, channels, and nucleic acids involve all these
scales in their typical function. Thus MD simulations must be
able to deal with all these scales at once. This seems a daunting
problem, probably one that cannot be solved. If one imagines
the computational issues produced by interactions among this
many particles with this spatial resolution on these spatial scales
over this duration of time, one is chastened. These seem in
principle uncomputable if long-range forces are involved.
Electric fields are long-range, and nearly all biomolecules bristle
with charge15 that can produce long-range electric fields. In that
case, one must deal with numbers of calculations beyond
astronomical, involving the factorial of the number of particles
over these spatial and temporal scales. It is natural that
simulations have tried to do parts of a problem, dealing with
pieces of the biological situation, doing what they can, hoping
to find some way or other to deal with the other pieces, and
with the totality of the scaling and sampling problems of MD.

In my view, MD has reached the point where an explicit
multiscale analysis is needed. Certainly, if simulations are to
confront biological reality, they must deal with the scales found
in the real systems. MD simulations in full atomic detail of
biological function are not likely to succeed quantitatively until
they are embedded in multiscale analysis in my view.

This is not to argue that MD simulations of reduced systems
and reduced complexity are not valuable. Indeed, the motivation
for this paper is exactly the opposite. I argue that MD is an
irreplaceable, extraordinarily important, tool when used properly.

Role of Molecular Dynamics. MD is properly used as an
extension of structural biology in my opinion. MD shows us
how structures move and which motions are important. MD is
an essential tool for dealing with the reality of biological
structure and the need to reduce complexity in our models. MD
can help us guess biological adaptation intelligently. MD can
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tell us what to leave out in reduced models and what to focus
on as we try to make reduced models of biological function.

MD is an essential component of a multiscale approach to
computing biological function but it is only one part of that
approach.

What Else Is Needed, beyond Molecular Dynamics? Some
needs are clear and definite in my opinion and some are still
vague, a matter of investigation.

What is clear is that we must include the thermodynamic
variables concentration and electrical and chemical potentials
of ions with reasonable accuracy because experiments require
that accuracy. Biological function in fact depends on and is
controlled by concentration, potential and chemical potential
with some sensitivity. Even the names of ion channelsssodium,
potassium, calcium channelsscannot be determined if the
chemical potentials of these ions are unknown. Experiments
identify and name channels by comparing chemical potentials
with experimentally determined “reversal potentials”, the electri-
cal potential at which the current measured in a channel reverses
direction. Simulations must be checked and calibrated to be sure
that they give estimates of chemical potentials that are suf-
ficiently accurate for this purpose. Reversal potentials must be
measured within a few millivolts to evaluate channels properly
in the laboratory; chemical potentials must be computed with
similar accuracy, that is, to better than 0.1 (kBT/e), or ∼2.5 mV.

It seems clear that simulations must be carefully calibrated
to be useful. Work in this direction is just beginning (see ref
16 and the literature cited there). A great deal of attention will
be needed to calibrate simulations if they are to deal with
experimental and biological reality, because the calibration must
be done over a range of concentrations in solutions that are
mixtures of many ions, including divalent Ca2+.

There are many physical and chemical issues involved in such
calibrations and this is not the place to engage in prolonged
speculation concerning the difficulties. There is a general
problem that needs mentioning, however, because it seems
finally on the way to resolution after plaguing biophysics and
physical chemistry since their beginnings in the 19th century.

Biology Occurs in Mixtures of Ions. Sydney Ringer
discovered that the heart, and then muscle and all cells, require
a specific mixture of ions, chiefly Na+, K+, Ca2+ and Cl-, if
they are to survive. Mixtures of ions are particularly hard to
calibrate. Physical chemists have shown in innumerable experi-
ments that the simplest properties of mixtures of ion solutions
(i.e., the “colligative” properties of density, freezing point
depression, and boiling point elevation) along with all more
subtle properties (mobility, conductance, free energy per mole,
called activity) depend on the interactions of all ions when
solutions are reasonably concentrated, say beyond 20 mM.10,17,18

It is crucial to understand that the properties of individual ions
depend on the concentrations of every other type of ions in these
solutions. That is why they are nonideal solutions, not ap-
proximated at all by the properties of ideal gases from which
the science of thermodynamics and statistical mechanics grew.
Indeed, scientists who must be able to predict the properties of
mixtures of ionic solutions use descriptions of enormous
complexity, equations of state involving tens and sometimes
hundreds of parameters.19-21 Mixtures of ions are of such
importance that these parameters are measured experimentally
and these unwieldy expressions are used in design by chemical
engineers every day.

