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A MATHEMATICAL MODEL FOR THE HARD SPHERE

REPULSION IN IONIC SOLUTIONS∗

YUNKYONG HYON† , BOB EISENBERG‡ , AND CHUN LIU§

Abstract. We introduce a mathematical model for the finite size (repulsive) effects in ionic
solutions. We first introduce an appropriate energy term into the total energy that represents the
hard sphere repulsion of ions. The total energy then consists of the entropic energy, electrostatic
potential energy, and the repulsive potential energy. The energetic variational approach derives a
boundary value problem that includes contributions from the repulsive term with a no flux boundary
condition for charge density which is a consequence of the variational approach, and physically implies
charge conservation. The resulting system of partial differential equations is a modification of the
Poisson-Nernst-Planck (PNP) equations widely if not universally used to describe the drift-diffusion
of electrons and holes in semiconductors, and the movement of ions in solutions and protein channels.
The modified PNP equations include the effects of the finite size of ions that are so important in
the concentrated solutions near electrodes, active sites of enzymes, and selectivity filters of proteins.
Finally, we do some numerical experiments using finite element methods, and present their results
as a verification of the utility of the modified system.

Key words. Finite size effects, energetic variational approach, Poisson-Nernst-Planck equations,
hard sphere, Lennard-Jones repulsive potential, hard sphere potential in density functional theory.
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1. Introduction

We introduce a mathematical model for ionic dynamics including the Brownian
motion of ions, electrostatic interactions among charged ions, and finite size/volume
(excluded volume) effects (steric effects) that uses a variational method to extend the
classical literature [17, 21, 41, 42, 43, 44] from equilibrium to nonequilibrium. The
finite size effects are an important part of a physical model of ions in water but have
rarely been dealt with away from equilibrium, even though most applications of ion
dynamics in fact involve ion flows.

Finite size effects do not occur in ‘ideal’ infinitely dilute solutions of independent
components, but size effects are important in almost every other case where ionic
solutions are involved [65]. Indeed, in most applications ions are concentrated in the
special regions where they are important. For example, in electrochemistry ions are
highly concentrated near electrodes. In biology ions are highly concentrated near the
active sites of enzymes (the protein catalysts which do so much of life’s chemistry),
inside and near DNA and ion channels. In general, ions have their size, and their
size is important: the dynamics of ions in small scale cannot be described without
including finite size effects. A widely used model of an ion is a hard sphere of finite
radius with charge located at the center. Much work has shown that a model of ionic
solutions consisting of hard spheres in a uniform frictional dielectric does surprisingly
well at equilibrium when all flows are zero. The literature of finite size effects is vast
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and includes many different treatments of finite size. Fortunately, the literature is
well summarized in a recent book [65] and indeed in textbooks [42, 43]. We are not
qualified to evaluate the different treatments of finite size effects because the issues are
fundamentally those of physical chemistry, experimental and theoretical. But finite
size effects are important. A leading worker writes “... it is still a fact that over the last
decades, it was easier to fly to the moon than to describe the free energy of even the
simplest salt solutions beyond a concentration of 0.1M or so.” [65] Our contribution is
to use a variational approach that extends the physics of previous equilibrium models
to nonequilibrium [41, 42, 43, 44]. Previous extensions to nonequilibrium involving
Density Functional Theory (of liquids) are discussed in Section 3.1.

Our research on the excluded volume of ions is particularly motivated by the study
of the selectivity of ion channels in cell membranes [15, 16, 19, 20]. Two key physical
properties are the basis for the ion selectivity in these channels: one is electrostatic
interactions with the side-chains of the protein that forms the channel; the other is
the excluded volume effects of ions and side chains [17]. These physical properties can
be included as parameters in a mathematical model of an individual ion. However, it
is not so easy to obtain an appropriate mathematical system of equations for the flow
of ions that includes such finite size effects [58, 59, 60] and deals consistently with the
electric field by satisfying sum rules [57, 66] and Gauss’s law.

Our model in this paper can be directly linked to the selectivity phenomena of
channels [23, 24, 15, 16]. It can also be used to establish a time dependent model
for ensembles of single channels [22, 24, 27, 28, 25, 26] that can be related to the
classical Hodgkin-Huxley phenomenological representations. Although the excluded
volume effect is one of the crucial determinants of the selectivity of channels, it is not
the only one. A variety of other factors are involved including the properties of side
chains of the channel protein (modified in mutation experiments), confinement in the
small volume of the pore of the channel, the inhomogeneous dielectric coefficient of
the channel protein, and channel pore and so on. Detailed modeling and numerical
computations involving these features are presented elsewhere [18].

