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Brownian-Dynamics (BD) is a powerful approach for the simulation of ion conduction through 
membrane pores. BD simulations are much less computational demanding than molecular dynam-
ics simulations, thus allowing analyses on the microsecond time scale. Furthermore, compared to 
other simpli�ed approaches like Poisson-Nernst-Planck equations, BD preserves the discrete nature 
of the ionic particles, which is particularly important in narrow pores. For these reasons, BD simula-
tions have been widely used to analyze conduction in membrane proteins or carbon nanotubes, 
obtaining good agreement with experimental data.
In BD simulations the 3D coordinated of the i-th ion ( ) evolves according to:

 

Where mi, zi, γi are mass, velocity and friction coe�cient of the ion; e is the elementary charge; R(t) 
is the stochastic force, mimicking the e�ects of the solvent molecules; and E the electric �eld, 
which  can be expressed as:

   

While the terms due to transmembrane potential and �xed charges are constant in time, and they 
can be computed at the beginning of the simulation, the terms due to the ion-ion interactions and 
to the charges induced at the dielectric surface changes at run-time. The electrostatic potential is 
calculated by solving the Poisson’s equation, and with iterative methods this process is too much 
time-consuming to be performed at every time-step. Thus, the Poisson equation is usually solved 
in advance on a pre-de�ned grid for the di�erent ion con�gurations, and then, the tabulated 
values are used to calculate the electric �eld during the simulation. This process, not only intro-
duces a discretizion error, but more important, cylindrical symmetry is usually imposed in order to 
limit the grid size. To overcome these shortcomings, we implemented an ICC (Induced-Charge-
Computation) Poisson solver in a BD simulator. The high e�ciency of the ICC solver allows the solu-
tion of the Poisson equation at run-time.
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CONCLUSIONS

 

mi
˙ ̇ X i = mi i

˙ X i + eziE + R(t)

 

E = ETRANSMEMBRANE + EFIXED CHARGES + EINDUCED CHARGES + EION ION

 

0 r( ) r( )[ ] = r( )

Poisson's equation is the fundamental law that binds the charge density to the 
spatial distribution of the electrostatic potential.

 

Where ε0 is the vacuum permittivity, ε(r) is the relative permittivity at position r, 
φ(r) is the electrostatic potential, and ρ(r) is the charge density. Induced Charge 
Computation (ICC) method is a Boundary Element Method (BEM), which can be 
used to solve the Poisson equation in inhomogeneous dielectric systems. ICC 
has already been successfully adopted in the Monte Carlo simulation of ion 
channels.
In BEM, the polarization e�ects, due to discontinuity in permittivity, are ac-
counted for by adding to the system the polarization charges induced at the 
boundary surfaces. Within the ICC method, it is not necessary to discretize the 
whole simulation domain, but only the boundary surfaces. The charges induced 
on these boundary surfaces are computed by solving a linear system of alge-
braic equations, obtained directly from the Poisson equation. The solution of 
Poisson's equation is converted to the solution of the linear equation, Ah=b, 
where A is a NxN matrix describing the interaction between the surface ele-
ments and b is the electric �eld impinging on each surface element.
Solving for h, the polarization charges induced at the dielectric boundary are 
found and the electric �eld in a given point is computed evaluating the Cou-
lomb interactions between all the charges in the systems (source and induced). 
An analytic description of the boundary surface (tiles), for example with splines, 
highly improves the accuracy of the solution. Since the dielectric boundary is 
assumed to be a rigid structure throughout the BD simulation, the matrix A can 
be computed and inverted just once, at the beginning of the simulation. At 
run-time, the solution of the Poisson equation requires only the matrix product 
A-1b.

The accuracy of the ICC solver was 
tested with a known test case, i.e. a 
high dielectric sphere embedded in 
a low dielectric space. The sphere, 
featuring 5 A radius, contains an el-
ementary charge 4 A o�-centre. As 
shown in the �gures, both iterative 
and ICC method can provide accu-
rate solutions, undistinguishable 
from the analytical curve. However, 
for a given accuracy threshold, the 
ICC method is orders of magnitude 
faster.