Ionic solutions have usually been treated as simple fluids22-24

with complex properties10,17,18,25 and the enormous literature of
ionic solutions and mixtures has been cast in that mold. I hope

I insult no one when I say that theory has been less successful
than its authors would wish. Solutions made from one salt (e.g.,
one cation and one anion, like NaCl) can be dealt with some
success at equilibrium. More complex solutions, made of
mixtures of ions like Na+ and Cl- and Ca2+ and (two) Cl- are
a serious challenge to simple theories even at equilibrium when
one wants only to know the free energy per mole or the freezing
and boiling points and vapor pressure. Simple theories of
nonequilibrium properties like conductance are a challenge for
one salt, for example, Na+ Cl-.26 Few theories even try to deal
with the nonequilibirum properties of mixtures like NaCl mixed
with CaCl2 in water.

I believe the reason for these difficulties is that those theories
treat ionic solutions as simple fluids in which (in the ideal case)
there are no interactions. But interactions dominate the properties
of ionic solutions. Speaking crudely, everything interacts with
everything else. The properties of every ion are affected by all
the other ions, not just other ions of the same type. Interaction
terms have to be added into theories of simple fluids, by hand,
and the resulting expressions and parameters are multifaceted
in their complexity.

I believe we should take a different approach. We should
view ionic solutions as complex fluids with simple components,
not as simple fluids at all. Complex fluids are fluids in which
everything interacts with everything else. We need a mathemat-
ics that handles interactions in general and then simplifies them
to the special cases of biological interest. I will argue that the
variational calculus, specifically the energetic variational ap-
proach EnVarA developed by Chun Liu,27-30 provides much of
what we need to deal with ions as complex fluids.

Ions as Complex Fluids. We should view ionic solutions as
complex fluids because ions come “in pairs”; that is, electrostatic
interactions are so strong that ions come (always) in (strictly)
neutral combinations. The interactions between positive ions
(cations) and negative ions (anions) are so strong that deviations
from electroneutrality are always tiny. Strong deviations would
produce electric fields comparable to the electric field between
valence electrons and nuclei inside an atom. Such strong electric
fields would destroy these atoms, producing atomic plasmas
incompatible with life.

The salts that dissolve in water to create ionic solutions are
always strictly neutral.31 If the salts are made of ions with equal
charge (i.e., valence) like Na+ Cl-, ions come in pairs; the
neutral combination (which is in fact the definition of a
“molecule” in the periodic lattice of a salt crystal) has two atoms.
If the salts are made of elements with unequal charge (like,
Ca2+ Cl2-), the neutral molecule has three atoms. The macro-
molecules of life, that is, proteins, nucleic acids, and lipids,
always appear in electroneutral combinations with ions (and/or
each other). The “permanent” charges of DNA and proteins (that
chemists call their acid and base groups) are balanced by an
exactly equal number of ions. Molecular biology is the science
of complex fluids with complex elements. The fluids of life are
mixtures of ionic solutions, and the macromolecular miniele-
ments are called organic molecules (like glucose or amino acids),
proteins, nucleic acids, and lipids.

In biological and chemical solutions, the amount of positive
and negative charge in a volume are nearly the same. Macro-
scopic and mesoscopic amounts of ionic solutions (e.g., tissues
and cells in the biological context) are equal within a tolerance
of the order of 10-15. The “sum rules” of equilibrium statistical
mechanics8 are an expression of the enormous strength of
electrostatic interactions that enforce electroneutrality. Even
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atomic scale systems, active sites of enzymes or pores in channel proteins where dimensions of 1 Å are significant, have deviations
much less than 10-3.

Statistical mechanics arose from the treatment of ideal gases of uncharged particles that hardly interact. Statistical mechanics has been
extended to deal with simple fluids with great success even when they are nonideal.22-24 These nonideal fluids have significant hard core
interactions caused by the finite volume of molecules that do not overlap. Statistical mechanics has been less successful in dealing with
the experimental properties of ionic solutions.10,17,18,32 Theories of even the fundamental property of solutions (the free energy per mole of
each component) have not been particularly successful (see ref 32 for references) even in solutions of one salt (e.g., NaCl in water). In
mixed solutions, like those of living systems, success is even more limited and descriptions used in technological applications (which have
to get their predictions right!) often involve large numbers of empirical parameters.19-21,33

Molecular dynamics simulations have not escaped these difficulties. These difficulties are not restricted to macroscopic “mean
field” type models. Molecular dynamics uses force fields that are nearly always calibrated under ideal conditions of zero concentration.
The force fields of molecular dynamics are not designed to deal with finite concentrations of ions, or mixtures of different types of
ions because they are not designed to deal with three body (or n body) problems. It is a matter of mathematics that two body forces
cannot uniformly approximate three body interactions; indeed they cannot approximate three body interactions over a wide range of
conditions or concentrations, as occur in biology. When atomic scale simulations are used to compute macroscopic systems, they
must be calibrated34 to show that they compute properties actually measured in the nonideal solutions of chemical and biological
interest. This may be possible but attempts are just starting.

