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A MATHEMATICAL MODEL FOR THE HARD SPHERE

REPULSION IN IONIC SOLUTIONS

YUNKYONG HYON∗, BOB EISENBERG† , AND CHUN LIU‡

Abstract. We introduce a mathematical model for finite size (repulsive) effects in ionic solu-
tions. We first introduce an appropriate energy term into the total energy that represents the hard
sphere repulsion of ions. The total energy then consists of the entropic energy, electrostatic poten-
tial energy, and the repulsive potential energy. The energetic variational approach is then used to
derive a boundary value problem (the ‘Euler-Lagrange’ equations) that includes contributions from
the repulsive term. The resulting system of partial differential equations is a modification of the
Poisson-Nernst-Planck (PNP) equations widely if not universally used to describe the drift-diffusion
of electrons and holes in semiconductors, and the movement of ions in solutions and protein channels.
The modified PNP equations include the effects of the finite size of ions that are so important in
the concentrated solutions near electrodes, active sites of enzymes, and selectivity filters of proteins.
Finally, we do some numerical experiments using finite element methods, and present their results
as a verification of the utility of the modified system.

Key words. Finite size effects, Energetic variational approach, Poisson-Nernst-Planck equa-
tions, Hard sphere, Lennard-Jones repulsive potential, Hard sphere potential in density functional
theory, Ion channels.
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1. Introduction. We introduce a mathematical model for ionic dynamics in-
cluding the Brownian motion of ions, electrostatic interactions among charged ions,
and finite size/volume (excluded volume) effects (steric effects) [17, 21, 41, 42, 43, 44].
The finite size effects are an important part of a physical model of ions in water. The
size effects do not occur in ‘ideal’ infinitely dilute solutions of independent compo-
nents, but size effects are important in almost every other case where ionic solutions
are involved. Indeed, in most applications ions are concentrated in the special re-
gions where they are important. For example, in electrochemistry ions are highly
concentrated near electrodes. In biology ions are highly concentrated near the active
sites of enzymes (the protein catalysts which do so much of life’s chemistry), inside
and near DNA and ion channels. In general, ions have their size, and their size is
important: the dynamics of ions in small scale cannot be described without including
finite size effects. A model of an ion, which is widely used, is a hard sphere of finite
radius with charge located at the center. Much work has shown that a model of ionic
solutions consisting of hard spheres in a uniform frictional dielectric does surprisingly
well at equilibrium when all flows are zero. We extend this work to nonequilibrium
[41, 42, 43, 44].

Our research on excluded volume of ions is particularly motivated by the study
of the selectivity of ion channels in cell membranes [15, 16, 19, 20]. Two key physical
properties are the basis for the ion selectivity in these channels: one is electrostatic
interactions with the side-chains of the protein that forms the channel; the other is
the excluded volume effects of ions and side chains [17]. These physical properties can
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be included as parameters in a mathematical model of an individual ion. However, it
is not so easy to obtain an appropriate mathematical system of equations for the flow
of ions that includes such finite size effects [58, 59, 60]. Our model in this paper can
be directly linked to the selectivity phenomena of channels [23, 24, 15, 16]. It can also
be used to establish a time dependent model for ensembles of single channels [22, 24,
27, 28, 25, 26] that can be related to the classical Hodgkin-Huxley phenomenological
representations. The detailed modeling and numerical computations for the above
applications - the ion selectivity and the single channel recording of the electrostatic
potential near channel - are presented elsewhere [18].

In this present paper, we concentrate on the specific subject of the finite size
effects and its mathematical modeling. We consider a hard sphere model for ions to
verify the model. We use the energetic variational approach [18, 6, 12] to determine
the contribution of ion repulsion and finite size effects and create a modified Poisson-
Nernst-Planck (PNP) model of ions in solution.

In the energetic variational approach we first define the total energy for the whole
system of ions including hard sphere repulsion. The total energy consists of the en-
tropic energy, induced by the Brownian motion of ions; the electrostatic potential
energy, representing the coulomb interaction between the charged ions; and the re-
pulsive potential energy, caused by the excluded volume effect. (To avoid confusing
some readers, we remark that we use the word ’energy’ in the tradition of varia-
tional analysis. This is not the ’energy’ of classical thermodynamics.) If we include
only the entropy and electrostatic potential for the total energy, then the resulting
system of partial differential equations (after variational derivatives are taken) are
the classical PNP equations [6]. The PNP equations have been applied to solve the
charge transport problems in semiconductor and ion dynamics in biological phenom-
ena [13, 14, 8, 45, 46, 47, 48, 49, 50, 51].

