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Abstract 

Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of 

uncharged non-interacting point particles described in elementary textbooks. Biological and 

electrochemical solutions have many components that interact strongly as they flow in concentrated 

environments near electrodes, ion channels, or active sites of enzymes. Flows are driven by a 

combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes 

of all ions, not just the same type of ion. We use a variational method EnVarA that combines Hamilton’s 

least action and Rayleigh’s dissipation principles to create a variational field theory that includes flow, 

friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action 

integral functional of classical mechanics and the dissipation functional. These functionals can include 

entropy and dissipation as well as potential energy. The stationary point of the action is determined 

with respect to the trajectory of particles. The stationary point of the dissipation is determined with 

respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) 

framework. In variational analysis, an ‘extra layer’ of mathematics is used to derive partial differential 

equations. Energies and dissipations of different components are combined in EnVarA and Euler 

Lagrange equations are then derived. These partial differential equations are the unique consequence of 

the contributions of individual components. The form and parameters of the partial differential 

equations are determined by algebra without additional physical content or assumptions. The partial 

differential equations of mixtures automatically combine physical properties of individual (unmixed) 

components. If a new component is added to the energy or dissipation, the Euler-Lagrange equations 

change form and interaction terms appear without additional adjustable parameters. EnVarA has 

previously been used to compute properties of liquid crystals, polymer fluids and electrorheological 

fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the 

primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler 

Lagrange equations include electrostatics and diffusion and friction. They are a time dependent 

generalization of the Poisson Nernst Planck PNP equations of semiconductors, electrochemistry, and 

molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions 

next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick 

transient pile-up of electric charge; transient and steady flow through the channel; stationary ‘binding’ 

in the channel; and the eventual accumulation of salts in ‘unstirred layers’ near channels. EnVarA treats 

electrolytes in a unified way, as complex rather than simple fluids. Ad hoc descriptions of interactions 

and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It 

seems likely that the variational treatment can simplify, unify, and perhaps derive those descriptions. 

[465 words] 
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Variational methods that generalize and optimize energy functionals allow understanding of 

complex fluids1-4. Variational methods deal successfully with magnetohydrodynamics systems5, liquid 

crystals, polymeric fluids6, colloids and suspensions1,7 and electrorheological fluids8,9. Variational 

methods describe solid balls in liquids; deformable electrolyte droplets that fission and fuse1,10; and 

suspensions of ellipsoids, including the interfacial properties of these complex mixtures, such as surface 

tension and the Marangoni effects of ‘oil on water’ and ‘tears of wine’1,7,11.  

Solid charged spheres like sodium and chloride ions in water seemed to be a simpler fluid than 

deformable fissioning droplets (at least to the biologist among us) and so he wondered if energy 

variational methods could help us understand these ionic solutions. We try to create a field theory of 

ionic solutions that uses only a few fixed parameters to calculate most properties in flow and in 

traditional thermodynamic equilibrium, both in bulk and in spatially complex domains like pores in 

channel proteins. We derive the differential equations of the field theory from an energetic variational 

principle EnVarA. Ionic solutions are often highly concentrated and so packing effects not present in 

infinitely dilute solutions are significant and can in fact dominate12-19. 

Our variational principle combines the maximum dissipation principle (for long time dynamics) and 

least action principle (for intrinsic and short time dynamics) into a force balance law that expands the 

law of conservation of momentum to include dissipation, using the generalized forces in the variational 

formulation of mechanics (p. 19 of references20,21-23). This procedure is a modern reworking of Rayleigh’s 

dissipation principle—eq. 26 of reference24—motivated by Onsager’s treatment of dissipation25,26. Our 

procedure optimizes both the action functional (integral) of classical mechanics20,27,28 and the dissipation 

functional29. The stationary point of the action is determined with respect to the trajectory of particles. 

The stationary point of the dissipation is determined with respect to rate functions (such as velocity). 

Both are written in Eulerian (laboratory) coordinates. These functionals can include entropy and 

dissipation as well as potential energy, and can be described in many forms on many scales from 

molecular dynamics calculations of atomic motion, to Monte Carlo MC simulations30-32 to—more 

practically—continuum descriptions1,2 of ions in water. We use a primitive model33-38 of ions in an 

implicit solvent39,40,41 and adopting self-consistent treatments of electro-diffusion42-48 in which the 

charge on ions help create their own electric field. We introduce the repulsion energy of solid 

spheres14,15,17,19,49-52. In this way, the variational calculus extends the primitive model to spatially 

complex, nonequilibrium time dependent situations, creating a field theory of ionic solutions. 
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Energy functional integrals and dissipation functional integrals are written from specific models of 

the assumed physics of a multi-component system, as did1,2,8-10. Components of the potential energy and 

dissipation functions are chosen so the variational procedure produces the drift diffusion equations of 

semiconductor physics42-44,53—called the Vlasov equations in plasma physics54—or the similar biophysical 

Poisson Nernst Planck equations—named PNP by reference45—and used since then by many 

channologists46,47,55-57,58-63 and physical chemists48,64. The energy of the repulsion of solid spheres is 

included in our functional as (1) Lennard-Jones forces2,8 giving (as their Euler-Lagrange equations) a 

generalization of PNP for solid ions or as (2) that of uncharged spheres in the density functional theory 

of fluids58,65-68 with similar but not identical results. Boundary conditions tell how energy and matter 

flow into the system and from phase to phase and are described by a separate variational treatment of 

the ‘interfacial’ energy and dissipation. The resulting Euler Lagrange equations are the boundary value 

problems of our field theory of ionic solutions. They are derived by algebra and solved by 

mathematics—without additional physical approximations—in spatially complex domains, that perhaps 

produce flow of nonideal mixtures of ions in solution. 

Ionic solutions do not resemble the ideal solutions of elementary textbooks. Indeed, ions like Na+ 

and K+ have specific properties, and can be selected by biological systems, because they are non-ideal 

and have highly correlated behavior. Screening69 and finite size effects33-35,37,38,70 produce the 

correlations more than anything else. Solvent effects enter (mostly) through the dielectric coefficient. 

Ionic solutions do not resemble a perfect gas71 of non-interacting uncharged particles. Indeed, because 

of screening69,72, the activity (which is a measure of the free energy) of an ionic solution is not an 

additive function as concentration is changed (Fig. 3.6 of reference37; Fig. 4.2.1 of reference38) and so 

does not easily fit some definitions (p. 6 of the book of international standards for physical chemistry73) 

of an extensive quantity. 

Some correlations are included explicitly in our models as forces or energies that depend on the 

location of two particles. Other correlations are implicit and arise automatically as a mathematical 

consequence of optimizing the functionals even if the models used in the functionals do not contain 

explicit interactions of components. Kirchoff’s current law (that implies perfect correlation in the flux of 

electrical charge74) arises this way as a consequence of Maxwell’s equations75 and does not need to be 

written separately. Variational analysis produces ‘optimal’ estimates of the correlations that arise from 

those interactions76-78 (and p. 11 of Biot21; p. 42 of Gelfand and Fromin22) and gives the hope that fewer 

parameters can be used to describe a system than in models34 and equations of state79-81 of ionic 
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solutions which involve many parameters. These parameters change with conditions and are really 

functions or even functionals of all the properties of the system. (It is important to understand that in 

general these coupling parameters need to depend on the type and concentration of all ions, not just 

the pair of ions that are coupled.) 

Nonideal properties are evident in all properties of ionic mixtures and most properties of ionic 

solutions relevant to biology. Nonideal properties have been investigated by a generation of chemists 

and include (much of) the lifework of Mayer82, Barthel35,83,84, Friedman85, Hansen12,86 Henderson87,88, 

Pitzer34,70, Lee 33,38 and many others36,37,89,90-92. Nonideal solutions require Onsager reciprocal 

relations93,94 with parameters that depend on the type and concentration of all ions. Models of forces 

between atoms in molecular dynamics95 are calibrated for the most part under ideal conditions of 

infinite dilution and so do not include (for the most part) the complex effects of concentration found in 

measurements of mixtures (see96 and references cited there).  

EnVarA does not produce a single boundary value problem or field equation for ionic solutions. 

Rather, it produces different field equations for different models (of correlations produced by screening 

or finite size, for example), to be checked by experiment. If a new component is added to the energy or 

dissipation functionals, the resulting Euler Lagrange equations change form so that the solutions of the 

equations reflect all the interactions of the new and old components of the energy without introducing 

parameters (besides those in the model of the energies and dissipations themselves). Of course, the 

variational approach can only reveal correlations arising from the physics and components that the 

functional actually includes. Correlations arising from other components or physics need other models 

and will lead to other differential equations. For example, ionic interactions that arise from changes in 

the structure of water would be an example of ‘other physics’, requiring another model, if they could 

not be described comfortably by a change in the diffusion coefficient of an ion or a change in the 

dielectric constant of water. Numerical predictions of EnVarA will be relatively insensitive to the choice 

of description (of pairwise interactions, for example) because the variational process in general 

produces the ‘optimal’ result21,22,76,78 for each version of the model. (This is an important practical 

advantage of the variational approach: compare the success of the variational density functional theory 

of fluids58,66-68 with the non-variational mean spherical approximation35-38,90,91,97-100 that uses much the 

same physics.)  

All field equations arising from EnVarA optimize both the dissipation and the action integrals. 