Variational Approach.

I believe a variational approach designed to deal with strong interactions might be a useful alternative approach to the historical
tradition,35-37 particularly if it can be modified to include interactions defined by simulations of molecular dynamics as seems
possible (personal communication, Chun Liu). Ionic solutions in fact are a relatively simple complex fluid in some ways, because
in the most important biological cases their microelements are hard spheres (Na+, K+, Ca2+) or nearly hard spheres (Cl-). Water can
often be successfully described as a continuum, as it is in implicit solvent models of ionic solutions (also called “the primitive
model”) and proteins.10,17,18,32 The theory of complex fluids has dealt with systems with complex microelements: liquid crystals,
polymeric fluids,38,39 colloids and suspensions40 and electrorheological fluids;41 magnetohydrodynamics systems;42 systems with
deformable electrolyte droplets that fission and fuse;28 and suspensions of ellipsoids. The theory deals also with interfacial properties
of these complex mixtures, such as surface tension and the Marangoni effects of “oil on water” and “tears of wine”.40

It seems worthwhile to see how well the theory of complex fluids can deal with the key biological ions in water, Na+, K+, Ca2+

and Cl-. These ions are more (cations) or less (anions) hard spheres. They seem likely to have much less complex properties than
the deformable charged droplets already treated by the theory of complex fluids.

But living solutions are not all that simple. Real extracellular solutions contain other components and the molecular detail of
water can be important. Living solutions inside cells also contain proteins, nucleic acids, lipids, and organic ions (like free amino
acids), which are complex microelements, that form the macromolecules of life. It will be interesting to see if the theory of complex
fluids can be extended to them (in refs 35-37 and forthcoming work involving membranes (Ryham, Liu, Eisenberg, and Cohen,
personal communication) and tissue structures (Mori, Liu, and Eisenberg, personal communication).

We use35 a theory of complex fluids based on the energy variational approach EnVarA of the mathematician Chun Liu who has
actually provided the existence and uniqueness theorems needed to make this approach mathematics, as well as applying EnVarA
to a variety of complex real systems.43-45 We try to create a field theory of ionic solutions that uses only a few fixed parameters to
calculate most properties in flow and in traditional thermodynamic equilibrium, both in bulk and in spatially complex domains like
pores in channel proteins.

The Energy Variational Principle can be written as

The energy E we use to describe finite size ions in a bulk solution is

The dissipation ∆ is not hard to derive but is too complex to present in detail because of the finite size effects. It is described in
full in refs 35 and 36.

The variational principle EnVarA combines the maximum dissipation principle and least action principle into a force balance law
that expands the conservative conservation laws to include dissipation, using the generalized forces in the variational formulation
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of mechanics (p 19 of ref 46; also ref 47). This procedure is a
modern reworking of Rayleigh’s dissipation principle (eq 26
of ref 48) motivated by Onsager’s treatment of dissipation.49,50

EnVarA optimizes both the action functional (integral) of
classical mechanics51 and the dissipation functional.52 The
stationary point of the action is determined with respect to the
trajectory of particles. The stationary point of the dissipation is
determined with respect to rate functions (e.g., velocity). Both
are written in Eulerian (laboratory) coordinates. These func-
tionals can include entropy and dissipation as well as potential
energy and can be described in many forms on many scales
from molecular dynamics calculations of atomic motion, to
Monte Carlo MC simulations,44,53,54 and to, more practically,
continuum descriptions55 of ions in water. We use a primitive
model10,17,18,25,56 of ions in an implicit solvent,57-61 adopting self-
consistent treatments of electrodiffusion62-65 in which the charge
on ions help create their own electric field and introducing the
repulsion energy of solid spheres,66,67 using the variational
calculus to extend the primitive model to spatially complex,
nonequilibrium time dependent situations, creating a field theory
of ionic solutions.