To perform our task, we need to define a proper repulsive potential energy de-
scribing the exclude volume energy in ion-ion interactions. There are several types
of potential energy for the hard sphere repulsion, for instance, the Yukawa potential,
the hard core potential, the repulsive term of Lennard-Jones (LJ) potential and the
hard sphere potential in Rosenfeld’s [52, 53, 54] density functional theory (DFT) of
fluids [55, 56, 57, 38], which is different from the DFT of electrons used in Quan-
tum Chemistry. In this work, we employ the LJ repulsive potential for the excluded
volume effects [11] and also the hard sphere potential in DFT [29, 30, 35, 36] for
comparison. Then we take variational derivatives of the total energy for the case of
the LJ repulsive potential and the hard sphere chemical potential of DFT. This leads
us to a system of equations including the contributions of the finite size effect that we
call the modified PNP system. These equations are of course different for the hard
sphere and DFT descriptions of finite size effects.

We also demonstrate the utility of this description of finite size effects by show-
ing some numerical computations for the modified PNP system. Since the energetic
variational approach is based on the variational structure of the mathematical model,
it is very important to preserve the structure in analysis and computations. For that
reason, we use finite element methods in numerical computations of the modified PNP
system.

The organization of the paper is this: In the next section, we briefly discuss
the PNP equations and summarize their derivation through the energetic variational
approach. The next section covers the derivation of the modified PNP that includes
the finite size effect after defining a proper total energy. In section 4, we present
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several numerical experiments for the verification of the modified PNP equations,
especially, the finite size effects. Finally, we make some general remarks, looking to
the future.

2. Poisson-Nernst-Planck Equations. The PNP equations for electrokinetic
theory are

∂ci

∂t
= ∇ ·

(

Di

(

∇ci +
zie

kBT
ci∇φ

))

, (2.1)

∇ · (ε∇φ) = −

(

ρ0 +
N
∑

i=1

zieci

)

(2.2)

where ci is the ion density for ith species, Di is the diffusion constant, zi is the valence,
e is the unit charge, kB is the Boltzmann constant, T is the absolute temperature, ε
is the dielectric constant, φ is the electrostatic potential, ρ0 is the permanent (fixed)
charge density of the system, and N is the number of ions.

The system (2.1), (2.2) satisfies the following dissipative energy law:

d

dt

∫

{

kBT

N
∑

i=1

ci log ci +
1

2

(

ρ0 +

N
∑

i=1

zieci

)

φ

}

d~x

(2.3)

= −

∫

{

N
∑

i=1

Dici

kBT

∣

∣

∣

∣

kBT
∇ci

ci
+ zie∇φ

∣

∣

∣

∣

2
}

d~x.

The second term in the total energy, the left hand side of (2.3), can be rewritten

as ε
|∇φ|2

2 under the proper boundary condition for electrostatic potential. This is

the electrostatic potential energy with the definition of electric field, ~E = −∇φ, in
classical electromagnetic theory [1].

When an energy equation is well defined to describe a physical phenomena, one
can derive a system of differential equations satisfying the energy equation by the
energetic variational approach. In other words, the energetic variational approach
forms a framework–a procedure–that derives a system of equations corresponding to
the energy law. Thus, for the PNP system (2.1), (2.2), one can derive equation (2.1)
from (2.3) using the energetic variational approach [6].

The derivation of PNP system from the energy is not a trivial task. The varia-
tional calculus needs additional ingredients. In the energetic variational approaches,

the variational derivative, δEtotal

δci
= 0, gives the chemical potential µi for each ith ion,

i = 1, · · · , N . The Nernst-Planck equation (2.1) is then given by

∂ci

∂t
= ∇ ·

(

Di

kBT
ci∇µi

)

, for i = 1, · · · , N. (2.4)

To make this paper self-contained, we briefly summarize the derivation of the Nernst-
Planck equation (2.1) from the energy (2.3). For the derivation we note the electro-
static potential φ with the Gaussian kernel, G(~x, ~y) is

φ(~x) = −
4π

ε

∫

G(~x, ~y)