One of the advantages of the variational approach is that it deals directly and
consistently with the coupling of the flow of ions one to another. The issues of coupling
of ions one to another, and to the channel, have been central topics of biological
investigation since the discovery of channels and transporters [67, 68, 69, 70, 71].
Indeed, channels and transporters were defined by the properties of the coupling
between ion flows long before the proteins involved were isolated. Even today it is
likely that structural measurements cannot actually resolve the functional difference
between channels and transporters. The functional difference is the coupling of fluxes
of ions. The variational approach deals directly with interactions of ions and coupling
of fluxes.

In this paper, we concentrate on the specific subject of the finite size effects and
its mathematical modeling. This has practical significance: for example, the only
difference between the biologically crucial ions Na+ and K+ is their diameter; they
are otherwise indistinguishable. We consider a hard sphere model for ions to verify
the model. We use the energetic variational approach [18, 6, 12] to determine the
contribution of ion repulsion and finite size effects and create a modified Poisson-
Nernst-Planck (PNP) model of ions in solution.

In the energetic variational approach we first define the total energy for the whole
system of ions including hard sphere repulsion. The total energy consists of the en-
tropic energy induced by the Brownian motion of ions, the electrostatic potential
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energy representing the coulomb interaction between the charged ions, and the re-
pulsive potential energy caused by the excluded volume effect. (To avoid confusing
some readers, we remark that we use the word ‘energy’ in the tradition of varia-
tional analysis. This is not the ‘energy’ of classical thermodynamics.) If we include
only the entropy and electrostatic potential for the total energy, then the result-
ing system of partial differential equations (after variational derivatives are taken)
is the classical PNP equation [6]. The PNP equations have been applied to solve
charge transport problems in semiconductor and ion dynamics in biological phenom-
ena [13, 14, 8, 45, 46, 47, 48, 49, 50, 51, 61, 62, 63, 64].

To perform our task, we need to define a proper repulsive potential energy de-
scribing the excluded volume energy in ion-ion interactions. There are several types
of potential energy for the hard sphere repulsion: for instance, the Yukawa poten-
tial, the hard core potential, the repulsive term of Lennard-Jones (LJ) potential, and
the hard sphere potential in Rosenfeld’s [35, 36, 52, 53, 54] density functional theory
(DFT) of fluids [55, 56, 57, 38], which is different from the DFT of electrons used
in Quantum Chemistry. In this work, we employ the LJ repulsive potential for the
excluded volume effects [11] and also the hard sphere potential in DFT [29, 30, 35, 36]
for comparison. Then we take variational derivatives of the total energy for the case
of the LJ repulsive potential and the hard sphere chemical potential of DFT. This
leads us to a system of equations including the contributions of the finite size effect
that we call the modified PNP system. These equations are of course different for the
hard sphere and DFT descriptions of finite size effects.

We also demonstrate the utility of this description of finite size effects by show-
ing some numerical computations for the modified PNP system. Since the energetic
variational approach is based on the variational structure of the underlying mathe-
matical model, it is very important to preserve the characteristic variational structure
in computational methods as well as analysis. For that reason, we use finite element
methods in numerical computations of the modified PNP system previously shown to
preserve the important characteristics of the variational procedure [6, 12].

The organization of the paper is this: In the next section, we briefly discuss the
PNP equations and summarize their derivation through the energetic variational ap-
proach. Section 3 covers the derivation of the modified PNP that includes the finite
size effect after defining a proper total energy. In Section 4, we present several numer-
ical experiments for the verification of the modified PNP equations, and especially
the finite size effects. Finally, we make some general remarks, looking to the future.