Energy functional integrals and dissipation functional integrals
are written from specific models of the assumed physics of a
multicomponent system, as did refs 27 and 28. Components of
the potential energy and dissipation functions are chosen so the
variational procedure produces the drift diffusion equations of
semiconductor physics,68 called the Vlasov equations in plasma
physics, or the similar biophysical Poisson-Nernst-Planck
equations, named PNP by ref 62, and used since then by many
biophysicists11,63,64,69-77 and physical chemists.65,78 The energy of
the repulsion of solid spheres can be included in the energy
functionals in different ways using different forms for the interac-
tion energy, giving similar but not identical results. It is included
as Lennard-Jones spheres79 giving (as their Euler-Lagrange
equations) a generalization of PNP for solid ions. The energy
of repulsion (for uncharged spheres) is included alternatively
as in the density functional theory of fluids.80-82 Boundary
conditions tell how energy and matter flow into the system and
from phase to phase and are described by a separate variational
treatment of the “interfacial” energy and dissipation. The
resulting Euler-Lagrange equations are the boundary value
problems of our field theory of ionic solutions. They are derived
by algebra and solved by mathematics without additional
physical approximations in spatially complex domains, that
perhaps produce flow of nonideal mixtures of ions in solution.

EnVarA does not produce a single boundary value problem
or field equation for ionic solutions. Rather, it produces different
field equations for different models (of correlations produced
by screening or finite size, for example), to be checked by
experiment. In the biological and chemical context, EnVarA
derives, and does NOT assume, systems of partial differential
equations (i.e., field theories) of multiple interacting components
and scales.

If a new component of energy (or dissipation) is added to a
variational principle like EnVarA, the resulting Euler-Lagrange
equations, the field theory of electrolytes, change. The new field
theory is derived by algebra and involves no further assumptions
or parameters. The new field theory automatically includes all
the interactions of the old and new components of the energy
(and dissipation). This is an enormous advantage of variational
principles and is probably the reason they are used so widely
in physics. I am unaware of any other mathematical approach
that forces field equations to be consistent with each other. The
contrast with the usual approach to mixtures of ionic solutions

with their plethora of coupling coefficients is striking. It is very
difficult to determine those coupling coefficients, and even
worse, the coupling coefficients are functions or functionals that
depend on all the other parameters of the system, usually in an
unknown way.

The variational principle can be applied to a primitive model
of ionic solutions with a Lennard-Jones treatment of excluded
volume, and a self-consistent computation of the electric field
as described in detail in refs 35-37. A regularized repulsive
interaction potential is introduced as

for the ith and jth ions located at xb and yb with the radii ai, aj,
respectively, where εi,j is an empirically chosen energy constant,.
Then the contribution of repulsive potential Ψ to the total (free)
energy is

where ci, cj are the densities the of ith, jth ions, respectively.
For the sake of simplicity in this derivation, we consider a

two-ion system with the charge densities, cn, cp. All derivations
and programs have been written for a multiple ion system, with
ions of any charge.35-37 Then, the total repulsive energy is
defined by

Now we take a variational derivative with respect to each
ion, (δErepulsion/δci) ) 0 to obtain the repulsive energy term and
put it into the system of equations. This leads us to the following
Nernst-Planck equations for the charge densities, cn, cp

The details of the derivation of the repulsive terms in the
chemical potentials are presented in refs 35-37. We now have
the coupled system including finite size effects. We here call
the system a modified PNP system. One advantage of the
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variational approach is the fact that the resulting system, the
modified PNP, naturally satisfies the energy dissipation principle,
the variational law eq 1

where Ψ̃i,j ) 12Ψi,j for i ) j, and Ψ̃i,j ) 6Ψi,j for i * j.
These variational principles derive field equations as we have

seen that address and I believe will probably some day solve
major problems in computational biology. The field theory
EnVarA represents an ionic solution as a mixture of two fluids,83

a solvent water phase and an ionic phase. The ionic phase is a
primitive model of ionic solutions. It is a compressible plasma
made of charged solid (nearly hard) spheres. The ionic “primi-
tive phase” is itself a composite of two scales, a macroscopic
compressible fluid and an atomic scale plasma of solid spheres
in a frictional dielectric. Channel proteins are described by
primitive (“reduced”) models similar to those used to analyze
the selectivity of calcium and sodium channels84-86 and to guide
the construction (using the techniques of molecular biology) of
a real calcium channel protein in the laboratory.87,88 Similar
models predicted complex and subtle properties of the RyR
channel before experiments were done in >100 solutions and
in 7 mutations, some drastic, removing nearly all permanent
charge from the “active site” of the channel (see refs in 89 and
90).