Inadequate functionals can be corrected (to some extent) by adjusting parameters in the functional. 
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Effective parameters are almost always used to describe complex interactions of ions in electrolyte 

solutions34,70,90,92,93,100,101,102,103,104, e.g., the cross coupling Onsager coefficients93,94 or Maxwell-Stefan 

coefficients104,105. Our work could be extended by using inverse methods55,106 to provide estimators107 of 

the parameters of EnVarA functionals with least variance or bias, or other desired characteristics. 

Our field theory EnVarA represents an ionic solution as a mixture of two fluids108, a solvent water 

phase and an ionic phase. The ionic phase is a primitive model of ionic solutions35-38,90,97-99. It is a 

compressible plasma made of charged solid (nearly hard) spheres. The ionic ‘primitive phase’ is itself a 

composite of two scales, a macroscopic compressible fluid and an atomic scale plasma of solid spheres 

in a frictional dielectric. Channel proteins are described by primitive (‘reduced’) models similar to those 

used to analyze the selectivity of calcium and sodium channels14,15,17-19,52,109-112 and to guide the 

construction (using the techniques of molecular biology) of a real calcium channel protein in the 

laboratory50,113. Similar models predicted complex and subtle properties of the RyR channel before 

experiments were done in > 100 solutions and in 7 mutations, some drastic, removing nearly all 

permanent charge from the ‘active site’ of the channel51,77,114,115,116. 

This paper is organized into a (1) biological introduction, (2) a theoretical introduction, (3) a long 

theoretical section with numbered subsections for clarity in navigation, (4) a computational methods 

section, (5) results and (6) discussion. The introductions are more complete than customary as we reach 

to disparate communities of scientists. We try not to mystify anyone anywhere and regret that we are 

likely to patronize (and irritate) everyone, somewhere.  

(1) Biological Setting

One of our motivations is biological. The role of ions has been a central topic in medicine and 

biology117,118 since (at least) Fick (a biologists, actually a physiologist119,120) described diffusion. The 

interacting flows of ions produce the ATP (from photosynthesis and oxidative phosphorylation) that fuel 

life117. Interacting flows of ions produce the volume regulation that allows animal cells to exist121. Flows 

of ions (and their interactions) produce signaling in the nervous system, initiation of contraction in 

muscle, including the coordination of contraction that allows the heart to function as a pump, 

movement of water into the kidney and out of the stomach and intestine118. Nearly all biological 

processes depend on ions. Biophysical chemists39,122,123 and molecular biologists39,41,124 have long 

dreamed that a physical theory of ions near and in proteins could provide decisive help in understanding 

biological function. 

.  
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Biological cells, proteins, and nucleic acids are found in solutions that are plasmas of ions—

ultrafiltrates of blood created by the sieving action of macroscopic pores between the cells that form 

capillaries. Ions in water can be called ‘the liquid of life’ with more color than hyperbole. Ions of the 

biological plasma surround and pervade the proteins and nucleic acids inside a cell and inside its 

organelles. Ions are extraordinarily concentrated inside crevices and channels in proteins where much of 

their function is thought to occur in ‘active sites’. Concentrations are 20 M or more in the active sites of 

proteins and selectivity filters of channels, and nearly as large around the double helix of DNA. (Pure 

water has number density [H2O] ≈ 55 M.) 

Biological plasmas outside cells are mostly sodium (~ 140 mM) and chloride (~ 102 mM) and 

bicarbonate ions (~ 20 mM) mixed with small but important concentrations of potassium (~ 4 mM) and 

calcium and magnesium ions (~ 1 mM). Different ions carry different ‘messages’ through different 

channels selective to one type of ion or another. The selectivity of channels for ions is a subject of the 

greatest biological importance. Hundreds of selective channels are described in the four “Ion Channel 

Fact Books”125. 

Ionic solutions inside cells are rich in potassium (~ 120 mM) and chloride and organic anions 

(~ 105 mM), with smaller concentrations of sodium (~ 15 mM) and bicarbonate ions (~ 25 mM) and with 

trace (< 10-6 M) concentrations of calcium and other messenger molecules. Trace concentrations 

(typically < 1 µM) of ions (e.g., calcium, cyclic AMP, insoitol-tris-phosphate, even sodium) are signals that 

act as messengers to control many biochemical systems within cells126. Some important ionic 

messengers act in concentrations ~ 10-11 M 127. Measurements, simulations, and theories of such a range 

of concentrations are hard to perform and even harder to calibrate. 

The gradient of concentration between the inside and outside of cells is a crucial energy source for 

the membrane phenomena that control a wide range of biological functions, as are gradients of 

concentrations across the membranes of many intracellular organelles. Ion concentrations inside cells 

are controlled by biological (nano) valves called ion channels120 and controlled and maintained by ion 

transporters (‘pumps’118,128) as ions move in pores within proteins across otherwise impermeable lipid 

membranes. It is surprising, but true, that many complex properties of channels selective for calcium or 

sodium ions can be understood14-19,49-52,58,60,67,68,77,109-113,114,115,129,130,131-133 using adaptations of the 

primitive model of ions in bulk solutions35-38,90,98,99 fulfilling the early dreams of biophysical chemists, to 

some extent.  
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In these reduced models of selectivity, the channel protein enters in a crucial but limited way. The 

protein contributes no mechanical or chemical energy to the ions inside it (in the simplest version of 

these models, however see110). The protein determines the size and shape of the pore in which ions are 

confined. It determines the mechanical and dielectric environment (i.e., the polarization charge) in and 

around the pore, and it provides side chains (of the amino acids that form the polypeptide backbone of 

the protein), that mix with the ions and water in a crowded mixture (~ 20M) in the pore of the channel. 

The side chains are often acidic (i.e., have permanent negative charge) or basic (i.e., have permanent 

positive charge), creating electric fields of great strength( )× 7 -15 10 volts m . The location of the side 

chains in these models is an output of the calculations52; they are not kept at pre-ordained positions in a 

binding site, for example, because the computed positions change importantly as experimental 

conditions are changed. 

The competition between electrostatic forces and crowding (produced by the finite size of the ions 

and the comparable size of the confining space) can be simulated by classical (originally Metropolis) MC 

methods developed to study bulk solutions98,134,135 or by quite approximate theories of bulk 

solutions19,110, or by the ad hoc but powerful density functional theory DFT of fluids applied to ion 

channels51,58,67,68,114,131,136,137,138 which is quite different137-139,140-142 from the better known density 

functional theory of electrons in orbitals. 

These simulations and theories of simple models of ions in crowded confined spaces allow 

understanding of one of the most important properties of proteins, selectivity, because they compute 

the non-ideal properties of ions, that depend on screening, the finite size of the ion, the shape and size 

of the confining space, and on the concentration of all species of ions33,35,37,38,70. The quite different 

sodium channels of nerve and calcium channels of the heart are both described well by a single model 

with the same two fixed parameters in a wide range of solutions of different composition and 

content15,112,133. Each channel type is represented only by spheres taking the place of its characteristic 

amino acid side chains  that produce selectivity143,144 (Glu Glu Glu Glu for calcium channels; 

Asp Glu Lys Ala for sodium channels). The simulations are confined to thermodynamic equilibrium, 

where there are no flows of any kind. The model is subject to all sorts of appropriate objections mostly 

because of its evident lack of the atomic detail of the protein. The simulations are surprisingly 

successful, nonetheless15,52,112. Reduced models seem to describe the kinds of energy used by these 

channels to create selectivity, probably because they allow the concentrations of every ionic species to 

change the activity (i.e., free energy per mole) of every other ion. Of course, evolution is likely to use 
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other forms of energy as well in other situations.  

One of the Nobel Laureates who founded molecular biology (Aaron Klug) recently said “There is only 

one word that matters in biology, and that is specificity. The truth is in the details, not the broad 

sweeps.”145, reiterating the common view that selectivity can only be understood in atomic detail. The 

reduced model of selectivity shows that the broad sweeps of physics (in MC simulations of 

thermodynamic equilibrium) can compute the biological detail, at least in these calcium and sodium 

channels at equilibrium.  

Variational analysis can extend these equilibrium simulations to nonequilibirum so they can predict 

current flow, creating a field theory using the same physics. EnVarA automatically calculates the time 

dependence of currents as solution of its Euler-Lagrange equations. Of course, channel proteins use 

specialized structures to produce time dependence—the phenomena called ‘gating’120—and these will 

not be described by EnVarA unless those structures and their energies are explicitly included in the 

calculations. 

(2) Theoretical Setting

In this paper, we only use an energy variational analysis distinct from other variational principles146 that 

have been used to analyze the Vlasov equation in general or at thermodynamic equilibrium (the 

Poisson-Boltzmann equation147). 

.  

The energy variational treatment of complex fluids8-10 starts with the energy dissipation law 

 0
dE
dt

   (1) 

where we use the dissipation function   of Onsager29, which usually includes a linear combination of 

the squares of various rate functions (such as velocity, rate of strain, etc). 

In a classical Hamiltonian conservative system, the energy E  is the sum of kinetic and internal 

energies involving an integral of the energy of individual particles over all space.  

 
  

E T U 

 Energy Kinetic Internal .

 (2) 

The Lagrangian framework of mechanics20,27,28 writes the energy of a set of i  particles in terms of 
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the motion ( , )t




x X  of these particles using the action ( ( , ))t




A x X of these trajectories. The i  particles 

are labeled by the set of their initial locations  { }
i

X


X  at 0t  .  

The first steps of the Legendre transformation149(p. 32-39 of reference150) gives the action of the 

trajectories of the particles described by eq. (2), in terms of the trajectories ( , ).t




x X  

 ( )T U dt A
.
 (3) 

The principle of least action optimizes the action A  with respect to all trajectories ( , )t




x X  by 

setting to zero the variation with respect to ,


x  computed over the entire domain  ,  

 
0

( ) d dt   


    
 






 

A A Axx x x X[Conservative  Force]  (4) 

where 0Ω is the reference domain of  . 