2. Poisson-Nernst-Planck equations

The PNP equations for electrokinetic theory are

∂ci

∂t
=∇·

(

Di

(

∇ci+
zie

kBT
ci∇φ

))

, (2.1)

∇·(ε∇φ)=−

(

ρ0+

N
∑

i=1

zieci

)

(2.2)

where ci is the ion density for ith species, Di is the diffusion constant, zi is the valence,
e is the unit charge, kB is the Boltzmann constant, T is the absolute temperature, ε
is the dielectric constant, φ is the electrostatic potential, ρ0 is the permanent (fixed)
charge density of the system, and N is the number of ions.
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The system (2.1), (2.2) satisfies the following dissipative energy law:

d

dt

∫

{

kBT

N
∑

i=1

ci logci+
1

2

(

ρ0+

N
∑

i=1

zieci

)

φ

}

d~x

=−

∫

{

N
∑

i=1

Dici

kBT

∣

∣

∣

∣

kBT
∇ci

ci
+zie∇φ

∣

∣

∣

∣

2
}

d~x. (2.3)

The second term in the total energy, the left hand side of (2.3), can be rewritten as

ε
|∇φ|2

2 under the proper boundary condition for electrostatic potential. This is the

electrostatic potential energy with the definition of electric field, ~E=−∇φ, in classical
electromagnetic theory [1].

When an energy equation is well defined to describe a physical phenomenon, one
can derive a system of differential equations satisfying the energy equation by the
energetic variational approach. In other words, the energetic variational approach
forms a framework (or procedure) that derives a system of equations corresponding
to the energy law. Thus, for the PNP system (2.1), (2.2), one can derive (2.1) from
(2.3) using the energetic variational approach [6].

The derivation of PNP system from the energy is not a trivial task. The varia-
tional calculus needs additional ingredients. In the energetic variational approaches,

the variational derivative, δEtotal

δci
, gives the chemical potential µi for each ith ion,

i=1, · · · ,N . The Nernst-Planck equation (2.1) is then given by

∂ci

∂t
=∇·

(

Di

kBT
ci∇µi

)

, for i=1, · · · ,N. (2.4)

To make this paper self-contained, we briefly summarize the derivation of the Nernst-
Planck equation (2.1) from the energy (2.3). For the derivation we note the electro-
static potential φ with the Green’s kernel G(~x,~y) is

φ(~x)=−
4π

ε

∫

G(~x,~y)

(

ρ0+
N
∑

i=1

zieci

)

d~y. (2.5)

The total energy E which is in the left-hand side of (2.3) is

Etotal=

∫

{

kBT

N
∑

i=1

ci logci+
1

2

(

ρ0+

N
∑

i=1

zieci

)

φ

}

d~x. (2.6)

We can easily see that the electrostatic potential is not independent of the ion densities
ci, which is physically obvious because the densities describe charge. Hence when we
take the variational derivative with respect to ci we need to consider the electrostatic
potential as a functional of the ion density. Thus, we have that

δE=

∫

[

kBT (logci+1)δci+
1

2

{

4πzieδci
ε

∫

G(~x,~y)

(

ρ0+
N
∑

i=1

zieci(~y)

)

d~y

+

(

ρ0+

N
∑

i=1

zieci

)

4πzie

ε

∫

G(~x,~y)δcid~y

}]

d~x, for i=1, · · · ,N. (2.7)
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Combining the last two terms in (2.7), we obtain

δE=

∫

{kBT (logci+1)+zieφ}δcid~x, for i=1, · · · ,N. (2.8)

Hence we obtain the chemical potential µi:

µi=kBT (logci+1)+zieφ, for i=1, · · · ,N. (2.9)

Therefore, using (2.4) we obtain the Nernst-Planck equation,

∂ci

∂t
=∇·

(

Di

kBT
ci∇(kBT (logci+1)+zieφ)

)

=∇·

(

Di

(

∇ci+
zie

kBT
ci∇φ

))

. (2.10)

A simplification leads us to the Nernst-Planck equation (2.1) for the ion density ci,
for i=1, · · · ,N .

The framework of the energetic variational approach is briefly summarized as
follows:

i. Find a mathematical description of the physical phenomenon of interest.

ii. Define an appropriate energy equation to describe the desired physical phe-
nomenon.

iii. Apply the energetic variational approach to obtain a system of differential
equations.

iv. Verify the system of equations in numerical experiments, and mathematical
analysis.

Remark 2.1. Note that the boundary condition for charge density is a direct conse-
quence of the energy variational principle. In this sense, the natural boundary condi-
tion for charge density is a no flux boundary condition that itself — without additional
assumptions — implies charge conservation of the system. One may not explicitly see
the point in the derivation of the chemical potential µi from (2.6) to (2.10), but one
can easily see the consequences of the no flux boundary condition by looking at our
derivation of the energy dissipation law (2.6) 1rom the PNP equation (2.10).