I believe a variational method is required to deal with real
ionic solutions because ionic solutions are dominated by
interactions. Ionic solutions do not resemble the ideal simple
fluids of traditional theory and the interactions between their
components are not two body, as assumed by the force fields
of modern molecular dynamics. Indeed, ions like Na+ and K+

have specific properties and can be selected by biological
systems, because they are nonideal and have highly correlated
behavior. Screening and finite size effects produce the correla-
tions more than anything else. Solvent effects enter (mostly)
through the dielectric coefficient. Ionic solutions do not resemble
a perfect gas91 of noninteracting uncharged particles. Indeed,
because of screening, the activity (which is a measure of the
free energy) of an ionic solution is not an additive function as
concentration is changed (Figure 3.6 of ref 17; Figure 4.2.1 of
ref 18) and so does not easily fit some definitions of an extensive
quantity (see p 6 of the book of International Standards for
Physical Chemistry92).

Some correlations are included explicitly in our models as
forces or energies that depend on the location of two particles.
Other correlations are implicit and arise automatically as a
mathematical consequence of optimizing the functionals even
if the models used in the functionals do not contain explicit
interactions of components. Kirchoff’s current law (that implies
perfect correlation in the flux of electrical charge93) arises this
way as a consequence of Maxwell’s equations94 and does not
need to be written separately.

Variational analysis is already an area of active research in
modern mathematics. Our methods are also closely related to
another exciting area of modern mathematical research, optimal

control. Our EnVarA analysis produces “optimal” estimates of
the correlations that arise from those interactions (p 42 of
Gelfand and Fromin;95 p 11 of Biot.47 Note criticism of Biot in
ref 96). All field equations arising from EnVarA optimize both
the dissipation and the action integrals. Inadequate functionals
can be corrected (to some extent) by adjusting effective
parameters in the functionals.

Effective parameters are needed to deal with ions in elec-
trolytes. Effective parameters are almost always used to describe
complex interactions of ions in electrolyte solutions,26,97-101 for
example, the cross coupling Onsager coefficients100-102 or
Maxwell-Stefan coefficients.103 EnVarA produces optimal es-
timates of these parameters, because the mathematics of
variational analysis is almost identical to the mathematics of
optimal control. Both use variational methods that can act on
the same functionals. EnVarA becomes optimal control when
the functionals are combined in a more general way than just
adding them, for example, by using Lagrange multipliers or
more sophisticated techniques. Inverse methods11,104,105 could
be used to provide estimators of the parameters of EnVarA
functionals with least variance or bias, or other desired
characteristics. EnVarA gives the hope that fewer parameters
can be used to describe a system than in models56 and equations
of state19-21 of ionic solutions which involve many parameters.
These parameters change with conditions and are really func-
tions or even functionals of all the properties of the system. (It
is important to understand that in general these coupling
parameters need to depend on the type and concentration of all
ions, not just the pair of ions that are coupled.)

Of course, the variational approach can only reveal correla-
tions arising from the physics and components that the functional
actually includes. Correlations arising from other components
or physics need other models and will lead to other differential
equations. For example, ionic interactions that arise from
changes in the structure of water would be an example of “other
physics”, requiring another model, if they could not be described
comfortably by a change in the diffusion coefficient of an ion
or a change in the dielectric constant of water. Numerical
predictions of EnVarA will be relatively insensitive to the choice
of description (of pairwise interactions, for example) because
the variational process in general produces the “optimal”
result47,95 for each version of the model. (This is an important
practical advantage of the variational approach to optimal
control; compare the success of the variational density functional
theory of fluids81,82 with the nonvariational mean spherical
approximation17,18 that uses much the same physics.)

This variational approach can include energies of any type.
It has in fact been used by Liu44,53,54 to combine energies of
reduced models and energies computed from simulations. It will
be interesting to see how we can apply this approach to
biological systems.

Scaling in EnVarA the Variational Approach. The varia-
tional approach deals with issues of scaling in a very different
way from direct simulations. EnVarA has the great advantage
of always being consistent. A model in EnVarA is the statement
of energies and dissipation in eq 1. Once that model is chosen,
the rest is algebra. The resulting Euler-Lagrange equations form
a well-posed boundary value problem, a field theory of (usually)
partial differential equations and boundary conditions that
account for all the behavior of the system described by the
energy and dissipation. The field theory is much more general
than the thermodynamic and statistical mechanical ideas of
equilibrium and state. It includes flow and interactions of
components automatically. If two of the components of the
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energy (and/or dissipation) are on different scales, EnVarA
automatically produces Euler-Lagrange equations that combine
those scales self-consistently. This is an enormous advantage
compared to other multiscale methods. When dealing with
interactions on one scale, and conservation laws on another, it
is not at all easy to be sure that the resulting equations
(corresponding to the field equations of EnVarA) are consistent,
that is, that the resulting equations satisfy the overriding
constraints and conservation laws. When including the finite
size of ions in classical theories of simple fluids, for example,
it is very easy to use treatments that do not identically satisfy
the equations of electrostatics. If the theory is meant to include
electrodiffusion, and thereby extend to the nonequilibrium
phenomena of life, it is very difficult to make the theory
consistent with the special cases of diffusion of uncharged
species (Fick’s law), or the migration of charged species in
systems without concentration gradients (Ohm’s law), even if
the theory ignores bulk flow and the complexities of hydrody-
namic coupling.

