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In the implicit solvent models of electrolytes (such as the Primitive Model (PM)), the

ions are modeled as point charges in the centers of spheres (hard spheres in the case of the

PM). The surfaces of the spheres are not polarizable in these models which makes them

appropriate to use in computer simulations of electrolyte systems where these ions do not

leave their host dielectrics. The same assumption makes them inappropriate in simulations

where these ions cross dielectric boundaries because the interaction energy of the point charge

with the polarization charge induced on the dielectric boundary diverges. In this paper, we

propose a procedure to treat the passage of such ions through dielectric interfaces with an

interpolation method. Inspired by the “bubble ion” model (in which the ion’s surface is

polarizable), we define a space-dependent effective dielectric coefficient, ǫeff(r), for the ion

that overlaps with the dielectric boundary. Then, we replace the “bubble ion” with a point

charge with an effective charge q/ǫeff(r) and remove the portion of the dielectric boundary

where the body of the ion overlaps with it. We implement the interpolation procedure using

the Induced Charge Computation (ICC) method [Boda et al. Phys. Rev. E 69, 046702

(2004)]. We analyze the various energy terms using a spherical ion passing through an

infinite flat dielectric boundary as an example.
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I. INTRODUCTION

It is well known that the electrostatic energy diverges when a point charge approaches a sharp

dielectric boundary. Such a boundary separates two domains with piecewise constant dielectric

coefficients. In the implicit solvent approach, electrolytes are commonly modeled by the primitive

model (PM) where ions are charged hard spheres and the solvent is a continuum dielectric. Each

charged hard sphere has a point charge at its center. The surface of this sphere is electrostatically

inactive: the sole purpose of this surface is to prevent ions from overlapping. From an electrostatic

point of view, a charged hard sphere is a point charge. Therefore, when an ion overlaps with the

dielectric boundary, the point charge in its center approaches the boundary, the energy diverges,

and this representation becomes unrealistic.

For this reason, simulations of the PM electrolyte near a dielectric interface have been, to the

best of our knowledge, mostly performed with ions that cannot overlap with the boundaries1–17.

The dielectric boundaries usually were hard impenetrable walls or ions were excluded from their

vicinity by other walls or some repulsion potential. Even when the possibility of ions crossing

dielectric boundaries is otherwise a physical reality, authors decided to avoid such events in their

simulations in one way or other. A few representative examples are the following.

In our ion channel simulations11,12,14,17, we used a dielectric coefficient inside the channel that

was equal to that of the bath. A similar approach was followed by Coalson et al.18,19. In reality,

the dielectric coefficient is smaller in the channel pore than in the bath. This manifests itself in

two major effects. (1) Pair interactions between ions inside the pore are stronger than

between ions outside the pore because they are less screened by the smaller dielectric

coefficient. (2) There is a solvation penalty (dielectric self-energy) for an ion as it

enters the pore from the bath19–21. In our ion channel simulations, these two effects

were taken into account indirectly by applying a smaller dielectric constant (typically

10) inside the protein surrounding the pore. The polarization surface charge density

induced by ions and structural charges on the protein-pore boundary has qualitatively

effects similar to the two effects of the small dielectric coefficient of the pore mentioned

above. Although this boundary and the induced charge on it are present even if we

decrease the dielectric coefficient inside the pore, these two effects could be studied

directly. Such simulations are in progress.

The electrochemical double layer (DL) consists of a charged surface (the electrode) and an

electrolyte. It is usual to assume a low dielectric layer near the electrode to explain the experimental
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behavior of the DL capacitance. In our earlier paper we simulated such a model at zero electrode

charge, but we prevented the ions from penetrating into the low dielectric layer9. This was a

reasonable assumption because ions are thought to be excluded from a compact water layer near

the electrode. The assumption, however, is unreasonable for large electrode charges.

Torrie and Valleau4 have performed simulations for DLs formed at the boundary layer of two

immiscible electrolytes characterized by different dielectric coefficients. They assumed that the

ions cannot leave their host electrolyte so the boundary between the two liquids acts as a hard wall

for the ions. In reality, the interface between the two liquids is diffuse and ions can enter from one

electrolyte to the other.

Apart from these examples, ions getting from one dielectric to another can proba-

bly occur in any inhomogeneous electrolyte system. The dielectric constant is reduced

in an electrolyte where large electric fields act due to dielectric saturation. This can

happen near charged electrodes, membranes, in confined systems, protein binding

sites, at surfaces of charged colloid particles, or even in concentrated bulk electrolytes.

It is known from the measurements of Barthel, Buchner et al.
22,23 that even the dielec-

tric constant of electrolytes decreases with increasing ion concentration so one would

expect that inhomogeneous electrolyte systems with varying concentration are, at the

same time, are inhomogeneous with varying dielectric coefficient. These systems are

difficult to calculate/simulate so even a reduced model with ions moving across the

boundaries of piecewise dielectric domains is an important advance.

We mention a few exceptions, where ions passing through the boundary were not avoided. Graf

et al.24,25 used a Dynamic Lattice Monte Carlo (DLMC) simulation technique, where ions are

only at lattice grid points. If the grid points are farther from the interface than the ion radius,

the problem does not arise. Chung et al.
26–28 applied a one-particle potential in their

Brownian Dynamics (BD) simulations to account for the dielectric penalty of an ion

passing through an ion channel. In our earlier paper, we studied the problem of an

ion passing through a single flat dielectric boundary using image charges29. This work

provided only a partial solution to the problem, as we will discuss later.