3. Modified PNP system with hard sphere repulsion

In this section we discuss the excluded volume effects in a hard sphere model
of ionic fluids. In chemical physics of fluids on the atomic scale and in colloidal
suspensions, the excluded volume effect is a crucial physical factor for modeling hard
sphere mixtures [31]. The excluded volume often appears in physical chemistry in
the equation of state (EOS); for instance, a well-known EOS is the Van der Waals
equation.

The frontier in this measurement is the Carnahan-Starling EOS [32] which is
obtained as a solution of the Percus-Yevick (PY) equation [33] for hard sphere mix-
tures. From the Carnahan-Starling EOS, there are many extensions for more ac-
curate measurement (references are in [37]). Related to the hard sphere mixtures,
there is a well-known approach, called density functional theory (DFT) of fluids
[35, 36, 52, 53, 54, 55, 56, 57, 38], which differs from the DFT of electrons in quantum
chemistry. In the following subsection, we briefly discuss DFT.
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In Subsection 3.2 we utilize the excluded volume energy, which is a nonlocal type
of repulsion potential proposed in [11]. Then we define the total energy with the
repulsive potential energy, and derive a modified PNP system including the hard
sphere repulsion. The detailed derivation is presented in Subsection 3.2.

3.1. Density functional theory. The DFT is based on the fundamental
measure theory for uncharged (atomic) fluids [35, 36]. In Rosenfeld’s DFT the energy
density function is introduced for the free energy functional including the hard sphere
repulsion energy. Moreover, DFT uses an (underived) ansatz for the energy density
function. From the energy density function one can separately obtain the chemical
potentials for hard sphere and electrostatic interactions. The errors in this ansatz are
unknown and customarily estimated by comparison with Monte Carlo simulations of
hard spheres.

PNP and DFT were coupled in a straightforward approach in [39], and the model
called PNP-DFT shows significant results for ionic mixtures, especially the layering
phenomena of charge density near a charged wall [39]. However, it is not clear that
PNP-DFT satisfies the sum rules of statistical mechanics [57, 66] or Gauss’ law of
electrostatics and it does not allow changes in the shape of the ionic atmosphere with
flow, as discussed in [58, 59, 60].

However, the approach leaves out many effects (e.g., electrophoretic and relax-
ation terms) known to be important in determining the conductance of ionic solutions
[58, 59, 60]. These terms are probably small enough to be neglected when ions flow
through a protein channel, judging from the success of the model that leaves them out
[40]. That success cannot be guaranteed by the derivation of the PNP-DFT theory
because these terms are quite important in other cases, and it is in fact not safe to
assume they are uniformly small in any situation, including ion channels.

Here, we derive the chemical potential of hard sphere repulsion from the inter-
pretation of the energetic variational framework using results from Rosenfeld’s DFT.
First, let ΦHS be the energy functional for the hard sphere. Then the energy of the
uncharged hard spheres is defined in this DFT by

EDFT
HS =

∫

ΦHS({nα},{~nβ})d~x, for α=0, · · · ,3, β=4,5 (3.1)

where

ΦHS({nα},{~nβ})=−n0 log(1−n3)+
n1n2−~n4 ·~n5

1−n3

+
n3
2

24π(1−n3)2

(

1−
|~n5|

2

n2
2

)3

, (3.2)

nα=
N
∑

i

∫

ci(~y)ω
(α)
i (~y−~x)d~y, for α=0, · · · ,3, (3.3)

~nβ =

N
∑

i

∫

ci(~y)~ω
(β)
i (~y−~x)d~y, for β=4,5. (3.4)
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The weight functions ω
(α)
i , ~ω

(β)
i , for i=1, · · · ,N , α=0, · · · ,3, β=4,5 are given by

4πa2iω
(0)
i (~r)=4πaiω

(1)
i (~r)=ω

(2)
i (~r), (3.5)

4πai~ω
(4)
i (~r)=~ω

(5)
i (~r), (3.6)

ω
(2)
i (~r)= δ(|~r|−ai), (3.7)

ω
(3)
i (~r)=θ(|~r|−ai), (3.8)

~ω
(5)
i (~r)=

~r

|~r|
δ(|~r|−ai) (3.9)

where ai, for i=1, · · · ,N are the radius of ion species i, δ(r) is the Dirac delta function,
and θ(r) is the unit step function defined as

θ(r)=

{

0, r≥0,

1, r<0.
(3.10)