EnVarA deals with interactions automatically but it does not
deal with multiscale issues nearly as well. We go through them
one by one.

Scaling in Space in EnVarA. Spatial scaling and resolution
are dealt with in EnVarA without error if the models of energy
and dissipation include all scales at perfect resolution. Of course,
that never happens! What typically happens is that part of the
system is known well at one scale, part at another, and parts of
the system are left out. Typically, one part of the system must
be resolved on one scale and the other on another. Applying
EnVarA to these situations is (reasonably) straightforward but
the accuracy of the results can only be assessed after the fact
by comparison with experiments. The basic approach is to write
the energy and dissipation of each component of the model, of
each scale, and combine them using Lagrange multiplier(s), or
other penalty functions of optimal control. EnVarA guarantees
that interactions will be dealt with correctly. EnVarA automati-
cally deals with boundary conditions (once they are described
with a model) and flow. These are important features not shared
by many other methods. But EnVarA cannot deal with phe-
nomena that are not present in the models of the energy and
dissipation and these can be important. EnVarA (particularly
when implemented numerically) may not be able to resolve steep
phenomena and gradual phenomena well enough to estimate
their interactions correctly. EnVarA will double count phenom-
ena that are described in more than one component of a model.
For example, if an equation of state is used to deal with the
finite volume of ions (on the macroscopic scale) and Lennard-
Jones potentials are used to deal with the finite volume of ions
(on the atomic scale), double counting can be expected. The
Lagrange multipliers (or penalty functions of optimal control)
and variational process minimizes the effect of the double
counting (by choosing optimal parameters that minimize the
functionals) but the residual effects may be significant. We are
in unknown territory here. We know how to investigate but we
do not know the results of the investigation.

Scaling in Time in EnVarA. Time dependence in EnVarA
is produced by the dissipation function and so depends on
the accuracy of the model of dissipation. It is obvious that
the linear frictional model used in EnVarA (and in Rayleigh
and Onsager’s dissipation principles) is inadequate. Friction
is not proportional to velocity in general. The consequences
of the oversimplified model of dissipation are not known.
At this stage, the time dependence computed with EnVarA
seems to be that of the slowest “time constant” of the system.

Our working hypothesis is that the linear friction assumption
produces a decent estimate of the (final) approach to
equilibrium. It obviously cannot deal with complex time
dependent phenomena that occur with complex friction. One
way to deal with such phenomena is to include them as a
separate component with a separate time scale and then to
allow the variational process to do the matching between
scales. This seems a different way of doing matching than
in classical matched asymptotic expansions106 but the litera-
ture has not been searched to verify that view. The issues
involved in this approach are rather similar to those just
discussed about spatial scales. Consistency is guaranteed
between scales by the variational process, but double counting
of some sort will occur. Investigation is needed and is
underway.

One important characteristic of EnVarA arises from its time
dependence and is both a curse and a blessing. The blessing is
that EnVarA computes time dependence at all. The curse is that
it must compute time dependence starting at time zero. Steady
states only arise from transient computations. This property of
the Euler-Lagrange equations makes computation much less
efficient. One must approach the steady state. One cannot just
arrive there.

Scaling of Parameters in EnVarA. Parameters arise in
EnVarA from the models of energy and dissipation and in
general appear as parameters in the Euler-Lagrange equations
that specify the resulting field problem. Parameters are handled
as well or as badly as they are in other partial differential
equations. Analytically, parameters of any scale are handled
“perfectly”, but numerical issues of stiffness and dynamic range
can easily arise and be limiting. Each case must be studied as
a separate numerical system because each case can have quite
different qualitative behavior. The numerical schemes must be
adapted to the qualitative behavior.

The very generality of the EnVarA approach causes consider-
able difficulty. The behavior of the system with all its interac-
tions is often unknown in initial calculations. If reduced models
with effective parameters are used (as they should be in early
survey calculations), it is hard to know what “region of phase
space”, that is, what qualitative range of behaviors one is seeing.
Dealing with an EnVarA calculation is much like a survey
experiment in biology. You have to determine what is going
on and you have to learn to simplify the calculation or
experiment by choosing parameter ranges or setups in which
the interesting phenomena dominate.