If x A  is set to zero, this eq.(4) becomes the weak variation form29,151 of the conservative force 

balance equation of classical Hamiltonian mechanics, a statement of the conservation of momentum. 

We use the word ‘force’ in the generalized11 sense of classical Hamiltonian mechanics (p. 19 of 

reference20,21 ) and extend the classical treatment to include dissipation20,21,27 and then later to 

microscopic scales (eq. (8)) so we can deal with the transport energy of ions in ionic channels. 

Dissipation will be treated by extending the classical treatment of the Hamiltonian to include 

dissipation forces20,27. When classical mechanics adds dissipation into eq. (2) by the Rayleigh dissipation 

principle20,21, the physical meaning of the left hand side of (1) changes. The system is no longer 

conservative. It is no longer a system constrained to thermodynamic equilibrium. Confusion in the 

names and physical meaning of variables is likely to result (see p. 62 & 64 of the classical textbook20). 

We treat dissipation by performing a variation with respect to the velocity 


u  in Eulerian 

(laboratory) coordinates, as 

  1
2

d 


  

 

u u x[Dissipative  Force]
.
 (5) 
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If  1
2

 

u  is set to zero, eq. (5) gives a weak variational form of the dissipative force balance law 

equivalent to conservation of momentum, using the word ‘force’ to include the variation of dissipation 

with respect to velocity. The velocity is sometimes written more explicitly as  

   ( , )
( , ); ( , )

t
t t t

t


 






 

  



x
u x x

XX X
.
 (6) 

Ionic solutions satisfy both dissipative force balance and conservative force balance, so we have the 

following equation, which can be written in either Lagrangian coordinate 


X , or Eulerian coordinate 


x 152. 

 



 

1
2

E 
 




Conservative Force       Dissipative Force          

x u



 

.
 (7) 

One can imagine systems constrained to follow other balance ‘laws’ beyond those in eq. (7). Such 

constraints can be included in our variational analysis essentially by adding them into eq. (7), because 

the theory of optimal control (reference78 and p. 42 of reference22) uses the variational calculus to apply 

constraints or penalty functions (p. 120 of reference76). See discussion below, a few paragraphs before 

eq. (19). 

Eq. (7) is nearly identical to eq. (26) of Rayleigh24. We go beyond Rayleigh by actually solving the 

resulting Euler-Lagrange partial differential equations, together with the physical boundary conditions. 

We use the modern theory of the calculus of variations and corresponding numerical algorithms that 

reflect the underlying variational structures, all implemented by computational resources not available 

in the 19th century. Our dissipation function (like Biot’s21) departs from Onsager’s—loosely defined 

between eq. 5.6 & 5.7 on p. 2227 of reference26—because we use variations with respect to two 

functions29,151. The dissipative—Onsager(ian)—part of the expression uses a variation with respect to the 

rate function (velocity u )29. The conservative—Hamilton(ian)—part of the expression uses a variation 

with respect to position x . The combined results should be expressed in the same coordinate, either 

Lagrangian coordinates or Eulerian coordinates.  A ‘pushforward’ or ‘pullback’ change of variables152 

may be needed to write all the physical quantities in the same coordinate, if those quantities were 

originally defined in different coordinates.  
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(3.1) Theoretical Model: Transport of Ions

The transport of ions through ionic channels is an atomic scale problem, because the diameter of 

channels is only 2-4× the diameters of ions. Valves like ion channels are designed to be much smaller 

than the systems they control. Biology carries this ‘to the limit’ by making its nanovalves into 

picochannels with internal diameters about twice as large as the flowing molecules (atoms). A stochastic 

analysis of the trajectories of atoms is possible153,154 and a multidimensional (nonequilibrium) Fokker-

Planck equation can be derived by analysis59 or steepest descent arguments155. The multidimensional 

Fokker-Planck equation can be reduced156 to the PNP equations by a closure procedure59,157,158 with no 

more (than the considerable) arbitrariness of closures of equilibrium systems32,159 (which do not form 

obviously convergent or uniformly convergent series, for example, and thus have unknown errors). The 

Fokker-Planck equation includes the continuity equation and so does its derivates, the drift diffusion or 

PNP equation. EnVarA of transport starts with an energy law that can be derived from treatments of 

Brownian motion, as just mentioned, but we prefer an axiomatic approach—guess the law; check the 

result—in which we treat eq. (7) as a postulate, valid on the macro-, meso-, and atomic scale for two 

reasons (1) present treatments of closure do not allow estimates of their errors and (2) the actual 

dynamics of charged particles in water and protein channels may not be well described56 by models of 

the Brownian motion of 

.  

uncharged particles with independent noise sources, although this has been the 

custom for some time160. Fluctuations in the number density of ions are likely to produce fluctuating 

forces not included in the treatment of Brownian motion of uncharged particles. 

(3.2) Theoretical Model:  Energy Variational Derivation of the Fokker Planck Equation of Transport

We define a generalized potential 

.  

 ( )f


x  for the probability density function ( )f


x  of ions and 

assume that electrodiffusion of particles is only driven by gradients of  

   ( )( ) log ( ) ( ) ( )fE f d f d f d 
  

     
ElectrostaticTransport   and  other



      





xx x x x x x x  (8) 

where ( ) x  includes both the electrostatic potential ( ) x  and also the steric repulsion arising from the 

finite volume of solid ions (see eq.(24)-(27)) and ( )( )f  x  includes logarithmic entropy terms; 

1/ Bk T=  where T  is the absolute temperature and Bk  is the Boltzmann constant. Both electrostatic 

and steric repulsion forces are global forces depending on boundary conditions, the location of particles 
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everywhere, and spatial variation of parameters like dielectric coefficients. In general, neither force can 

be written as functions of the position of only two particles4,69,156. When the potential ( ) x  is only 

electrostatic ( ) ( ),=
 

 x x  then ( )( )f  x  describes the transport properties of an ideal gas of point 

charges (including screening) often described by the drift diffusion, Vlasov, or PNP equations, as 

mentioned previously. Even in this case, without finite size effects, the system is highly non-ideal and 

hardly extensive since screening produces powerful correlations. The free energy per mole varies (more 

or less) as the square root of the concentration and not linearly as assumed in the ‘independence 

principle’ of classical electrophysiology.161 

Now, we take the variation of the potential ( )( )f  x  with respect to ,x  in the Eulerian coordinate. 

Since the potential ( )( )f  x  is a functional of ,f  not ,x  we need to use the chain rule if we want to 

determine the spatial variation of the potential and thus the force. We write the chain rule here—only 

for motivation—as if variations were derivatives ( ) ( )( ) ( ) ( ).f f f
f

δδ δ
δ δ δ

= ⋅  

 

 x x x
x x

 The variation of 

( )( )fΦ


x  with respect to ( )f x  is  
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

x
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 (9) 

where the chemical potential µ  appears because it is the derivative of ( )( )f  x  with respect to 

density ( )f x  

    ( ) ( )
( )

f f
f


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x x
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 (10) 

We introduce the flux J


 by its definition, 
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 (11) 

Flux J


 is the product of density and the velocity and is the variation of the density ( )f x  with respect to 


x , i.e., ( ) ( ( ) ).f fδ δ= −∇ ⋅
  

x x x  Substitute this variation into eq. (9), and integrate by parts, to get  
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    ( ) ( ) ( ) ( )fE f E f f d   
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  
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.

 (12) 

The long time dynamics are governed by the transport force ( ) ( )f µ∇ 

x x  and the transport law. At 

long times, the velocity is proportional to force, and the divergence of flux is equal to the time rate of 

change of contents,  

  ( )
( ) ( )

f

f
J f

t
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 x
x x  (13) 

where   is a renormalized constant. Eq. (13) seems to be a nonlinear equation, but in fact, a little 

algebra shows that it is the Fokker-Planck equation3,154, describing the diffusion and drift of stochastic 

trajectories of density ( )f x  
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x x x
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 (14) 

where 2∇  is the Laplace operator.  

Equation (14) is the field equation of ionic transport on the micro (i.e., atomic) scale and ( )f x  is 

actually a distribution function, i.e., a probability density function that may not have been 

normalized59,153,154. Later we will create a more complete model of the ionic phase by combining the 

atomic scale description of transport (as the drift diffusion process of eq. (14)) with a macroscopic 

description of the flow of a compressible ionic fluid (as a Navier-Stokes process), thereby generalizing 

the traditional primitive model of ionic solutions into a field theory. 

Eq. (13) is now written as a variation ( )( )x fδ 


 x  with a procedure used often in variational analysis. 

This procedure shows that eq. (13) is also a dissipation—a time derivative. First, we multiply eq. (13) by 

( )( ) / ( )f f∂ ∂ =
 

 x x , and integrate. 

 
   ( ) ( ) ( ) ( )( )
( )

f f fd d
f t

 



   
 

 
 








 

  



x x x xx x x
x

.

 (15) 

Apply the chain rule to the left hand side and integrate by parts (using the chain rule in the form given 
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on p. 220 of reference28), 

     
2( )

( ) ( ) ( ) ( ) ( ) .
f

d f d f d
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x
x x x x x x x x  (16) 

Eq.(16) is the transport dissipation equal to both the conservative and dissipative terms of eq. (7). 

 
2

( )
d

f d f d
dt

 
 

    
 

Transport  Dissipation
 

x x

.