(

ρ0 +

N
∑

i=1

zieci

)

d~y. (2.5)
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The total energy E which is in the left-hand side of (2.3) is

Etotal =

∫

{

kBT

N
∑

i=1

ci log ci +
1

2

(

ρ0 +

N
∑

i=1

zieci

)

φ

}

d~x. (2.6)

We can easily see that the electrostatic potential is not independent of ion density
ci’s, which is physically obvious because the densities describe charge. Hence when we
take the variational derivative with respect to ci, we need to consider the electrostatic
potential as a functional of the ion density. Thus, we have that

δE =

∫

[

kBT (log ci + 1) δci +
1

2

{

4πzieδci
ε

∫

G(~x, ~y)

(

ρ0 +

N
∑

i=1

zieci(~y)

)

d~y

(2.7)

+

(

ρ0 +

N
∑

i=1

zieci

)

4π

ε

∫

G(~x, ~y)δci d~y

}]

d~x, for i = 1, · · · , N.

Combining the last two terms in (2.7), we obtain

δE =

∫

{kBT (log ci + 1) + zieφ} δci d~x, for i = 1, · · · , N. (2.8)

Hence, we obtain the chemical potential µi,

µi = kBT (log ci + 1) + zieφ, for i = 1, · · · , N. (2.9)

Therefore, using (2.4) we obtain the Nernst-Planck equation,

∂ci

∂t
= ∇ ·

(

Di

kBT
ci∇(kBT (log ci + 1) + zieφ)

)

(2.10)

= ∇ ·

(

Di

(

∇ci +
zie

kBT
ci∇φ

))

.

A simplification leads us to the Nernst-Planck equation (2.1) for the ion density ci,
for i = 1, · · · , N .

The framework of the energetic variational approach is briefly summarized as fol-
lows:

i. Find a mathematical description of the physical phenomenon of interest.
ii. Define an appropriate energy equation to describe the desired physical phe-

nomenon.
iii. Apply the energetic variational approach to obtain a system of differential

equations.
iv. Verify the system of equations in numerical experiments, and mathematical

analysis.

3. Modified PNP System with Hard Sphere Repulsion. In this section we
discuss the excluded volume effects in a hard sphere model of ionic fluids. In chemical
physics of fluids on the atomic scale and in colloidal suspensions, the excluded volume
effect is a crucial physical factor for modeling of hard sphere mixtures [31]. The
excluded volume often appears in physical chemistry in the equation of state (EOS);
for instance, a well-known EOS is the van der Waals equation.
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The frontier in this measurement is the Carnahan-Starling EOS [32] which is
obtained as a solution of the Percus-Yevick (PY) equation [33] for hard sphere mix-
tures. From the Carnahan-Starling EOS, there are many extensions for more ac-
curate measurement (references are in [37]). Related to the hard sphere mixtures,
there is a well-known approach, called density functional theory (DFT) of fluids
[35, 36, 52, 53, 54, 55, 56, 57, 38], which differs from the DFT of electrons in Quantum
Chemistry. In the following subsection, we briefly discuss DFT.

In subsection 3.2 we utilize the excluded volume energy which is a nonlocal type
of repulsion potential proposed in [11]. Then we define the total energy with the
repulsive potential energy, and derive a modified PNP system including the hard
sphere repulsion. The detailed derivation is presented in subsection 3.2.

3.1. Density Functional Theory. The DFT is based on the fundamental mea-
sure theory for uncharged (atomic) fluids [35, 36]. In Rosenfeld’s DFT the energy
density function is introduced for the free energy functional including the hard sphere
repulsion energy. Moreover, DFT uses an (underived) ansatz for the energy density
function. From the energy density function one can obtain the chemical potential
for hard sphere interaction and electrostatic interaction, separately. The errors in
this ansatz are unknown and customarily estimated by comparison with Monte Carlo
simulations of hard spheres.

PNP and DFT were coupled in a straightforward approach in [39], and the model
called PNP-DFT shows significant results for ionic mixtures, especially, the layering
phenomena of charge density near a charged wall [39].

However, the approach leaves out many effects (e.g., electrophoretic and relax-
ation terms) known to be important in determining the conductance of ionic solutions
[58, 59, 60]. These terms are probably small enough when ions flow through a protein
channel, judging from the success of the model that leaves them out [40]. That success
cannot be guaranteed by the derivation of the PNP-DFT theory because these terms
are quite important in other cases. It is in fact not safe to assume they are uniformly
small in any situation, including ion channels.