Through the variational derivative,
δEDFT

HS

δci
gives us the chemical potential µHS

i , for
i=1, · · · ,N ,

µHS
i =kBT

(

3
∑

α=0

∫

∂ΦHS

∂nα

(~y)ω
(α)
i (~x−~y)d~y

+

5
∑

β=4

∫

∂ΦHS

∂~nβ

(~y)~ω
(β)
i (~x−~y)d~y



 . (3.11)

If we impose this hard sphere chemical potential µHS
i into the Nernst-Planck

equation (2.4), then we have a modification of the Nernst-Planck equation,

∂ci

∂t
=∇

(

Di

kBT
ci∇

(

µPNP
i +µHS

i

)

)

, for i=1, · · · ,N (3.12)

where µPNP
i , for i=1, · · · ,N is the chemical potential µi in (2.4).

The coupling with the Poisson equation (2.2) gives us a modified PNP system
with DFT hard sphere repulsion potential. Moreover, this modified system satisfies
the following energy equation:

d

dt

∫

{

kBT

N
∑

i=1

ci logci+
1

2

(

ρ0+
N
∑

i=1

zieci

)

φ+ΦHS({nα},{~nβ})

}

d~x

=−

∫

{

N
∑

i=1

Dici

kBT

∣

∣

∣

∣

kBT
∇ci

ci
+zie∇φ+∇µHS

i

∣

∣

∣

∣

2
}

d~x. (3.13)

3.2. Lennard-Jones hard sphere repulsion. In this subsection we use the
energetic variational approach to derive a system of differential equations including
hard sphere repulsion using the LJ repulsive potential. To include the repulsive effect
of ions which are modeled as hard spheres, we first define an appropriate energy term.

In ion-ion interaction, a regularized repulsive interaction potential is introduced
in [5] as

Ψi,j(|~x−~y|)=
εi,j(ai+aj)

12

|~x−~y|12
(3.14)
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for ith and jth ions located at ~x and ~y with the radii ai, aj , respectively, where εi,j
is an appropriate energy constant, chosen empirically. Then the contribution of the
repulsive potential Ψ to the total free energy is defined by

Er
i,j =

1

2

∫ ∫

Ψi,j(|~x−~y|)ci(~x)cj(~y)d~xd~y (3.15)

where ci, cj are the densities of ith, jth ions, respectively.
For the sake of simplicity in this derivation, we consider a two-ion system with the

charge densities cn, cp. All derivations and programs have been written for a multiple
ion system, with ions of any charge. Then, the total repulsive energy is defined by

Er=
∑

i=n,p

∑

j 6=i

Er
i,j =

∑

i=n,p

∑

j 6=i

1

2

∫ ∫

Ψi,j(|~x−~y|)ci(~x)cj(~y)d~xd~y. (3.16)

We here take a variational derivative with respect to each ion, δEr

δci
to obtain the

repulsive energy term into the system of equations. This leads us to the following
Nernst-Planck equations for the charge densities, cn, cp:

∂cn

∂t
=∇·

[

Dn

{

∇cn+
cn

kBT

(

zne∇φ−

∫

12εn,n(an+an)
12(~x−~y)

|~x−~y|14
cn(~y)d~y

−

∫

6εn,p(an+ap)
12(~x−~y)

|~x−~y|14
cp(~y)d~y

)}]

, (3.17)

∂cp

∂t
=∇·

[

Dp

{

∇cp+
cp

kBT

(

zpe∇φ−

∫

12εp,p(ap+ap)
12(~x−~y)

|~x−~y|14
cp(~y)d~y

−

∫

6εn,p(an+ap)
12(~x−~y)

|~x−~y|14
cn(~y)d~y

)}]

. (3.18)

The details of the derivation of the repulsive terms in the chemical potentials are pre-
sented in Appendix A. We now have the coupled system (2.2), (3.17), (3.18) including
finite size effects. We will call the system a modified PNP system. One advantage
of the variational approach is the fact that the resulting system, the modified PNP,
naturally satisfies the energy dissipation law,

d

dt

∫







kBT
∑

i=n,p

ci logci+
1

2



ρ0+
∑

i=n,p

zieci



φ+
∑

i,j=n,p

ci

2

∫

Ψi,jcj d~y







d~x

=−

∫











∑

i=n,p

Dici

kBT

∣

∣

∣

∣

∣

∣

kBT
∇ci

ci
+zie∇φ−

∑

j=n,p

∇

∫

Ψ̃i,jcj d~y

∣

∣

∣

∣

∣

∣

2










d~x (3.19)

where Ψ̃i,j =12Ψi,j for i= j, and Ψ̃i,j =6Ψi,j for i 6= j.