 (17) 

This equation is a special form of eq. (1), see reference148. An explicit treatment of this atomic scale 

model follows to give integro-differential equations for a PNP-like system of hard spheres (see eq.(30)-

(32)). 

(3.3) Theoretical Model: Primitive Model as a Complex Fluid

We now treat the entire ionic solution in the spirit of the primitive model but as a complex composite 

fluid. One component is a macroscopic fluid phase—a purely macroscopic version of the primitive model 

of ionic solutions. Another component is a plasma, an atomic scale version of the primitive model, in 

which ions are represented on an atomic scale as charged Lennard Jones spheres in a frictional 

dielectric. The excluded volume of the spheres can be handled on the macroscopic scale or the atomic 

scale. The third component is an incompressible fluid, namely the solvent (water). Our variational 

approach can use more realistic models of the solvent and ion—such as density functional theory of 

solutions51,58,67,68,114,131,136,137,138—and extend them to nonequilibrium conditions. Our approach yields 

multifaceted correlations without invoking complex laws with many parameters34,70,79-

81,92,100,101,102,104,105,162. (Of course, the variational principle might not compute all the correlations that 

actually occur in the real world, if it uses a description of the energy or dissipation of the system which 

has inadequate resolution or is otherwise incorrect or incomplete.)  

.  

The density of spheres is variable in the primitive model and the potential of the entire primitive phase 

of our composite model (macroscopic and atomic) is written in the Eulerian framework before it is 

substituted into energy dissipation principle eq. (1).  

(3.4.1) Theoretical Model: Primitive Ion Phase, derivation and remarks on multiscales in EnVarA 
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where IP  is the mass density, 21
2 IP IP



 u  is the hydrodynamic kinetic energy of the Ionic (primitive) 

Phase, ( )IPw   is the hydrodynamic potential energy;   is the dielectric constant (dimensionless);   is 

the coupling constant (coupling scales and physical processes, as we shall see). It is the ratio of 

hydrodynamic (macroscopic) energy (see eq.(3) to microscopic (atomic) energy (see eq. (8)) and has the 

role of a Lagrange multiplier. In general,   must be determined by specific measurements in 

experiments, as has been done in rheology10,163. In special cases,   turns out to have a specific physical 

meaning, e.g., as a surface tension in the theory of liquid interfaces1,164. Extensive discussion of the 

hydrodynamic term of eq. (18) is found in references3,165. The solid sphere term was first used by 

reference9, as far as we know. 

Variational analysis on the Macroscopic (fluid dynamics) and Atomic (microscopic) scales. Combining 

the macroscopic and atomic energies as we have here, using just one coordinate x , is a drastic 

simplification not used in more complete and sophisticated multiscale analyses3,6, see for example the 

‘micro-macro’ variational analysis32 where the transformation of scales is done explicitly, with two 

different coordinates, one, say 1y for the macroscopic scale, and the other say 2y  for the atomic scale. 

In the full micro-macro expression that then takes the place of our eq. (18) an extra nested integral 

d∫ 

2y would appear, because an integration must be done over the atomic scale 2y  before the 

energies of the atomic (microscopic) and macroscopic (hydrodynamic) scales can be combined. In the 

present paper we identify both the macroscopic and atomic coordinates 1y  and 2y  as the mesoscopic 

variable .x  Treatments of solution flow (i.e., solvent plus solute as needed in the study of fluid flow in 

the kidney, for example118), or coupled transport of ions in channels (as needed in the study of active 

transport by protein pumps118,128), may require a more complete micro/macro analysis that does this 

integration explicitly. Our use of the Density Functional Expression for the energy of uncharged hard 

Coupling Constant 
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spheres in Appendix C deals partially with the multiscale problem because it uses nonlocal interactions. 

Actually performing the integrations over both 1y  and 2y  is likely to do even better. 

Equation (18) states the physics of our EnVarA analysis of ions in solutions and channels. In the 

present analysis, the hydrodynamic scale contributes only energy; no entropy terms are involved. The 

atomic scale, however, contributes both energy and entropy terms. The latter entropy term reflects the 

thermal fluctuation and the particle Brownian motion. The entropy term in eq. (18) is on the 

macroscopic scale x  and represents a crude averaging of the energetic consequences of Brownian 

motion (that occurs on an atomic scale 2y not shown here). A full micro-macro treatment would 

produce much more complete (but complex) results by explicitly averaging of the Brownian trajectories 

(e.g., as attempted in references59,158,166). A full micro-macro treatment can embed MC simulations30-32—

perhaps even of ions in channels17,112—in the variational integral itself, i.e., as part of the integrand in 

eq. (18). The variational approach was used previously in references167,168. A reduced variational 

approach that inspired ours is used in reference169. The underlying mathematics has been summarized23. 

Simplified approaches using a single coordinate like our eq. (18) have been published170,171. Full micro-

macro analyses are available for polymeric fluids3,6, electrokinetic fluids167,168, and liquid crystals172 

although they do not use the dissipation principle eq. (7) or EnVarA. 

We include an adjustable parameter, the coupling constant  , in our expression (18).  must be 

determined from an explicit model describing the (probably atomic scale) origin of the energetics and 

dissipation. 

Double Counting. The variational approach is helpful here because it prevents us from counting the 

components of eq. (18) twice. The mathematics of the variational process used here guarantees that 

any solution of eq. (18) will have the minimal values of both dissipation and action, even if the same 

physical process appears in two components of the integrand171. However, there is no magic in the 

variational method. The variational approach would not prevent other quantities—beyond the least 

action and dissipation described by eq. (18)—from being mishandled. Variational approaches only 

constrain variables that they vary (like Φ  in eq. (18)) and use to determine the resulting partial 

differential equations. 

The variational approach is also a natural (albeit approximate) way to combine descriptions of 

physical phenomena, including those occurring on different scales1,7,30,32,108,169,171,173. The variational 

approach combines (the variations of the) energy and the variations of the dissipation on both scales. 
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The resulting equations are different from those produced by taking partial differential equation 

describing each phenomenon and combining them directly.  

Combining partial differential equations directly can be problematic. It may not be clear which 

partial differential equations (or variables) should be connected, and whether they should be added or 

otherwise combined. If different scales are merged as in eq. (18), the variables in the different partial 

differential equations may not be comparable or even have the same units (e.g., the concentrations of 

species and the distribution function of locations of the atoms of that species59,158,166). Merging 

differential equations may not be unique and may even violate overarching constraints1,7,30,32,108,169,171,173, 

thermodynamic principles, or sum rules, for example. In the variational procedure, the energies and 

dissipations are usually easily defined. Adding energies is an obvious way to try to combine scales, as is 

adding dissipations, although more elaborate treatments of dissipation are usually needed, see eq. (39). 

Continuum treatments of energy have even be combined with estimations from discrete simulations32. 

Variational Procedure as an optimization: coupling constant. The variational procedure is a kind of 

optimal control that produces optimal mixing of the components of the generalized energy function like 

that shown in eq. (8) or (18) and a good starting guess for mixing atomic and macroscopic scales. Eq (38) 

can be viewed as an optimal control21,22,76,78, as written, without change. The cost function is the 

macroscopic (hydrodynamic) part of energy. The constraint function is the atomic (microscopic) part of 

energy, the part multiplied by λ. If we want to strictly enforce (control of energy by) the atomic scale, 

then λ becomes a Lagrange multiplier. If we relax the constraint on the atomic scale, then λ can be 

viewed as the relaxation parameter where the magnitude of λ represents the tolerance allowed for the 

constraint. Determining the tolerance of the constraint is a major topic for experimental investigation, 

and cannot be decided by mathematical arguments alone. In our applications to channels, it is clear that 

focus should be on atomic/mesoscopic scales, and eq. (18) is written that way. Other formulations of 

‘penalty functions’76 (p. 181 of reference174;) are possible besides those shown in eq. (18) and represent 

different ways of handling different scales of hydrodynamic (macroscopic) and atomic motions. The 

coupling constant λ could be applied the other way around, in which case the roles of the energies of 

the two scales are switched. In general, determining the tolerance and penalty functions involves 

problems of sensitivity, ill-posedness, and over determination as do most inverse problems 55,106,175. 

Electrochemical potentials. To apply these ideas to specific problems, we introduce the customary 

chemical variables, the electrochemical potential iµ  (of species i ) often described in channel biology as 
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the ‘driving force’ (for the current of species i )161. The (electro)chemical potentials of the ions can also 

be determined as variations, see eq. (10). 

 
   ( ) ( )
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n p

E f E f

c c

 
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 
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 
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x x
x x

.
 (19) 

A treatment10,167 without excluded volume gives the classical drift diffusion42-44,53 (partial differential) 

equations of an ideal gas of point particles176 named the PNP Poisson Nernst Planck equations by 

reference45; earlier references to Nernst-Planck and drift diffusion equations are in references43,44,46,48,62. 

The classical PNP (drift diffusion) equations are the partial differential equations produced from eq. (18) 

by the usual variational procedure with respect to ic , with   0 Solid  Spheres . 