Here, we derive the chemical potential of hard sphere repulsion from the inter-
pretation of the energetic variational framework using results from Rosenfeld’s DFT.
First, let ΦHS be the energy functional for the hard sphere. Then the energy of the
uncharged hard spheres is defined in this DFT by

EDFT
HS =

∫

ΦHS({nα}, {~nβ}) d~x, for α = 0, · · · , 3, β = 4, 5 (3.1)

where

ΦHS({nα}, {~nβ})
(3.2)

= −n0 log(1− n3) +
n1n2 − ~n4 · ~n5

1− n3
+

n3
2

24π(1− n3)2

(

1−
|~n5|

2

n2
2

)3

,

nα =

N
∑

i

∫

ci(~y)ω
(α)
i (~y − ~x) d~y, forα = 0, · · · , 3, (3.3)

~nβ =

N
∑

i

∫

ci(~y)~ω
(β)
i (~y − ~x) d~y forβ = 4, 5. (3.4)
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The weight functions ω
(α)
i , ~ω

(β)
i , for i = 1, · · · , N , α = 0, · · · , 3, β = 4, 5 are given by

4πa2iω
(0)
i (~r) = 4πaiω

(1)
i (~r) = ω

(2)
i (~r), (3.5)

4πai~ω
(4)
i (~r) = ~ω

(5)
i (~r), (3.6)

ω
(2)
i (~r) = δ(|~r| − ai), (3.7)

ω
(3)
i (~r) = θ(|~r| − ai), (3.8)

~ω
(5)
i (~r) =

~r

|~r|
δ(|~r| − ai) (3.9)

where ai, for i = 1, · · · , N are the radius of ion species i, δ(r) is the Dirac delta
function, and θ(r) is the unit step function defined as

θ(r) =

{

0, r ≥ 0,

1, r < 0.
(3.10)

Through the variational derivative,
δEDFT

HS

δci
gives us the chemical potential µHS

i , for
i = 1, · · · , N ,

µHS
i = kBT

(

3
∑

α=0

∫

∂ΦHS

∂nα

(~y)ω
(α)
i (~x− ~y) d~y

(3.11)

+
5
∑

β=4

∫

∂ΦHS

∂~nβ

(~y)~ω
(β)
i (~x− ~y) d~y



 .

If we impose this hard sphere chemical potential µHS
i into the Nernst-Planck

equation (2.4), then we have a modification of the Nernst-Planck equation,

∂ci

∂t
= ∇

(

Di

kBT
ci∇

(

µPNP
i + µHS

i

)

)

, for i = 1, · · · , N (3.12)

where µPNP
i , for i = 1, · · · , N is the chemical potential µi in (2.4).

The coupling with the Poisson equation (2.2) gives us a modified PNP system
with DFT hard sphere repulsion potential. Moreover, this modified system satisfies
the following energy equation:

d

dt

∫

{

kBT

N
∑

i=1

ci log ci +
1

2

(

ρ0 +
N
∑

i=1

zieci

)

φ+ΦHS({nα}, {~nβ})

}

d~x

(3.13)

= −

∫

{

N
∑

i=1

Dici

kBT

∣

∣

∣

∣

kBT
∇ci

ci
+ zie∇φ+ µHS

i

∣

∣

∣

∣

2
}

d~x.

3.2. Lennard-Jones Hard Sphere Repulsion. In this subsection we use the
energetic variational approach to derive a system of differential equations including
hard sphere repulsion using the LJ repulsive potential. To include the repulsive effect
of ions which is modeled as hard spheres, we first define an appropriate energy term.

