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Abstract

The fast and accurate computation of the electric forces that drive the motion of charged particles at the

nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of

the charges cannot be neglected, Boundary Element Methods (BEM) represent a better approach than finite

differences/finite elements methods. In this paper, we compare two different BEM approaches to a canonical

electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for

particle-based simulations: the iterative method proposed by Hoyles et al. (Biophysical Journal, 70:1628, 1996.)

and the Induced Charge Computation introduced by Boda et al. (Journal of Chemical Physics, 125(034901),

2006.).

1 Introduction

The investigation of the properties of a large variety of physical systems requires accurate computation

of the electrostatic interactions among discrete fixed or mobile charges. This problem has been faced in a

large number of cases including the analysis of electronic and optoelectronic devices [1–6], the investigation

of fluid properties and the simulation of ion transport through membrane pores [7–12].

In nano-scale physical systems, some of the properties of the interacting bodies are strongly localized

and can be approximated as Dirac delta functions. For example, the properties of spatially homogeneous
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ionic solutions have been investigated using the so called primitive model for the ions, considering them

as hard spheres with finite radii and discrete point charges placed at the center of the spheres. On the

other hand, in relatively large physical systems, the charge can be described by a continuous function of

the spatial coordinates representing volume (or surface) charge density. The electrostatic problem requires

the solution of Poisson’s differential equation and boundary conditions. The numerical solution of Poisson’s

equation requires the discretization of the partial differential equation into a system of algebraic equations

on a discretization grid of the simulation domain. In the case of nano-scale systems, the discrete nature of

charges cannot be neglected. If the primitive model is adopted for the charges, the electrostatic interactions

among them can be computed from Coulomb’s law. If the system of interest includes different dielectric

regions (or phases) characterized by different values of the permittivity and separated by abrupt boundaries,

Coulomb’s law is not enough. The charges on the boundary are not discrete. Indeed, every charge can

interact significantly with every other charge through the boundary condition and a two body treatment of

electric forces (like Coulomb’s law) is incomplete, and in that sense incorrect. In the BEM, the polarization

effects associated with the discontinuity of permittivity at boundaries is accounted for by adding to the

system the polarization charge induced over the boundary surface. This approach does not require the

discretization of the whole simulation domain. It requires the discretization of boundary surfaces where

discrete polarization charges are associated with discrete surface elements.

In this paper we compare the accuracy and computational speed of two different BEM approaches for

the simulation of charged particles.

2 The electrostatic problem

We study a system of discrete point-charges embedded in an inhomogeneous medium composed of different

dielectric regions separated by sharp boundaries B. Poisson’s equation is the fundamental law that, within

the quasi-static approximation, links the charge density ρ(r) to the spatial distribution of the electric field

E(r) and the electrostatic potential Φ(r). The discontinuity of permittivity occurring at the boundaries

between different materials or phases is part of the system. Thus, we need to write Poisson’s equation taking

into account the relationship between the electric field E(r) and the polarization vector P(r), as:

ε0∇ ·E(r) = ρ(r)−∇ ·P(r) (1)

where ε0 is the permittivity of free space. Since we deal with discrete charges, except on the boundary,

ρ(r) = Σkqkδ(r− rk) where qk and rk are the charge and the position of the k-th point charge, respectively.
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The polarization charge density h(r) = −∇ ·P(r) can be expressed as:

h(r) =
1− ε(r)

ε(r)
ρ(r)− ε0

∇ε(r)

ε(r)
·E(r) (2)

As described in [12], in the frame of the primitive model, polarization charges are present only at the dielectric

boundaries, leading to an integral equation in h(s):

h(s) +
∆ε(s)

4πε(s)
n(s) ·

∫
B

s− s
′

|s− s′ |3
h(s

′
)ds

′
= − ∆ε(s)

4πε(s)
n(s) ·

∑
k

qk
ε(rk)

s− rk
|s− rk|3

(3)

where ∆ε(s) and ε(s) are the change and the mean value of the dielectric constant in the normal direction

n(s) evaluated at the boundary B. When the integral equation 3 is solved for h(s) on the two-dimensional

boundary B, all source and induced charges of the system are known and the electrostatics can be evaluated

everywhere in the space using superposition of Coulombic contributions from both source and induced

charges. Therefore, the potential at a given position rU is:

Φ(rU ) =
1

4πε0

∑
k

qk
ε(rk)|rU − rk|

+
1

4πε0

∫
B

h(s)

|rU − s|
ds (4)

The evaluation of the induced charges in eq. 3 and of the potential in eq. 4 requires the evaluation of surface

integrals over the dielectric boundaries. This task can be accomplished by N-point quadrature, dividing

the dielectric boundary into a number N of surface elements that we call “tiles”. Therefore, the solution

of Poisson’s equation is converted into the solution of the linear system of equations, Ah = b, where A is

a NxN matrix describing the mutual electrostatic interaction among the N surface elements, the vector b

is the electric field impinging on each surface element and the vector h contains the polarization charges

induced at the discretization tiles of the dielectric boundaries.