4. Numerical simulations

In this section we present some numerical results as a verification of the finite
size effects with the modified PNP equations, (2.2), (3.17), (3.18). We consider 1-
dimensional domains with two opposite monovalent ions, i.e., zn=−1, zp=1 and the
same radii, an=ap=1.5Å. Throughout the computations we use no-flux boundary
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conditions for the ion concentrations. The boundary conditions for the electrostatic
potential will be specified in the following discussions.

In DFT, the Rosenfeld functional has been developed from a 1-dimensional
study of inhomogeneous hard sphere mixture [29, 30]. The reduction of DFT to
1-dimensional space is given as follows:

EDFT1d

HS =

∫

ΦHS1d
({nα})dx for α=0,1 (4.1)

where

nα(x)=

N
∑

i=1

∫

ci(y)ω
(α)
i (x−y)dy, (4.2)

ω
(0)
i (z)=

1

2
{δ(z−ai)+δ(z+ai)}, (4.3)

ω
(1)
i (z)=θ(|z|−ai). (4.4)

Then the chemical potential for the hard spheres is given by

µHS1d

i =kBT

1
∑

α=0

∫

∂Φ

∂nα

(y)ω
(α)
i (x−y)dy

=kBT

∫ {

− log(1−n1)w
(0)
i (x−y)+

n0

1−n1
ω
(1)
i (x−y)

}

dy. (4.5)

Then we substitute the hard sphere repulsion potential µHS
i (3.11) with µHS1d

i in (4.5)
for the ith ion species.

To solve the system of equations we use finite element methods, especially the
edge averaged finite element method (EAFE) which is developed for drift-diffusion
type of equation in [7], to solve the modified Nernst-Planck equation (3.17), (3.18).
A standard finite element method is used for the electrostatic potential [3, 4]. To
ensure self consistency between ionic concentrations and the electrostatic potential
solutions we employ a convex iteration scheme [2, 6]. The iterative algorithm to solve
the modified PNP system is summarized in the following.

Remark 4.1. Note that Algorithm 4.1 does not satisfy the finite dimensional (nu-
merical) energy law. The variational approach for the energy law helps us to find
the analytic system of equations. However, it requires a specific variational structure
corresponding to the physical structure of the problem. In the case of modified PNP
equations, even PNP, the appropriate finite dimensional (numerical) realization of
such an energy law is a totally open question. The specific variational structure of the
modified PNP equations, and even of PNP itself, requires an L1 logL1 space for the
energy law where L1 is the Lp space in mathematics when p=1. But the appropriate
numerical implementation of that in a finite dimensional space is unknown. There
are some attempts to deal with this issue in [73], but it is still quite open. Our future
work on the modified PNP equations needs to deal with this issue, among others.

In numerical computations of the modified PNP system, one obstacle is the non-
local repulsive term in integral form. It is expensive in computational time and is
hard to compute accurately. We use a backward Euler method in the time variable
to deal with the ion concentration variables cn, cp. We use a semi-implicit type
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Algorithm 4.1 Iterative scheme to solve the modified PNP system

Given c
0,0
i , φ0,0

i , for i=1, · · · ,N .
for m=0, · · · do

for k=0, · · · do
Solve Nernst-Planck equation using EAFE for cm,k+1

i , i=1, · · · ,N ,

c
m,k+1
i −c

m,0
i

∆t
=∇·

(

Di

(

∇c
m,k+1
i +

zie

kBT
c
m,k+1
i

(

∇φ̃m,k
)

))

.

where

φ̃m,k=







φm,k+

∫

Ω

Ψ(|~x−~y|)cm,k
i (~y)d~y, for LJ-HS,

φm,k+µHS
i , for DFT-HS.

Solve the Poisson equation using standard FEM for φm,k+ 1

2 ,

∇·
(

ε∇φm,k+ 1

2

)

=−

(

ρ0+
N
∑

i=1

ziec
m,k+1
i

)

.