In ion-ion interaction, a regularized repulsive interaction potential is introduced
in [5] as

Ψi,j(|~x− ~y|) =
εi,j(ai + aj)

12

|~x− ~y|12
(3.14)
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for ith and jth ions located at ~x and ~y with the radii ai, aj , respectively, where εi,j
is an appropriately chosen energy constant, empirically. Then the contribution of
repulsive potential Ψ into the total free energy is defined by

E
repulsion
i,j =

1

2

∫ ∫

Ψi,j(|~x− ~y|)ci(~x)cj(~y) d~xd~y (3.15)

where ci, cj are the densities of ith, jth ions, respectively.
For the sake of simplicity in this derivation, we consider a two-ion system with the

charge densities, cn, cp. All derivations and programs have been written for a multiple
ion system, with ions of any charge. Then, the total repulsive energy is defined by

Erepulsion =
∑

i,j=n,p

E
repulsion
i,j =

∑

i,j=n,p

1

2

∫ ∫

Ψi,j(|~x − ~y|)ci(~x)cj(~y) d~xd~y. (3.16)

We here take a variational derivative with respect to each ion, δErepulsion

δci
= 0 to

obtain the repulsive energy term into the system of equations. This leads us to the
following Nernst-Planck equations for the charge densities, cn, cp:

∂cn

∂t
= ∇ ·

[

Dn

{

∇cn +
cn

kBT

(

zne∇φ−

∫

12εn,n(an + an)
12(~x− ~y)

|~x− ~y|14
cn(~y) d~y

(3.17)

−

∫

6εn,p(an + ap)
12(~x− ~y)

|~x− ~y|14
cp(~y) d~y

)}]

,

∂cp

∂t
= ∇ ·

[

Dp

{

∇cp +
cp

kBT

(

zpe∇φ−

∫

12εp,p(ap + ap)
12(~x− ~y)

|~x− ~y|14
cp(~y) d~y

(3.18)

−

∫

6εn,p(an + ap)
12(~x − ~y)

|~x− ~y|14
cn(~y) d~y

)}]

.

The details of the derivation of the repulsive terms in the chemical potentials are pre-
sented in Appendix A. We now have the coupled system (2.2), (3.17), (3.18) including
finite size effects. We here call the system a modified PNP system. One advantage
of the variational approach is the fact that the resulting system, the modified PNP,
naturally satisfies the energy dissipation law,

d

dt

∫







kBT
∑

i=n,p

ci log ci +
1

2



ρ0 +
∑

i=n,p

zieci



∇φ+
∑

i,j=n,p

ci

2

∫

Ψi,jcj d~y







d~x

(3.19)

= −

∫











∑

i=n,p

Dici

kBT

∣

∣

∣

∣

∣

∣

kBT
∇ci

ci
+ zie∇φ−

∑

j=n,p

∇

∫

Ψ̃i,jcj d~y

∣

∣

∣

∣

∣

∣

2










d~x

where Ψ̃i,j = 12Ψi,j for i = j, and Ψ̃i,j = 6Ψi,j for i 6= j.

4. Numerical Simulations. In this section we present some numerical results
as a verification of the finite size effects with the modified PNP equations, (2.2), (3.17),
(3.18). We consider 1-dimensional domains with two opposite monovalent ions, i.e.,
zn = −1, zp = 1 and the same radii, an = ap = 1.5Å. Throughout the computations
we use no-flux boundary conditions for the ion concentrations.
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In DFT, the Rosenfeld functional has been developed from a 1-dimensional study
of inhomogeneous hard sphere mixture [29, 30]. The reduction of DFT to 1-dimensional
space is given as follows:

EDFT1d

HS =

∫

ΦHS1d
({nα}) dx for α = 0, 1 (4.1)

where

nα(x) =

N
∑

i=1

∫

ci(y)ω
(α)
i (x− y) dy, (4.2)

ω
(0)
i (z) =

1

2
{δ(z − ai) + δ(z + ai)}, (4.3)

ω
(1)
i (z) = θ(|z| − ai). (4.4)

Then the chemical potential for the hard spheres is given by

µHS1d

i = kBT

1
∑

α=0

∫

∂Φ

∂nα

(y)ω
(α)
i (x− y) dy

= kBT

∫ {

− log(1 − nα)w
(0)
i (x− y) +

n0

1− n1
ω
(1)
i (x− y)

}

dy. (4.5)

Then we substitute the hard sphere repulsion potential µHS
i (3.11) with µHS1d

i in (4.5)
for the ith ion species.

To solve the system of equations we use finite element methods, especially, the
edge averaged finite element method (EAFE) which is developed for drift-diffusion
type of equation in [7], to solve the modified Nernst-Planck equation, (3.17), (3.18).
And a standard finite element method is used for the electrostatic potential [3, 4]. To
ensure self consistency between ionic concentrations and the electrostatic potential
solutions we employ a convex iteration scheme [2, 6]. The iterative algorithm to solve
the modified PNP system is summarized in the following.