3 Boundary Elements methods

In this work two different BEM implementations are compared: the iterative method (ITER) introduced

by Hoyles et al. [13] based on the work of Levitt [14] and the induced-charge computation (ICC) of Boda et

al. [12].

ITER and ICC differ in the way they evaluate the induced charges on the dielectric boundary. ITER

approach does not solve a linear system of equations, but evaluates the polarization charges using an algo-

rithmic iterative procedure: at each step, the charge induced by each source/induced charge on the surface

elements is evaluated; the procedure is recursively repeated in order to take into account the mutual electro-

static interaction among the polarization charges induced at the surface elements, resulting in a progressive

3

Nanoscale Research Letters INEC 2011 Special Issue 



refinement of the estimated induced polarization charges until a convergence criterion is met. ICC solution

is obtained by simultaneously solving the coupled equations derived by the discretization of eq. 3 over the

discretized boundary. In both cases, the evaluation of the electrostatic potential at a given position (eq. 4)

is performed via Coulomb’s law and superposition with an integral form of Coulomb’s law for the induced

charge on the boundaries.

4 Results

The accuracy of ITER and ICC methods have been tested by applying them to the solution of a well

known electrostatic problem: a high-permittivity dielectric sphere (ε1 = 80) embedded in a low-permittivity

dielectric medium (ε2 = 2) [12,15,16]. The sphere has 5 Å radius and an elementary point charge is located

asymmetrically 4 Å off its center (inset of Figure 1). The dielectric boundary (i.e. the sphere surface) is

divided into curved tiles, obtained by uniformly discretizing the spherical coordinates θ and φ. We solve the

electrostatic problem by applying ICC and ITER to the same discretized domain, adopting an analytical

description for the discretization tiles. In the ITER case, iterations are stopped when the relative update of

the charge induced on each tile falls below δi = 1 · 10−4 [13].

Figure 1 shows the relative error, with respect to the analytic solution, for the electrostatic potential

due to the surface-boundary induced polarization charges only, evaluated along the sphere diameter passing

through the point charge. Both ITER and ICC yield very accurate results, limiting the relative error along

the whole diameter to ∼ 7 · 10−3.

Figure 2 illustrates the computation time for the two methods as a function of the number of boundary

discretization elements. ICC is considerably faster than ITER for any number of discretization elements.

ICC solves the matrix equation Ah = b with a matrix inversion and a matrix-vector multiplication. On the

other hand, ITER adopts a complex algorithmic approach requiring, at each iteration, the (computationally

expensive) evaluation of Coulombic contributions among the polarization charges induced at the discretiza-

tion tiles [13, 17]. In our implementations, the number of iterations needed to obtain the solution ranges

from 80 to 140 depending on the number of tiles.

It is worth noting that the advantage of ICC is even more significant in numerical simulations in which

the dielectric boundaries do not change during a simulation run. In such a case, the matrix must be inverted

only once at the beginning of the simulation and then, at each time step, the electric forces can be evaluated

on the basis of the charge distribution in the system through a NxN-matrix by N-vector multiplication. On

the other hand, the large computation time needed by ITER makes the computation of electrostatics at run
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time difficult or even unfeasible.

To avoid long computation times, the electric forces in an ITER calculation are often stored in a number

of look-up tables for different (possibly all) ion configurations in the system [18–20]. This approach has

two major drawbacks: i) the loss in accuracy due to the need to interpolate between look-up table entries;

ii) the practical impossibility to determine potential for asymmetric charge distributions due to extremely

large memory requirements. ICC is not subject to these kind of problems since it can rapidly solve Poisson’s

equation for any charge distribution without lookup tables. Due to its accuracy and computation speed,

ICC appears well suited for the simulation of nano-scale discrete-charge physical systems.

To provide more stringent and realistic tests, we checked ICC with a toy model of a cellular ion channel.

The simulation domain is obtained rotating the 2-D shape in Figure 3. Two water-like dielectric regions

(εW = 80) are connected via a cylindrical pore (6.5 Å radius) embedded in a membrane slab (εM = 6) 30

Å wide. The dielectric boundary is discretized using 860 curved tiles defined analytically as described in the

supplementary material of [12]. It is worth noting that ITER would provide results with the same accuracy

of ICC, since it solves the same electrostatic problem, but computation time would be considerably larger.