Update the electrostatic potential solution φm,k+1,

φm,k+1=αφm,k+ 1

2 +(1−α)φm,k, 0<α≪1.

end for

Assign the solutions as initial data for the next time iteration, cm+1,0
i ,φm+1,0,

c
m+1,0
i = c

m,k+1
i , i=1, · · · ,N,

φm+1,0=φm,k+1.

end for

of self-consistent (inner) iteration between ion concentrations and the electrostatic
potential. In non-local repulsion terms we use the previous step value for the ion
concentration. In this case, we have to be careful to have a small enough time step
to ensure convergence of the numerical scheme.

The LJ repulsive kernel is intrinsically singular when ions are overlapped, i.e.,
~x=~y. For that reason, a separate treatment of this singular behavior is required in
numerical computations. We apply a cut-off in integral domain with respect to the
size of ions instead of the integration over the whole domain. An obvious choice of
cut-off is

∫

|~x−~y|≥Rn,n

12εn,n(an+an)
12(~x−~y)

|~x−~y|14
cn(~y)d~y (4.6)

for the first repulsion term in (3.17) where Ri,j =ai+aj for i,j=n,p. Choosing a cut-
off is very sensitive in computations, and is automatically connected to the stability.
When a large value for Ri,j is chosen, the contribution of finite size could be lost. On
the other hand, if a small value is chosen, then numerical instability may occur.

Remark 4.2. The cut-off of the nonlocal repulsive term (4.6) used in numerical
calculations can be a smaller value of Ri,j than Ri,j =ai+aj. The choice of cut-
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off is related to the strength of repulsion potential. The repulsive kernel Ψi,j can be
chosen in a different form, which approximates experimental data and is related to
the hardness/softness of ions.

The time consumed in evaluating the non-local repulsion terms is a significant
limitation. A fast Fourier transformation (FFT) might allow a different and local
representation of the repulsion term that allows faster computation and is accurate
enough. The local representation would be best determined by a systematic approxi-
mation procedure based on the fundamental properties used in the original derivation
of the nonlocal repulsive terms used in this paper.
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Fig. 4.1. The ionic concentration profile without finite size effects (left), and the com-
parison of ionic concentrations with the finite size effects, LJ repulsive potential and DFT
hard sphere potential (right) under the Robin boundary condition.
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Fig. 4.2. The zoom-in pictures of the left-hand side picture in Figure 4.1 near boundary.

So that our numerical computations observe the finite size effects, we consider the
zero permanent charge density case in the system, that is, ρ0=0 in (2.2). The compu-
tational domain is Ω=[−60, 60]. The Robin boundary conditions for the electrostatic
potential are chosen so that

(

φ−η
∂φ

∂x

)∣

∣

∣

∣

x=−60

=

(

φ+η
∂φ

∂x

)∣

∣

∣

∣

x=60

=0.
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Throughout the numerical experiments we use η=(εrε0)
4, where εr is the relative per-

mittivity, 78.5 for water, and ε0 is the permittivity of vacuum, 8.8542 C
Vm

. This simple
situation shows a finite size effect. We compare modified and pure PNP equations
with the same computational condition except the repulsion term. The comparison
of these results is presented in the right-hand side panel of Figure 4.1. The left-hand
side panel in Figure 4.1 is for the ion density profiles of PNP system without any
finite size effects for clarification. According to the results, both numerical solutions
to PNP with LJ repulsive potential and with DFT hard sphere potential have the
same overall behavior of ion concentration, but in detail the ion concentrations show
a different profile. In particular, the difference near the boundary is larger than that
in bulk. In this case, the largest contribution of the repulsion term is apparent near
the boundary. It is caused by the high concentration of ions near the boundary obey-
ing the electrostatic field. The zoom-in panels in Figure 4.2 show the behavior of the
solutions in more detail. One can easily observe that the DFT hard sphere potential
gives a more complex behavior than the LJ repulsive potential. The differences be-
tween LJ and DFT clearly deserve investigation but we believe that this is not very
useful unless both calculations, as well as Monte Carlo simulations, are done in three
dimensions. We are working hard on this.

Remark 4.3. In Figure 4.2 the discontinuous behavior of the gradient of charge
density near the wall is obvious. One-dimensional DFT computations also show this
behavior [30] and it is in fact well known in the literature of one dimensional excluded
volume effects; see references in [72].

Next, we consider a little more complicated situation that has a charged wall.
The right-hand side boundary/wall is negatively charged. The left-hand side bound-
ary/wall has no charge. We establish the charged wall through the variable ρ0 in the
Poisson equation (2.2). We set ρ0=0 on the left-hand side boundary, and ρ0=1 on
the right-hand side boundary. The domain Ω is [−10,10]. In this case, we impose the
Dirichlet and Neumann boundary conditions for the left-hand side and the right-hand
side boundary, respectively:

φ|x=−10=0,
∂φ

∂~ν

∣

∣

∣

∣

x=10

=0

where ~ν is the unit outer normal vector.