In numerical computations of the modified PNP system, one obstacle is the non-
local repulsive term in integral form. It is expensive in computational time and is
hard to compute accurately. We use a backward Euler method in the time variable
to deal with the ion concentration variables, cn, cp. We use a semi-implicit type
of self-consistent (inner) iteration between ion concentrations and the electrostatic
potential. In non-local repulsion terms we use the previous step value for the ion
concentration. In this case, we have to be careful to have a small enough time step
to ensure convergence of the numerical scheme.

The LJ repulsive kernel is intrinsically singular when ions are overlapped, i.e.,
~x = ~y. For the reason, a separate treatment of this singular behavior is required in
numerical computations. We apply a cut-off in integral domain with respect to the
size of ions instead of the integration over the whole domain. An obvious choice of
cut-off is

∫

|~x−~y|≥Rn,n

12εn,n(an + an)
12(~x − ~y)

|~x− ~y|14
cn(~y) d~y (4.6)

for the first repulsion term in (3.17) where Ri,j = ai + aj for i, j = n, p. Choosing a
cut-off is very sensitive in computations, and is automatically connected to the stabil-
ity. When a large value for Ri,j is chosen, the contribution of finite size could be lost.
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Algorithm 4.1 Iterative Scheme to solve the modified PNP system

Given c
0,0
i , φ0,0

i , for i = 1, · · · , N .
for m = 0, · · · do

for k = 0, · · · do

Solve Nernst-Planck equation using EAFE for cm,k+1
i , i = 1, · · · , N ,

c
m,k+1
i − c

m,0
i

∆t
= ∇ ·

(

Di

(

∇c
m,k+1
i +

zie

kBT
c
m,k+1
i

(

∇φ̃m,k
)

))

.

where

φ̃m,k =







φm,k +

∫

Ω

Ψ(|~x− ~y|)cm,k
i (~y) d~y, for LJ-HS,

φm,k + µHS
i , for DFT-HS.

Solve Poisson equation using standard FEM for φm,k+ 1

2 ,

∇ ·
(

ε∇φm,k+ 1

2

)

= −

(

ρ0 +

N
∑

i=1

ziec
m,k+1
i

)

.

Update the electrostatic potential solution φm,k+1,

φm,k+1 = αφm,k+ 1

2 + (1− α)φm,k, 0 < α ≪ 1.

end for

Assign the solutions as initial data for the next time iteration, cm+1,0
i , φm+1,0,

c
m+1,0
i = c

m,k+1
i , i = 1, · · · , N,

φm+1,0 = φm,k+1.

end for

On the other hand, if a small value is chosen, then it may cause numerical instability.

Remark 4.1. The cut-off of nonlocal repulsive term (4.6) used in numerical
calculations can be a smaller value of Ri,j than Ri,j = ai+aj. The choice of cut-off is
related to the strength of repulsion potential. The repulsive kernel Ψi,j can be chosen
in a different form, which approximates to experimental data, and is related to the
hardness/softness of ions.

The time consumed in evaluating the non-local repulsion terms is a significant
limitation. A fast Fourier transformation (FFT) might allow a different and local
representation of the repulsion term that allowed faster computation and was accurate
enough. The local representation would be best determined by a systematic approxi-
mation procedure based on the fundamental properties used in the original derivation
of the nonlocal repulsive terms used in this paper.

For numerical computations to observe the finite size effects, we consider the
zero permanent charge density case in the system, that is, ρ0 = 0 in (2.2). The
computational domain is Ω = [−60, 60]. The Robin boundary conditions for the
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Fig. 4.1. The ionic concentration profile without finite size effects (left), and the com-
parison of ionic concentrations with the finite size effects, LJ repulsive potential and DFT
hard sphere potential (right) under the Robin boundary condition.
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Fig. 4.2. The zoom-in pictures of the left-hand side picture in Figure 4.1 near boundary.

electrostatic potential are chosen such as

(

φ− η
∂φ

∂x

)∣

∣

∣

∣

x=−60

=

(

φ+ η
∂φ

∂x

)∣

∣

∣

∣

x=60

= 0.