To illustrate these ideas, we write equations for monovalent salts like NaCl. However, all 

programming has been done for mixtures of any number of species, with arbitrary valence. They include 

the permanent charge of the protein (or doping charge of semiconductors, if a variational treatment is 

made of semiconductors177).  
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where /
i i B

D k T  , i n  p or , and t  is renormalized time. Diffusion coefficients are 
i

D  

ori n  p  that must not be set equal lest singular simplifications be produced like those that minimize 

liquid junction potentials in salt bridges when KCl is the sole electrolyte64,178. The chemical forces i , 

i n  p or  are written in detail in Appendix B.  
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The flows measured in most experiments differ from the fluxes naturally defined in PNP. Electric 

current I


 is the variable usually controlled or measured in experiments—not flux—and this differs 

significantly if the measurements include significant displacement (i.e., ‘capacitive’ /E t  ) current. On 

the picosecond time scale of Brownian motion, or the (sub) femtosecond time scale of molecular 

dynamics, the displacement current can be very large indeed. (Roughly speaking, the displacement 

current and ionic current of a biological solution are equal on a time scale of 10 psec: 1 M NaCl, p. 196 of 

reference83). The displacement current can be precisely evaluated by the Shockley-Ramo theorem75,179 

and is a consequence of the continuity of current in the Maxwell equations, if current is suitably 

defined74. In the PNP framework such displacement current may be treated with boundary conditions 

that describe a specific experimental setup and its stray capacitances, particularly those that shunt the 

channel and those that couple the baths to ground.  

The importance of computing the potential from the charge pnc c−  as in eq. (20) cannot be 

overstated42,43,180,181. Forcing a potential to adopt a value independent of the charge pnc c−  requires the 

injection of energy and charge. That injection is so likely to substantially perturb and distort the 

system46,61 that it might be called the Dirichlet Disaster, if hyperbole is permitted.  

A protein cannot be described as a surface of fixed potential120,182—as a Dirichlet boundary 

condition—or as a rate constant independent of concentrations in the bath if the protein is an isolated 

system that has no energy source. In particular, a channel protein cannot inject charge into a 

system183,184. Channels are (chemically) passive devices. They are biological valves, not motors, and do 

not use the energy of hydrolysis of ATP to move ions. They modulate movements of ions driven by the 

gradients of electrochemical potential of the ions. The gradients are maintained by other systems —

called ‘pumps’ or active transporters118,128— that do use chemical energy.  

Solid Spheres: finite size ions. The PNP equations ignore the important effects of the finite size of ions 

that are thought to determine the non-ideal properties of ionic solutions, more than anything else35-

38,90,185. We could include these in our variational analysis in three different ways: (1) on the macroscopic 

(hydrodynamic) scale as an equation of state79-81,88,162; (2) on the atomic (microscopic) scale, we include 

a Lennard Jones term; and (3) also on the atomic (microscopic) scale, we could include a term (for 

uncharged spheres) from Density Functional Theory (of liquids), in particular the uncharged terms from 

references58,67,68 following references142,186. In the Results section, we compare Lennard Jones and 

Density Functional descriptions. Numerical difficulties prevented us from implementing an equation of 
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state description79-81,88,162. 

Lennard Jones treatment of solid spheres. The excluded volume of solid spheres can be treated by 

including the (generalized) energy of an excluded volume term at the atomic scale, with the energy term 

written as that of Lennard Jones purely repulsive spheres 
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 (24) 

where the repulsion between two balls situated at 


x , 


y  with radius, ia , ja , respectively is given by a 

Lennard-Jones type formula.  

 

12

, ,
(| |) =

| |
i j

i j i j

a a
 

        
for i = n,p

 

 

x y
x y

 (25) 

where ,i j  is a chosen energy coupling constant, not the dielectric coefficient. Obviously, an attractive 

term could be added into eq. (25) if needed. We proceed in the spirit of the discussion of eq. (9)-(13). 

We can derive the drift force by variation of eq. (24) with respect to x . This variation determines the 

components of the flux due to the finite size effect of nc  (see eq.(26)) and the finite size effect of pc  

(see eq.(27)). Details are in Appendix A and B. The components of flux are 
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 (27) 

These components of flux would appear inside the divergence operator in the Fokker Planck equation 

(13) and as part of the drift term in eq. (14). 

Dissipation on the atomic scale. We turn next to the dissipation in the primitive atomic scale phase so 

we can take its variation with respect to velocity and thus determine the dissipative force in this 

application of eq. (7). The dissipation of the primitive atomic scale phase is  

  
22 2 pn
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B B
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u x x
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 (28) 

Here IP∇


u  is the strain rate tensor; M  is the dynamic viscosity coefficient; and chemical potentials are 

written as Greek mu’s, / ; /n n p pE c E cδ δ δ δ= =  , see eq. (19), following the nomenclature of physical 

chemistry187.  

DFT treatment of solid spheres. Another way to handle the excluded volume of hard spheres is by 

including a term (for uncharged spheres) from Density Functional Theory (DFT of liquids) in the atomic 

scale energy. We use the uncharged terms from58,67,68,142,186. We simply replace the Lennard-Jones terms 

of eq. (24)-(27) by the corresponding terms from Appendix C. Perhaps someday an intermediate scale 

will produce correlations equivalent to those produced by the nonlocal integrals of DFT. 

3.4.2 Theoretical Model: Primitive Model of Ionic Phase

Now we are in a position to write the primitive model of just the ionic fluid (without solvent water). This 

system will include the macroscopic (continuum) hydrodynamic variable 

.  

IP , the mass density of the 

ionic phase (without solvent), velocity IP



u  of the ionic phase (without solvent,) and hydrostatic pressure 

IPp  determined by the equation of state for ions (which without solvent form a compressible fluid) and 
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is written as a function of time. On the atomic (microscopic scale) both the Lennard Jones model (eq. 

(25) and DFT model (Appendix C) have both been implemented. Explicit formulae for n∇ and p∇  have 

been worked out for both, as described in the Appendices. Explicit formulas for n  and p  are not 

possible because they are nonlocal, involving the electrical potential and finite volume effects 

throughout the global system. 

Macroscopic conservation of mass is 

 ( ) 0IP
IP IPt








 


u
.
 (29) 

Macroscopic Force Balance (conservation of linear momentum) is 
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 (30) 

In the above equation, the second term on the right hand side is the electric force which is the effect of 

charge on the macroscopic ionic phase (fluid). The second and third lines are the Body Forces due to the 

finite size effect. Notice the concentration variables ( )nc 

x  and ( )pc 

x  in the Body Force terms cannot be 

moved inside the divergence. Their location implies that the divergence theorem (i.e., Green-Gauss 

formula) cannot put those concentration terms on the boundary. Thus these forces must be evaluated 

inside the bulk of the system and are given the name Body Force.  

PNP for solid spheres. Next we write time dependent PNP equations modified to include finite size 

effects.  
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The second terms on the left hand side of eq. (31) and (32) represent the transport of the ions by a 

compressible fluid which is appropriate if the equations are applied only on the atomic scale. If we try to 

extend these equations to other scales, the proper form of the compressibility becomes an issue that 

needs to be resolved by experiment. These and the last two terms of eq. (30) represent the balance of 

the internal forces (Newton’s third law).  

It is important to verify Newton’s third law explicitly in problems of this sort. We deal with the water 

(solvent on the macroscopic scale), the ionic phase (fluid on the macroscopic scale), and the ionic 

particles (on an atomic scale). Newton’s third law has to be satisfied for each phase and all interactions 

among the phases.  

We turn now from the ionic phase to the solvent water. The solvent is treated traditionally as an 

incompressible fluid density 

(3.4.3) Theoretical Model: Solvent water 

fρ  and velocity 
f



u  (although treatment as a compressible fluid is possible 

if needed), using (generalized) energy and dissipation 

  
2

1
2 f f

E d


 
 

u xIncompressible Solvent  (33) 
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   2= | |
f f

M d


 
 

u x .Incompressible Solvent  (34) 

Here, 0
f

   for an incompressible fluid. Applying the force balance law “Conservative 

Force = Dissipative Force” (7) to the equations for the incompressible solvent gives Navier-Stokes partial 

differential equations for an incompressible fluid with dynamic viscosity .
f

M   

 0f
f ft





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u  (35) 

 0
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u
u u u  (37) 

(3.4.4) Theoretical Model:  (Entire) Primitive Solution

Finally, we can deal with the entire electrolyte, namely the ionic solution consisting of the solvent and 

the primitive phase of ions by combining the (generalized) energy and the dissipation of the individual 

components using the simplest model for the interaction of the components. Later work may need to 

deal more carefully with the different scales of the components. 

.  

The (generalized) energy of the solution is simply the sum of the (generalized) energy of the 

components, namely the sum of the energy of the ions in primitive phases (both atomic scale and 

macroscopic) and of the energy of the incompressible solvent eq. (34). We do not write it out. We also 

will not bother to write ‘(generalized) energy’ in every case from now on. It should be clear that ‘energy’ 

in this paper is not just that defined in classical treatments of the first law of (equilibrium) 

thermodynamics. 

The dissipation of the primitive solution is not just the sum of the dissipation of the components 

because the solvent can drag the ions, and vice versa. Thus, the dissipation of the primitive solution is 
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(38) 

where fM  is the dynamic viscosity and f


u of the solvent fluid, IPM is the viscosity and IP



u  is the 

velocity of the Ionic Phase. The last term in eq. (38) gives rise to an extra drag term ( )IP fk −
 

u u  that 

will have to be added into eq. (37) and also an extra term ( )IP fk− −
 

u u   that will have to be added into 

equation (30). These two terms again reflect the balance of internal forces enforced by Newton’s third 

law. We write the entire system in the next section. The frictional drag between solvent and ions is 

described to the lowest order approximation as a Stokes’ drag  

 or where the Stokes drag is      = ( ), = 6
n p ffk c c M a   

,
 (39) 

where 
f

a  is a generic description of the radius of the solvent particle. It is not clear a priori how much 

detail will be needed in describing the drag of the solvent on the ions and the ions on the solvent. This 

will be determined by solving the problem for specific cases of flow in mixed bulk 

solutions34,70,90,92,93,100,101,102,103-105, or in ion channels, and seeing whether expressions for drag between 

water that are not specific for individual ions produce correlations similar to those observed 

experimentally188,189 and traditionally attributed188,190 to ‘single filing’ (however, see114,129). Perhaps, 

specific coefficients will need to be introduced into an EnVarA field theory of ionic solutions—as they 

have been in traditional theories of flux coupling in bulk and ion channels—to describe drag between 

one type of ion and other types of ions and water, with all the uncertainty that involves (e.g., how do 

the specific coefficients vary with concentration(s) in pure and mixed solutions34,90,92,100,101,102,104?) 