Furthermore, the accuracy of the solution depends only on the number of the discretization elements used

to tile the boundary and is independent of the size and the width of the channel.

We define “reaction potential” the electrostatic potential at a given point due to induced charges only:

ΦR(r) =
1

4πε0

N∑
i=1

hiai
|r− ri|

(5)

where hi, ai and ri are the induced charge density, the area and the position for the i-th tile, respectively.

Figure 4(a) graphs the reaction potential, ‘felt’ by a cation that moves along different trajectories parallel

to the channel axis as it approaches the membrane center (z = 0). The symmetry of the simulation domain

allows us to report results for only one half of the simulation domain. The reaction potential increases

as the ion approaches the center of the membrane where it reaches a maximum. It increases as the ion

moves a larger distance from the channel axis. An independent accuracy test consists in Gauss’s law check:

the total induced charge on the dielectric boundary must equal the total charge enclosed by the boundary.

Since the only charge in this system is the ion that moves along the trajectories and it lies outside the

dielectric boundary, the total charge enclosed by the boundary is 0. Therefore, the total charge induced on

the boundary must be very close to 0. Figure 4(b) shows the total induced charge on the dielectric boundary

as a function of the position of the ion along different trajectories. The total induced charge never exceeds

a mere 3% of an elementary charge, but it is not zero. Since the simulation of realistic systems may involve
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up to thousands charges, in our view, the check of Gauss’s law should be a feature of all calculations of

electrostatics.

Finally, we tested ICC solutions in systems with asymmetrical charge distributions. We added two rings

of 20 dipoles in the membrane to mimic ion channel charged groups. The dipoles are oriented such that

their negative charges are placed 2 Å far from water-protein boundary, and the positive charges are placed

2 Å further inside the membrane. The orientation of the dipoles alter the potential profile in proximity of

and inside the channel. No ions are present in the system.

Figure 5(a) shows the potential map inside the cylindrical channel at the center of the membrane (z = 0).

The potential at a given point is the sum of the Coulombic contribution from both discrete source and

continuous induced charges. Due to the symmetry of the charge distribution, the potential features a radial

symmetry reaching its maximum value at the channel axis (x = 0, y = 0). Then we broke the radial symmetry

of the charge distribution by switching off three consecutive dipoles in each ring. The potential map reported

in Figure 5(b) features a maximum displaced from channel axis and located close to the missing dipoles.

5 Conclusions

We compared ICC and ITER BEMs for the calculation of the electrostatics in discrete-charge systems.

Our results show that both ICC and ITER feature high accuracy, but ICC is remarkably faster. This

enables the evaluation of the electrostatics at run time during simulations. One can avoid the lookup tables

to retrieve pre-calculated values that in our experience do not work well. ICC is therefore much more well

suited for the simulation of nano-scale charged-particle systems such as ion channels or electronic devices.
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Figure 1: (Color online) Sphere test case. Relative error in the electric potential due to induced charges only
along the diameter passing through the source charge. Results for both ITER (circles) and ICC (diamonds)
are compared for the same number of boundary discretization tiles. The source charge is located at z = 4
Å.

Figure 2: (Color online) Sphere test case. Left scale: computation time as a function of the number of tiles
used to discretize the phase boundary for both ITER (squares) and ICC (diamonds). Right scale: ITER/ICC
computation time ratio (circles). ICC works almost 200 times faster than ITER for any number of surface
elements.

Figure 3: (Color online) Toy model of ion channel. Two ionic baths are connected through a cylindrical
channel with round corners. The simulation domain is obtained rotating the 2-D shape around the channel
axis. Red and blue spheres represent the two rings of dipoles that mimic ion channel charged groups.

Figure 4: (Color online) Toy model of ion channel. (a) Reaction potential for a cation that moves along
different trajectories parallel to the channel axis. A sketch of the channel profile is represented as a gray
region. (b) Gauss’s law check. The total charge induced on the dielectric boundary is plotted as a function of
the position of the ion along the trajectories. The numerical error introduced by the computation is limited
to 3% of an elementary charge.

Figure 5: (Color online) Toy model of ion channel. (a) Potential map inside the cylindrical channel at z = 0
due to dipole rings embedded in the membrane. (b) Potential map at the same coordinate when 3 adjacent
dipoles are switched off in each ring. The potential is the sum of both source charge and induced charge
Coulombic contributions.
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