Computations of current flow through channels, for
example, using EnVarA always produce charging phenomena
at short times (because such must be present in any
calculation that includes the electric field consistently), flow
through the channel at intermediate times, and accumulation
of ions outside the channel as the flow continues into long
times. The charging phenomena and accumulation are
peripheral to one’s initial main interest in the channel itself,
but the numerical procedures must deal with them correctly
and efficiently. Experimental scientists may have taken years
to learn to isolate the phenomena of interest. Numerical
analysts using EnVarA face similar prospects.

A physical example may be helpful. Imagine trying to
calculate the conductivity of a salt solution (or its “dielectric
constant” if you prefer an equilibrium property). In EnVarA one
cannot assume good stirring or uniform temperature, unless one
includes “apparatus” (boundary conditions like stirrers or heat
baths) that will do the stirring or supply the heat. The real system
always has gradients of concentration and temperature, and
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EnVarA will always compute those because it is unable to
calculate inconsistently even if we know the errors produced
by the inconsistency are unimportant under the conditions of
interest. Even worse, EnVarA computes these epi-phenomena
in their full time dependent glory, even if we only want to know
the steady state.

This power of EnVarA is again a blessing and a curse. It is
a blessing because it forces the theorist to deal with phenomena
well-known in the laboratory (i.e., the difficulty of actually
keeping solutions well stirred at constant temperature) but often
not advertised in experimental papers. The curse is the difficulty
of computation and the efforts needed to isolate important
special cases.

Despite these difficulties, which are described here in vivid
detail so we do not mislead the reader into thinking EnVarA is
a magical solution for all problems, computations with EnVarA
of real systems are possible. Many have been done in physical
systems28,38,39,42 and a substantial number have been done with
some success in ionic solutions.35-37 Once a system is under-
stood, the difficulties just described are left behind, just as an
experimental system goes quickly from “impossible”, to novel,
to easy, to taken for granted after a few years of success.
(Consider the history of single channel recording from 1975 to
1990 for example.)

Scaling of the Protein. The above discussion does not deal
with the multiscale issues of describing the protein, whether
channel or enzyme. I do not know how to do that in a general
way even for channels, where covalent bond changes and orbital
delocalization are not involved, let alone for enzymes where
covalent bond changes are what the system is all about. (See
ref 107 for a discussion of “Channels as Enzymes” and ref 4
for a discussion of channels as transistors.) Reduced models
have been built in many ways, using quantum mechanics
(references in ref 108), reduced models with water detail
(references in refs 109 and 110), and reduced models with
implicit models of water67,75,111-115 and I apologize for the many
references I have unknowingly omitted.

There seems to be no a priori way to choose between the
different reduced models of channel proteins. I would use
the fits to experimental data as the test for such models,
although others prefer a more reductionist approach, arguing
(understandably enough) that considerable structural detail
is needed to deal with water and side chains of proteins. Each
perspective emphasizes what the investigator can best do.
My collaborators and I find that we can deal with nearly the
whole range of experimental data on both calcium and sodium
channels using a single model with three parameters that
never change value (the dielectric coefficients of protein and
solution and the diameter of the channel) in a wide range of
mixed solutions of different types and concentrations of ions
of ions, using crystal radii of ions, even though calcium and
sodium channels have very different properties.84-86,116 This
treatment uses grossly oversimplified models of the channel
protein and its side chain but that simplification allows it to
compute the Boltzmann distribution of structures of ions and
side chains using Metropolis Monte Carlo methods. These
methods show that the structure of the system changes
significantly even dramatically as ions are changed in
concentration or type. They show that the free energy of
binding varies drastically as conditions are changed. Indeed,
the model is used is a version of the self-organized theory
of proteins in which the fit of the ions to the active site and
the fit of the active site to the ions is induced. The induced
fit is determined as an output of the Monte Carlo simulations,

as is the distribution of the fit. The model seems to work in
a wide variety of conditions because it computes accurately,
and guesses (with more luck than wisdom) the forces and
energies actually used by biology to determine the selectivity
of these channels to these ions.

The Role of Biology. The following question arises: how
can as complicated a system as a channel protein in a biological
membrane surrounded by mixtures of ions be so simply
described? The question is particularly vexing when one
remembers that mixtures of ions in bulk solutions (without
channel proteins) cannot be so simply described.

The reason seems to me biological and evolutionary.
Biological systems are not general physical systems. Biologi-

cal systems have been built by evolution to have definite
functions. Evolution acts by mutating genes and genes make
proteins. Proteins are coded amino acid by amino acid, and
mutations change individual amino acids. It seems obvious that
a system like this will discover “controls” that produce useful
functions. (Useful functions are those that allow their host
organism to survive natural selection.) Individual amino acids
will control individual functions in such a system. These
thoughts are hardly rigorous, but they provide motivation to
accept the experimental fact that individual amino acids do
control function in many important cases. In many cases a few
amino acids or a particular structural domain of a protein
controls overall function.