The total coupled system—involving solvent and macroscopic and atomic scale components of the 

entire solution—is given below. All the equations need to be solved together, in a simultaneous solution. 

Note the two physical sources of coupling between the solvent (water) and ion (primitive) phases. The 

drag term couples these phases dynamically, when there is relative movement. The phases are also 

coupled at equilibrium, when there is no motion, by Newton’s third law, and this coupling will produce 

at least some of the complexities normally dealt with ‘by hand’ by the parameters of the equations of 

state79-81,162. The effect of the ions on the fluid is balanced by the effects of the fluid on the ions. 
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Complete Ionic (primitive) Solution 

Solvent Water Phase treated as incompressible.  
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Primitive Ionic Phases are macroscopic and atomic scale combined. 
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 (44) 

(3.5) Theoretical Model: Generality of the Energy Variational Approach

An energy variational treatment allows more generality and (possible) complexity than is usual in 

theories of ionic solution because (1) it includes all the bulk hydrodynamic behavior described by the 

Navier Stokes equations; (2) it includes all the bulk hydrodynamic behavior of a compressible phase of 

ions; (3) it includes the atomic scale behavior of a PNP system including finite size ions that create their 

own electric field; (3) it allows boundary conditions that can drive flow, for example, when they are 

spatially nonuniform; (4) it automatically computes interactions between all components and scales 

included in the models that describe dissipation and energy. In most models of ionic 

solutions35,80,81,84,90,92,100,101,102,162,191, these interactions have to be put in ‘by hand’, sometimes with 

hundreds of parameters79.  

.  

The generality of an energetic variational approach—which does not even distinguish between 
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thermodynamic equilibrium and thermodynamic nonequilibrium—is a major potential advantage. For 

example, energy variational treatments will automatically reveal correlations in the flows of any of these 

components across all scales, even if pairwise interactions (like force laws of molecular dynamics) are 

not explicitly included in the energy function. The electrical potential is present on all scales and directly 

couples atomic and hydrodynamic bulk behavior in the resulting Euler Lagrange field equations. The 

energy variational method also deals with double counting better than most (see discussion of double 

counting after eq. (18)). It allows (in the future) combination of equations of state79-81,88,162 and (for 

example) our models of excluded volume—Lennard Jones, and Density Functional—each weighted with 

separate coupling constants, Lagrange Multipliers, if we choose to handle them that way. One can 

choose coupling constants to fit data optimally using methods of inverse problems, if necessary to deal 

with issues of sensitivity and ill-posedness106,175, as we have in fitting PNP-DFT to properties of 

channels55. 
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4  Computational Methods 

Methods of Numerical Computations

Computation of phenomena of molecular biology poses a stiff computational challenge. Biological 

phenomena are almost always slow (>10-4 s), but are usually controlled by a handful of key atoms in a 

few molecules, here channel proteins. Ion channels are nanovalves. Atomic structures of ion channels 

control macroscopic functions on macroscopic time scales. Displacements of 10-11 m in the (time) 

averaged location of the key atoms of channel proteins have large effects on biological 

selectivity15,17,63,112,192. The atoms move more or less at the speed of sound193 and thus time scales from 

10-16 to 101 s are directly involved in the behavior of ion channels. 

. Energetic variational methods produce integro-differential field 

equations that describe a wide range of systems under many conditions and thus with qualitatively 

different behaviors. Numerical procedures need to be tuned to the qualitative behavior of the system to 

be reasonably efficient. EnVarA requires numerical solutions of time dependent equations (because the 

real world is always time dependent). Steady state phenomena emerge as (hopefully stable) limits of 

time dependent phenomena, as they often do in the real world, so efficiency and stability are 

particularly important.  

We use finite element methods (FEM) that reflect and take advantage of the underlying energetic 

variational structure of ion channel dynamics building on earlier work30,171,194, particularly that of Ryham, 

working with Liu167,168 that described the coupling of ions (PNP equations) and flow (Navier-Stokes 

equations) using a “mini” finite element to solve the (Navier)-Stokes dynamics. We use generalized 

“mini” elements to solve our model195, namely, the standard elements 1 , 2,3, .k kP P k−− =   kP  are a set 

polynomials up to order k . We solve the drift-diffusion equation (Nernst-Planck) equations (20) with an 

efficient finite element method: edge averaged finite elements EAFE that have been proposed196 and 

studied extensively167,168. The method exploits the type of monotonicity of the operators in the 

equations. The Euler method is used to deal with time dependence. Ionic solutions are confined by 

insulating boundaries in experiments (and in channels). Insulating boundaries are described by no-flux 

boundary conditions derived by variational procedures. We use the following (pseudo) algorithm based 

on finite element discretization to solve the coupled Poisson-Nernst-Planck equations that include the 

effects of the finite volume of ions, for example, eq. (31)-(32).  
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Step 1.  Set initial data (0) (0) (0), ,pnc c  , and 1k = .  

Step 2.  Set 1( ) ( 1) ,mk k
n nc c− −=  1( ) ( 1) ,mk k

p pc c− −=  1( ) ( 1) ,mk k
p pφφ − −=  for 1, 2,k =  . 

Step 3. Solve the following finite dimensional equation for ( ) ( ),m mk k
pnc c with given 1 1 1( ) ( ) ( ), ,m m mk k k

pnc c− − −  using 

EAFE 167,168,196.  
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 (45) 

where ( )1 1( ) ( ), , ,m mk k
j n pc c j n p− − =   are the chemical potential obtained from the finite volume 

energy and dt is the time step. The equation is written for monovalent anions n and cations p 

but programming was done for any ions of any charge. 

Step 4. Solve Poisson equation for given for 1/2( )mk − with given ( ) ( ),m mk k
pnc c . 

 1/2( ) ( ) ( )2 .m m mk k k
n pc cε −∇ = −  (46) 

To prevent oscillatory behavior in this iteration we use a convex iteration scheme that has 

evolved167,168,196 from earlier work related to the Gummel iteration180,197 of semiconductor 

physics44,198: 

 1/2 1( ) ( ) ( )(1 ) , 0 1.m m mk k kc c c− −= + − < ≤    (47) 

Step 5. Check self-consistency between ( ) ( ) ( ), ,m m mk k k
pnc c  .  

If consistent, then 
( ) ( )( ) ( ), ,m mk kk k

p pn nc c c c= = ( )( ) .mkk =    

Otherwise 1( ) ( )m mk k− =  and go to Step 3. 

Step 6. Check the error between ( ) ( ) ( ), ,k k k
pnc c   and ( 1) ( 1) ( 1), ,k k k

pnc c− − −  with a criterion. 

If the error is less than a criterion, then print solution ( ) ( ) ( ), ,k k k
pnc c  and exit. 

Otherwise, set 1k k= +  and go to step 2. 

 

The numerical scheme for the PNP system has been verified by comparison to theoretical results, and in 

special cases to known solutions of the Poisson-Boltzmann and renormalized Poisson-Boltzmann 

equations. We verify by inspection that the numerical scheme has enough resolution to catch the 
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boundary layer behaviors of the electrostatic potential. 
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5.0 Results 

We implement EnVarA here in a few special cases to show its feasibility. EnVarA yields a time 

dependent system of Euler Lagrange equations, even if the properties of interest are stationary, 

developing after a long time. This is a blessing and a curse. It is a blessing because we learn much more 

of the system, and can understand or propose experiments in the time domain. It is a curse because the 

computations of time dependent phenomena produce complex phenomena not emphasized in classical 

experimental papers that often focus on simpler behavior seen in special steady state conditions. 

Experiments are often designed to focus on particular parts of complex phenomena. The conditions 

that allow that focus often take many years to discover (consider for example, sequence of papers 

needed to discover ionic conductances using the voltage clamp184) and the preliminary survey 

experiments used to design that focus are often not reported in detail. After all, survey experiments give 

complex results that are usually quite confusing compared to focused experiments designed to illustrate 

key results.  

Variational calculations report all the time dependent properties of the system; they correspond to 

the survey experiments. So we must survey ranges of parameters before we can focus on important 

experimental phenomena. The values of effective parameters needed to focus on particular parts of 

complex phenomena are not known ahead of time, and are hard to determine, particularly in simplified 

models computed in only one dimension. The numerical solutions of the time dependent Euler Lagrange 

equations are slow, particularly since we are usually interested in the eventual steady state. Thus, our 

survey calculations are incomplete, and certainly have not yet isolated phenomena as clearly as 

experiments do (using protocols that often have taken decades to work out, we say in our defense). 

Layering near a charged wall. We first calculate the property of ‘one dimensional spheres’ near a highly 

charged wall in the presence of divalent and monovalent ions, e.g., hypothetical ions something like Ca2+ 

and Na+ Cl¯. More precisely we use center to center interactions and evaluate the forces in one 

dimension in a long tradition starting with the statistical mechanics of uncharged spheres near walls65. 