This simple situation shows a finite size effect. We compare modified and pure PNP
equations with the same computational condition except the repulsion term. The
comparison of these results is presented in the right-hand side panel of Figure 4.1.
The left-hand side panel in Figure 4.1 is for the ion density profiles of PNP system
without any finite size effects for clarification. According to the results, both numerical
solutions to PNP with LJ repulsive potential and with DFT hard sphere potential have
the same overall behavior of ion concentration, but in detail the ion concentrations
show a different profile, especially, the difference near the boundary is larger than
that in bulk. In this case, the largest contribution of the repulsion term is apparent
near the boundary. It is caused by the high concentration of ions near boundary
obeying the electrostatic field. For more detail behavior of the solutions, the zoom-in
panels in Figure 4.2 show the behavior of the solutions in more detail. One can easily
observe that the DFT hard sphere potential gives a more complex behavior than the
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LJ repulsive potential.
Next, we consider a little more complicated situation which has a charged wall.

The right-hand side boundary/wall is negatively charged. The left-hand side bound-
ary/wall has no charge. We establish the charged wall through the variable, ρ0 in
Poisson equation (2.2). We set ρ0 = 0 on the left-hand side boundary, and ρ0 = 1
on the other side boundary. The domain Ω is [−10, 10]. In this case, we impose the
Dirichlet and Neumann boundary conditions for the left-hand side and the right-hand
side boundary, respectively.

φ|x=−10 = 0,
∂φ

∂~ν

∣

∣

∣

∣

x=10

= 0

where ~ν is the unit outer normal vector.
The numerical results with one-side charged wall is presented in Figure 4.3. The

left-hand side panel in Figure 4.3 is the ion concentration profiles without any finite
size effects and the right-hand side panel is those with the finite size effects. The
results on the right-hand side panel shows very important phenomena of the finite
size effects, so called, the layering phenomena (charge inversion). The comparison
shows a rigorous evidence of the finite size effects in the modified PNP system.
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Fig. 4.3. The ionic concentration profile without finite size effects (left), and the com-
parison of ionic concentrations with the finite size effects, LJ repulsive potential and DFT
hard sphere potential (right) under the no-flux boundary condition.

For more detailed comparison, we present the zoom-in pictures near the bound-
aries in Figure 4.4. One can easily see the contribution of the finite size effects and
the difference between the PNP and the modified PNP equations. The DFT hard
sphere potential gives more complex behavior than the LJ repulsive potential.

5. Conclusion. We have introduced a mathematical model system, modified
PNP, for ionic solutions including hard sphere repulsion. The modified PNP has been
derived from the energy dissipation law using the energetic variational approach. We
also present some numerical results showing the finite size effects in modified PNP
equations.

Looking to the future, we note that our numerical schemes do not guarantee
convergence for high ion concentration cases. In this case an improved numerical
scheme is required such as adaptive mesh refinement near the boundary to catch the
boundary layers.
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Fig. 4.4. The zoom-in pictures of the left-hand side picture in Figure 4.3 near boundary

The model and calculations might be improved by using another type of repulsive
potential instead of the Lennard-Jones or DFT hard sphere repulsion potentials we
use here. Moreover, the comparison of PNP equations with different types of repulsive
potentials would also reveal interesting physics and biophysics.
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Appendix A. The Variational Derivative of The Total Repulsive En-

ergy. We here present the detail derivation of the finite size effect terms in (3.17)–
(3.18).

δErepulsion =
1

2

∫ ∫

εn,n(an + an)
12

|~x− ~y|12
δcn(~x)cn(~y) d~xd~y

(A.1)

+
1

2

∫ ∫

εn,n(an + an)
12

|~x− ~y|12
cn(~x)δcn(~y) d~xd~y +

1

2

∫ ∫

εn,p(an + ap)
12

|~x− ~y|12
δcn(~x)cp(~y) d~xd~y.

Therefore, we have the repulsive term, µr
cn
, in the chemical potential for Nernst-

Planck equation of the charge density cn.

µr
cn

=

∫

12εn,n(an + an)
12

|~x− ~y|12
cn(~y) +

∫

6εn,p(an + ap)
12

|~x− ~y|12
cp(~y) d~y. (A.2)

Similarly, we have the repulsive term for cp.

µr
cp

=

∫

12εp,p(ap + ap)
12

|~x− ~y|12
cp(~y) +

∫

6εp,n(ap + an)
12

|~x− ~y|12
cn(~y) d~y. (A.3)
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