Viewed from an engineering perspective, this biological
simplicity is not a surprise. Devices are built so they can be
controlled. The control of a device is often far more important
than its efficiency. An easy way to ensure robust control is to
put that control in a separate system distinct from the rest of
the device. Evolution seems to use that approach. Evolution
has found ways to use only a few amino acids to control
biological function. The physics does not force this. Evolution
has.

Reduced models that describe so many properties of dissimilar
calcium and sodium channels with so few parameters should
be viewed as the expression of evolution. These models must
be describing the energies evolution has used to produce these
functions. It seems likely that energies are correct in a model
with just two parameters that fits data from two different types
of channels, with quite different properties, in many solutions
and concentrations, using crystal radii of ions, and parameter
values that are the same under all conditions and in both channel
types. It seems likely that evolution has chosen to create this
kind of selectivity (for salts) in this kind of channel (Ca2+ and
Na+ channels) in this way and the investigators of these channels
could study these energies because they were relatively simple
to compute (although it still took many years and many papers
and methods).

There is no guarantee, however, that these energies will be
the only energies used to determine the selectivity of other types
of ions or other systems (e.g., the zinc finger binding system
so well studied experimentally117,118). However, it seems likely
that these energies will be involved, along with others.

In that case, it seems safe to say that simulations that try to
deal with selectivity or biological function using a single free
energy of binding, that does not vary with ion type or
concentration in the baths, will be inadequate, unable to deal
with the essentials of biological function.

The binding data we have computed is an incomplete
description of biological reality in an important way. The Monte
Carlo method is constrained to equilibrium, in fact to zero
concentration and zero electrical potential gradients in the way
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we do it. Biology does not occur under these conditions. Our
simple model of binding has been extended to nonequilibrium
systems using a hybrid of the density functional theory of
nonelectrolytes (of Rosenfeld119-123 note this has nothing to do
with the density functional theory of electrons) and the
Poisson-Nernst-Planck theory of ionic solutions, named PNP
in ref 62 and used by many workers in chemistry65 and
biophysics109,124-128 since then. The resulting DFT-PNP theory
has been applied by Gillespie and co-workers with some
considerable success to the Ryanodine Receptor channel of the
heart. They have shown excellent agreement between experi-
ment and data and have predicted experimental results before
the experiments were performed.82,89,122,129 But there are prob-
lems because electrostatics are added to DFT in an imaginative
but ad hoc manner82,122,129 that suffers fundamental difficulties.
In particular,

(a) PNP-DFT does not satisfy Gauss’ law or sum rules, as it
should.

(b) PNP-DFT is not derived from a general variational
principle and so is ad hoc and incomplete as well as imaginative
and powerful. PNP-DFT omits the important electrophoretic,
relaxation, hydrodynamic, and osmotic components of current,
found in experiments and in all theories since the 1930s work
of Onsager and Fuoss.26,130

In my opinion, PNP-DFT is a useful beginning but EnVarA
has a greater future because it is based on fundamental
principles, satisfies sum rules, and yields all interactions of all
species. EnVarA is a superset of DFT (of neutral species) and
a super set of PNP-DFT. EnVarA should be able to do much
more. It has not done that yet, but many investigators are trying.

Conclusions

What can we say then in general about the computation of
biological systems?

We can say the following:
(1) Simulation in atomic detail is unlikely to succeed because

of the scaling issues shown in Table 1.
2) Simulations must be calibrated against experimental data

in realistic mixed solutions because those are the only conditions
in which living systems function.

3) Reduced models are needed because nothing else is likely
to deal with the scaling issues.

4) Reduced models of ionic solutions should be based on a
mathematics of interacting systems, a variational principle like
EnVarA, because that automatically deals consistently with
multiple interacting components. It deals with multifaceted
interactions without introducing many underdetermined coupling
parameters and coefficients.

5) Reduced models of channel proteins may take on many
forms, but they must deal with the range of ionic conditions in
which the channels actually work, even if these are mixtures of
ions uncomfortable to compute because so many ions are so
important over such a wide range of concentrations.

6) A particular reduced model of calcium and sodium
channels has been surprisingly successful. Similar models should
be tried in other systems, hoping that their simplicity will at
least point in the right direction to help uncover relevant
computable complexity.

I look forward to the next Festschrift for Mark Ratner and
hope my colleagues and I can show him then how we have
dealt with multiscale issues in a variety of new systems.
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