We might be tempted to call these ‘rods’ or one dimensional spheres, but the correct specification is the 

mathematics. We choose this system because it shows the ability of the variational method to deal with 

correlations in a highly charged, highly correlated system. Obviously, this idealization should be replaced 

by computations of spheres in three dimensions as soon as we can do those calculations. Indeed, we 

cannot quantitatively compare our results with MC simulations of real spheres132 until we work in three 
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dimensions. 

This reduced test case provides a wealth of complex behavior of great importance—judging from 

the hundreds of papers devoted to it—in a wide range of applications, from electrochemistry, to 

biophysics, to material science, where interactions of this type are important in determining the 

strength of cement199 (i.e., calcium-silicate-hydrate). The literature of this field is well reviewed132,199-201 . 

We have particularly used reference200 for an over view of the entire field and reference132 to show the 

wide variety of behaviors of such systems in MC simulations of the primitive model.  

Fig. 1 shows the spatial distribution of concentration (really, the number density in molar units) near 

a highly charged well comparable to those studied in the literature. The wall has charge density 0.1 

Cou/meter2. Charge is shown divided by 1 Cou/meter3. The diameter of the ions is 0.1 nm and they have 

charges +2e and -1e, where e is the charge on a proton. Position is shown divided by nm. Dielectric 

coefficient was 78, temperature 298K and the bulk concentration of ions was 1 molar of the divalent 

cation and 2 molar of the monovalent anion. The potential on the wall was set to -3.1 kT/e, i.e., -80 mV 

in accord with MC simulations (Fonseca, Boda, and Eisenberg, personal communication). The dashed 

circles are shown for visual effect to show the size of the ions in the calculation. The densities change 

behavior when they reach the ‘excluded zone’ produced by the finite diameter of the ions. Ions are not 

allowed to overlap with the wall.  

Dashed lines were computed with PNP+LJ and dashed lines with PNP-DFT as specified in the text and 

Appendices. Correlations are obviously involved at the high densities near the wall. This calculation is 

called PNP even though we report only equilibrium results that might be called (nonlinear) Poisson 

Boltzmann: the variational method knows nothing of equilibrium and always computes a nonequilibrium 

transient response which may in special cases (like Fig. 1) have no flows and a stationary solution. 

Layering of this sort has been seen in previous calculations65,202,203. It will not be clear whether a more 

precise treatment including an intermediate scale is necessary in eq.(24)-(27) until we can do 

calculations in three dimensions. 

Binding in Channels. Calculations (Fig.2) were also done of binding in a simple model of calcium 

channels that has proven quite successful15,17,204. In this model, the ‘active site’ of the calcium channel  

uses spheres with permanent charge to represent the side chains DEEA (Aspartate Glutamate Glutamate 

Alanine) that are known (from experiments144) to mix with the ions and water in a structural motif very 

different from potassium channels. In our calculations, spheres are uniformly distributed at fixed 
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locations within a cylindrical space 3 Å long and 7 Å diameter (unlike MC simulations15,17,204 in which the 

spheres are free to move within that region) to reduce computation time. This and other details in the 

calculations (see above) mean that the variational method is not expected to give identical results to MC 

simulations. The ion diameters, geometry and so on are otherwise as specified previously15,17,204. Fig. 2 

shows the relative occupancy of the cylindrical space, that is to say, it shows the ratio of the spatial 

integral of the density of calcium to the spatial integral of the density of sodium, both within a 

cylindrical space 3 Å long and 7 Å diameter. The densities are the stationary solution of the time 

dependent Euler Lagrange equations. The concentration of sodium is maintained at 0.1 molar on both 

sides of the channel. The concentration of calcium is varied and is shown on the horizontal axis. 

The binding computed is similar to that reported previously for the calcium channel17,112. Fig. 3 

shows similar calculations for the DEKA (Aspartate Glutamate Lysine Alanine) sodium channel. Here 

occupancy is reported, namely the spatial integral of the density of either sodium or calcium which are 

the steady solutions of the Euler Lagrange equations. The properties are similar to those reported 

previously15 with MC simulations of the sodium channel, where the physical and biological implications 

are extensively discussed. 

Time Dependent Phenomena in Ion Channels. Fig. 4 shows the time dependent current calculated after 

a step function is applied to a DEKA channel specified in Fig. 5 and the caption to Fig. 4. The current and 

time scales depend on a somewhat arbitrary assignment of effective parameters. The openings at the 

end of the channel are specified by flared cones as in Fig.1 of reference109 and subsequent papers so the 

one dimensional model is not dominated by artifactual electrical or diffusive resistance in the regions 

outside the channel. The time dependence seen in these records reflects changes of concentration of 

ions just outside the two ends of the channel. Such phenomena are not thought to be involved in the 

currents measured from squid sodium channels, but they are present in calcium channels205 and 

potassium206 channels to cite only classical references.   

Interpretation of current transients. The flow of current through real ion channels and the surrounding 

proteins and lipids is complex and involves many components. Those components had to be identified 

and separated before mechanisms could be identified, let alone studied. Indeed, the history of 

electrophysiology (before recordings were made on currents through single protein molecules207) is in 

large measure the history of Cole208 and Hodgkin’s184 successful separation of components of current.  

Separation was done in preparations of animal and plant cells put in situations designed to focus on 
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and isolate particular components of current. The Anglo-American tradition was to choose preparations 

(e.g., the squid axon) and experimental methods (the voltage clamp) that isolated components. Workers 

in that tradition (importantly joined by German colleagues207) depended on biology and experimental 

design as much as possible to isolate systems and tried to depend on theory and discussion as little as 

possible. The particular properties of the sodium channels of squid axon allow clear separation of 

components of currents, and puts accumulation of ions on a longer time scale than the processes that 

open the channel (as viewed in macroscopic ensembles of channels). Most channels do not permit such 

separation, however. For example, in calcium channels205, opening processes and accumulation occur on 

the same time scale and are more or less inseparable. The channel opening process and accumulation 

occur on nearly the same scale as well, in squid potassium channels206,209. Indeed, it seems possible that 

the squid sodium channels are a special case, specialized to prevent significant change in concentration 

of ions during natural activity210. Accumulation of sodium ions would reduce inward current and limit 

the speed of conduction. Speed is what the squid giant axon (and squid itself) are all about from an 

evolutionary point of view. 

Our calculations of the DEKA channel give results like calcium and potassium channels. We do not 

know how to reproduce the special properties of squid sodium channels and conductance. In particular, 

our calculations show the pile up of salt just outside the channel occurring much (say 10×) faster than in 

the squid206. (By ‘salt’ we mean neutral combinations of cation and anion, Na+ and Cl¯ in Fig. 4 and 5.) 

Our calculations also often show rapid responses to steps in potential that describe the storage (‘pile 

up’) of charge inside pore of the channel protein. These rapid pile ups of charge occur on the same time 

scale as gating currents211 found in real nerve cells211 including the very fast component of gating 

current212. We do not show these rapid responses here because the calculations cannot easily be 

‘corrected’ for linear capacitance as are experimental measurements. Our calculated responses are not 

robust. Detailed comparisons with experiments must await calculations in three dimensions less 

dependent on assumed values of effective parameters. Thus, we do not know whether our build up of 

charge might be a significant component of the gating current observed experimentally in sodium or 

calcium channels. 
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6.0 Discussion 

Ionic solutions have many diverse but specific properties arising from the interactions of their 

components on all scales and so it seems appropriate to treat them here as complex not simple fluids. 

The diversity of properties of ionics solutions means that it is surely pretentious to write a general 

theory. A general theory must deal with all specific results, with the experiments and interpretations, 

theories and simulations of many communities of scientists, painstakingly measured and (often) 

passionately debated over nearly a century. The authors can certainly not check a wide-ranging theory: 

we are not even physical chemists. The literature is vast beyond grasp and the many references cited 

here33-38,64,68,70,81,92,99,100,102,123,137,140,142,162,213,214-216 are not only not comprehensive, we fear they are not 

even an unbiased sample, despite our efforts. Our goal is to present enough detail in enough fields so 

other workers are motivated to adapt EnVarA to their specific needs and passions. 

We propose a general variational analysis here because we suspect that correlations among ions are 

the key to understanding ionic solutions in bulk or ions in proteins52. These correlations are the structure 

of ionic solutions. They change significantly with conditions. We believe that the structures cannot be 

assumed, and are difficult to model a priori with partial differential equations, because each charge is so 

correlated with so many other charges on both an atomic and global (macroscopic) scale. Simulations 

have difficulty computing such correlations because atomic motions must be computed on the 10-16 sec 

time scale but biology occurs in macroscopic systems on macroscopic time scales and involves a 

biological mix of concentrations ranging from 10-11-101 molal. These correlations arise naturally (and 

always self-consistently) in both physical solutions and in solutions of EnVarA. The pun on ‘solutions’ is 

precise. In both the mathematics and physics, the electrical potential is present on all scales and directly 

couples atomic and hydrodynamic bulk behavior.  