The numerical results with one charged wall is presented in Figure 4.3. The left-
hand side panel in Figure 4.3 is the ion concentration profiles without any finite size
effects and the right-hand side panel is those with the finite size effects. The results
on the right-hand side panel shows the very important phenomena of the finite size
effects — the so called layering phenomena (charge inversion). The comparison shows
a rigorous evidence of the finite size effects in the modified PNP system.

For more detailed comparison, we present the zoom-in pictures near the bound-
aries in Figure 4.4. One can easily see the contribution of the finite size effects and
the difference between the PNP and the modified PNP equations. The DFT hard
sphere potential gives more complex behavior than the LJ repulsive potential. Com-
plex behavior is particularly visible in Figures 4.2 and 4.4, which seems to show a
derivative discontinuity near the boundary (around position ±9.85). Behavior of this
complexity is seen in previous computations of similar one dimensional geometry [30]
and is illustrated in [72].
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Fig. 4.3. The ionic concentration profile without finite size effects (left), and the com-
parison of ionic concentrations with the finite size effects, LJ repulsive potential and DFT
hard sphere potential (right) under the no-flux boundary condition.
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Fig. 4.4. The zoom-in pictures of the left-hand side picture in Figure 4.3 near boundary

5. Conclusion

The purpose of this present paper is to develop a mathematical model for the
finite size effect using a regularized LJ repulsive potential under the energy variational
framework, and its numerical verification to recover a layering behavior which is a well-
know feature of finite size effects. We have introduced a mathematical model system,
modified PNP, for ionic solutions including hard sphere repulsion. The modified
PNP has been derived from the energy dissipation law using the energetic variational
approach. We also presented some numerical results showing the finite size effects in
modified PNP equations.

Looking to the future, we note that our numerical schemes do not guarantee con-
vergence for high ion concentration cases. In this case an improved numerical scheme
is required, such as adaptive mesh refinement near the boundary, to catch the bound-
ary layers. Developing a numerical method which preserves the finite dimensional
dissipative energy law is another task important for the practical application of these
models. We will further analyze the mathematical structure of the modified PNP
equations in other papers. We will report additional numerical methods there and



472 PNP EQUATION WITH HARD SPHERE REPULSION IN IONIC SOLUTIONS

elsewhere.
The model and calculations might be improved by using another type of repulsive

potential instead of the Lennard-Jones or DFT hard sphere repulsion potentials we
use here. Moreover, the comparison of PNP equations with different types of repulsive
potentials would also reveal interesting physics and biophysics. The electrodiffusion
of finite sized spheres underlies an enormous range of phenomena central to biology,
chemistry, and physics. Indeed, the crucial ions Na+ and K+ differ only because they
are charged and have different diameters. Ion solutions are not made of uncharged
point particles and it is necessary for mathematics to deal with that reality; investi-
gation of the mathematical properties of PNP with finite size effects is necessary. It
is also likely to be useful and interesting.
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Appendix A. The variational derivative of the total repulsive energy.

We here present the detailed derivation of the finite size effect terms in (3.17)–(3.18).

δErepulsion=
1

2

∫∫

εn,n(an+an)
12

|~x−~y|12
δcn(~x)cn(~y)d~xd~y

+
1

2

∫∫

εn,n(an+an)
12

|~x−~y|12
cn(~x)δcn(~y)d~xd~y

+
1

2

∫∫

εn,p(an+ap)
12

|~x−~y|12
δcn(~x)cp(~y)d~xd~y.

(A.1)

Therefore, we have the repulsive term µr
cn
, in the chemical potential for Nernst-

Planck equation, of the charge density cn:

µr
cn

=

∫

12εn,n(an+an)
12

|~x−~y|12
cn(~y)+

∫

6εn,p(an+ap)
12

|~x−~y|12
cp(~y)d~y. (A.2)

Similarly, we have the repulsive term for cp.

µr
cp
=

∫

12εp,p(ap+ap)
12

|~x−~y|12
cp(~y)+

∫

6εp,n(ap+an)
12

|~x−~y|12
cn(~y)d~y. (A.3)
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