The structures of ionic solutions are self-organized52 (if we use biologists’ language) and form an 

induced fit of ion to ion, ionic atmosphere to ion, and ionic atmosphere and ions to a protein and its 

mobile side chains. The solutions of EnVarA are also self-organized. That is the great advantage of the 

variational procedure. Of course, the solutions of EnVarA only deal with phenomena and constraints 

that are present (or are implicit) in our model or energy equations. For example, the model of energy 

used here does not include complex behavior of solvent water. The model of a channel/transporter here 

does not include proteins that do work on ions.118,128  

Other kinds of mathematical analysis—for example, analysis of combined partial differential 
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equations in idealized domains—are likely to (inadvertently) impose unnatural boundary conditions that 

constrain the charged particles in some way or other and can only be maintained by unnatural artificially 

imposed flows of charge and energy. These unnatural flows produce unnatural correlations and 

structures in the mathematical solution that can severely distort the qualitative properties of the ionic 

system and so might be called ‘Dirichlet Disasters’ if one likes colorful language. For example, such a 

treatment of semiconductors as systems with constant (electric) fields would have impeded or 

prevented the discovery of transistors,217 it seems safe to say. 

Our variational approach to ionic solutions may fail because of errors in its formulation. We hope 

not. The theory may fail because it does not resolve some scales well enough. We expect so. Proteins 

have movements (‘conformation changes’) over time scales from 102 to 10-13 seconds judging from the 

time scales of protein function, from classical measurements of dielectric dispersion218, and from 

molecular dynamics simulations. Our computations clearly cannot be expected to capture such a time 

range using a single time variable. We expect the theory to fail when it leaves something out altogether, 

particularly in biological applications, where proteins like enzymes219 or binding proteins220 do much 

more than provide a confining volume and electrostatic environment. In that case, EnVarA may help 

uncover (and then compute) the omitted pieces, correcting its own mistake.  

Even in failure, however, we expect that EnVarA will be useful in studying ions in solutions and 

channels, as variational methods are in so many areas of physics, because EnVarA yields a field theory of 

a chemical system, thus including boundary conditions and flow without mathematical approximation. 

EnVarA yields specific working hypotheses—partial differential equations and boundary value problems 

with only a few adjustable parameters—that include all the interactions of the components of its 

energies. The equations can be tested against experiment in many applications, and then improved in a 

mathematically systematic and physically selfconsistent way by adding or modifying components of the 

energy. EnVarA will enforce self-consistency. Experiments will enforce reality. 
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Appendix A: Lennard Jones treatment of Finite Size 

The repulsion potential is given by  
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where 
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a  is the radius of i th ion, and
i
  is the energy constant (softness) of ion i . Then the repulsive 
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or  
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Here, we take a variational derivative with respect to the negative charge density
n

c . Then we have 

following equation:  
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Using the familiar identity 
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we take a variation with respect to ( )
n

c


x  and write it as a variation with respect to 


x ,  
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Also, for variation on 


x  in terms of ( )
p
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Attractive (or other) forces can be included either as another component of the energy in the atomic 

scale energy eq. (18) and atomic scale dissipation (28) or by including a traditional description of the 

excess free energy of ionic solutions35-38,90 into the macroscopic scale equations of the compressible 

ionic fluid, e.g., using the functionals of the DFT of liquids45,58,137,140-142,203,214,216. An attractive Lennard 

Jones force could be easily added since it has the same form as the repulsive term used above eq. (A1). 

Other models of interatomic forces could be used, including (for example) estimates of the ‘potential of 

mean force’ between ions (or molecules) determined from the radial distribution functions in 

simulations or experiments216. Adding an attractive term of any type will yield a different partial 

differential equation from eq.(31)-(32). 
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Appendix B: the electrochemical forces n  and p , including the effects of finite size ions 

 

In Appendix A we derived just the part of the electrochemical forces
n

 and 
p

  related to the 

finite size of ions. Here, we complete the system. We compute the diffusional and electrostatic terms of 

the electrochemical forces  
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Since  is the solution of Poisson equation, we have that  
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with Green’s kernel ( , )G x y
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. Substituting (B2) with  , the generalized energy E  of eq. (B1) becomes 
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Hence, the variational derivative employing (A4) leads us to  
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Similarly, for the variational derivative with respect to ( )
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The results of Appendix B and C give explicit expressions for the electrochemical forces 
n

 and 
p

 . 
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Appendix C:  Hard sphere energy in Density Functional Theory 

The (generalized) energy of 6 types of hard spheres (Na+, K+, Ca2+, Cl– and X–) solid uncharged spheres is 

described in DFT as 58,67,68,142,186. 

 ( ) ({ ( )},{ ( )})  DFT
HS HS
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where ({ },{ })
HS

n 


n  is the excess free energy density that depends on the ‘nonlocal’ densities 

{ },{ }n 



n ; 
i

a is the radius of ion species i ; ( )


x  is the Dirac delta function; and ( )


x  is the unit step 

function, 
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The chemical potential is given by for 0, , 3, 4,5   . 
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The force term in the right hand side of the momentum equation is derived as  

 ( ) ( ) ( ).HS
i i

c   
HS to Fluids

iforce
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x x x  (C7) 
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Figure Captions 

  

Fig. 1. The number density (‘concentration’) of ions near a charged wall. The wall has charge density 0.1 

cou/meter2. Charge is shown divided by 1 cou/meter3. The diameter of the ions is 0.3 nm and they have 

charges +2e and -1e, where e is the charge on a proton. Position is shown divided by nm. Dielectric 

coefficient was 78, temperature 298K and the bulk concentration of ions was 1 molar of the divalent 

cation and 2 molar of the monovalent anion. The potential on the wall was set to -3.1 kT/e, i.e., -80 mV 

in accord with MC simulations (Fonseca, Boda, and Eisenberg, personal communication). Energy 

coupling coefficients λ  in EnVarA were 0.5. 

The dotted circles show the size of the ions in the calculation. Ions are not allowed to overlap with 

the wall and so the densities are smooth functions until they reach the ‘excluded zone’ produced by 

finite diameter of the ions.  

Calculations were done using (solid lines) the PNP-DFT and PNP-LJ in the form described in the text 

and Appendices. The form of the DFT differs in detail (but not spirit) from that in recent literature67,68,221: 

we use DFT for uncharged interactions (following66,142,215) but we use EnVarA to deal with the 

electrostatics. EnVarA identically satisfies Gauss’ law (which is also one of the sum rules72 of statistical 

mechanics). This calculation is called PNP-DFT even though we report only equilibrium results: the 

variational method knows nothing of equilibrium and always computes a nonequilibrium transient 

response which may in special cases (like Fig. 1) have no flows and a stationary solution. The results are 

qualitatively similar to the layering reported in MC simulations132. Quantitative differences are expected 

because the systems are not identical. Most importantly, simulations were of hard spheres (whereas we 

use Lennard Jones or DFT in one dimension). There are many other small differences; e.g., MC uses an 

approximation to the solution of Poisson’s equation222 that produces results independent of system size, 

but without definite error bounds135,223. 
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Fig. 2. Binding of calcium to a DEEA channel. Fig. 2 shows the relative occupancy of the cylindrical space, 

that is to say, it shows the ratio of the spatial integral of the density of calcium (diameter 1.98 Å) to the 

spatial integral of the density of sodium (diameter 2.04 Å)—both within a cylindrical space 3.5 Å radius 

and 3Å length—of the stationary solution of the time dependent Euler Lagrange equations. The 

concentration of sodium is maintained at 0.1 molar on both sides of the channel. The concentration of 

calcium is varied and is shown on the horizontal axis. The dielectric constant was 80 and the 

temperature 298K. Geometrical set up is nearly the same as Fig. 1-2 of reference15. 
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Fig. 3. Binding of sodium to a DEKA channel. Fig. 3 shows the relative occupancy of the cylindrical space, 

that is to say, it shows the ratio of the spatial integral of the density of calcium to the spatial integral of 

the density of sodium, both within a cylindrical space 3Å long and 3.5 Å radius of the stationary solution 

of the time dependent Euler Lagrange equations. The concentration of sodium is maintained at 0.1 

molar on both sides of the channel. The concentration of calcium is varied and is shown on the 

horizontal axis. The concentration of calcium is varied and is shown on the horizontal axis. The dielectric 

constant was 80 and the temperature 298K. Geometrical set up is nearly the same as Fig. 1-2 of 

reference15. 
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Fig. 4. The time response to a step function of voltage of a DEKA sodium channel (Glu-Asp-Lys-Ala). 

The voltage pulse started at -0.09 V and switched to the indicated voltage at t = 3 msec and then back to 

-0.09 at t= 6 msec. As shown in Fig. 5, the channel is 20 Å long and has 7 Å diameter. The concentration 

of NaCl was 0.9M on one side and 0.1 M on the other. The sodium ion had diameter 2.04 Å and chloride 

ion had diameter 3.62 Å, diffusion coefficients were 1.68 and 1.35 m2/s respectively. The dielectric 

constant was 80 and temperature 298K. No units are shown for current because the number of channels 

being computed is arbitrary. 
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Fig. 5. The setup for the calculations of time dependent current shown in Fig. 4. The blue line shows the 

boundary of the one dimensional channel. The steep spread between the lines is a one dimensional 

representation of the baths used because it reduces the ‘resistance’ to current flow or flux. That is to 

say, the greater cross sectional area to flow allows more flow for a given gradient of electrochemical 

potential than in the narrow 7 Å (diameter) channel through the bilayer itself. The dashed line 

represents the lipid bilayer membrane. The distribution of fixed charge along the channel wall is labeled 

‘Configuration of Side Chains’. The concentration of salts is shown in the baths. The units of the axes are 

divided by Angstroms.  
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Figure 1 
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Fig. 2 (Calcium DEEA Channel) 
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Fig. 3 Sodium (DEKA) channel 
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Fig. 4 
 
 
 
 
 
 



EnVarA July 16-1 as accepted 2010.doc  

p. 52 July 16, 2010 
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