Image charges are useful mainly for the case of an infinite flat dielectric boundary and a few

other simple symmetrical geometries7,30,31. For more general geometries, a numerical method is

needed to compute the polarization surface charge induced on the dielectric boundaries. Various

Boundary Element Methods (BEM) in Apparent Surface Charge (ASC) calculations were widely

used to compute induced charges32,33. A variational formalism has been proposed by Allen et
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al34. Inspired by this paper, a method called the Induced Charge Computation (ICC) method

was proposed by us8,11 and used to study DLs9 and ion channels11,12,14,17 with Monte Carlo (MC)

simulations. In all these studies, the ions stayed in their native dielectric; they did not cross

dielectric boundaries.

In this paper, we propose a method to treat ions crossing a dielectric boundary in the framework

of the ICC method. For this, we need to step beyond the charged hard sphere model of the ion

and use the concept of the “bubble ion” whose interior has a dielectric coefficient 1, so the surface

of the ion is a polarizable surface. We will detail the different models of ions in the next section.

We emphasize that while the “bubble ion” is conceptually a better model than the point charge

(charged hard sphere) model, it cannot be simulated because the calculation of the induced charge

density on the ions’ surfaces is an unsurmountable task in a multi-particle simulation. This model

is used as a tool to construct an interpolation mechanism to compute the energy while an ion is

crossing through a dielectric boundary.

II. MODEL OF ION

When we construct a molecular model for an ion immersed in an implicit solvent, we consider a

charged object which is usually a sphere for simple inorganic ions. In the PM, the charge is a point

charge in the center of the sphere. This sphere prevents ions from overlapping and, thus, prevents

the point charges from approaching each other to an arbitrarily small distance. This feature of the

model is not optional in computer simulations: ions must have finite size, otherwise the cations and

anions would collapse into an infinitely small neutral particle and vanish from the simulation cell.

In the PM, this is the only role of the sphere: the surface of the ion is electrostatically inactive; it

does not appear in the solution of Poisson’s equation.

In reality, the surface of the ion separates two different dielectric media: the interior of the ion

and the solvent around the ion. The ion has a subtle interaction with the dielectrics around it. For

example, the electric field of the ion’s charge polarizes the solvent molecules around the ion. This

manifests itself in a polarization charge density on the surface of the ion.

To model this, we consider a sphere of radius R immersed in a dielectric continuum of dielectric

coefficient ǫ. We assume that the system is infinite: the boundary condition of vanishing electric

field at infinity is applied. Therefore, surface charges beyond those on the ion’s surface do not

appear in the solution. The ion’s charge is the only source charge in the system and no external

electric field is applied. We can represent the ionic charge in two ways:
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1. We can place ion charge q on the surface of the ion as a uniform surface charge σ = q/4πR2

and not worry about the internal structure of the ion (Fig. 1a). In this case, we solve

Poisson’s equation for the domain outside the ion’s boundary surface: r ≥ R, where the

origin of the coordinate system is set at the center of the ion, r = |r|. A net polarization

charge qpol is distributed on the surface of the ion as a uniform surface charge density with

magnitude

σpol =
qpol
4πR2

=

(

1

ǫ
− 1

)

q

4πR2
. (1)

This result can be obtained without any information about the internal structure of the ion.

2. We can place the charge in the center of the ion as a point charge q (Figs. 1b-e). In this case,

we include the ion’s interior in the solution of Poisson’s equation. The surface of the ion then

becomes a dielectric boundary. The distribution of the polarization charge qpol depends on

the dielectric coefficient inside the sphere, ǫion (Fig. 1b). In this case, a polarization charge

qs is uniformly distributed on the surface of the ion with magnitude

σs =
qs

4πR2
=

(

1

ǫ
−

1

ǫion

)

q

4πR2
, (2)

while a polarization charge appears on the central source charge as a point charge with

magnitude

q0 =

(

1

ǫion
− 1

)

q. (3)

The sum of these two charges is equal to the total polarization charge: qpol = q0 + qs.

If ǫion = 1, we talk about the “bubble ion” model, because there is a vacuum in the interior

of the ion. In this case, σs = σpol and q0 = 0, namely, all the polarization charge is on the

surface of the ion (Fig. 1c).

If ǫion = ǫ, the charged hard sphere model used in the PM is obtained (Fig. 1d): the ion’s

surface is not a dielectric boundary (σs = 0) and all the polarization charge is concentrated

in the center of the ion (q0 = qpol). From outside, it looks like a point charge with an effective

charge

qeff = q + qpol =
q

ǫ
. (4)

It is usual to assign values to ǫion that are larger than 1 thus taking the internal polarizability

of the ion into account31,35. Even shells of different dielectric coefficients are in use to model
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ions and hydration shells around them36,37. We emphasize, however, that such ion

models are not used in our simulations because they refer to polarizable ions.

These models are mentioned merely to put the idea of the “bubble ion” into

perspective.

Due to spherical symmetry, the solution of the electrostatic problem from Gauss’s law outside the

sphere is the same in all cases. The integral form of Gauss’s law for any spherical surface Ar of

radius r > R reads

∮

Ar

D · da =

∮

Ar

ǫ0ǫE · nda = q, (5)

from which the electric field is

E(r) =
q

4πǫ0ǫr2
n, (6)

where n = r/r is the normal vector to surface Ar and D = ǫ0ǫE is the electric displacement.

This solution is obtained no matter how do we distribute the polarization charge between the ion’s

center and its surface. What is more, the same result is obtained if we distribute the charge as a

volume charge inside the ion as soon as we do it in a spherically symmetric way.

The difference between the above models becomes clear when we place our “lonely” ion into

an external electric field Eext(r) (Fig. 1e). This external field is generally produced by other ions

or any charged object (electrodes, for example). We can assume that Eext(r) has no source inside

and on the surface of the ion. When this assumption is not valid, for example, in the case of an

ion in contact with a charged surface or another “bubble ion”, the electrostatic problem must be

solved by considering the two objects in contact together explicitly instead of including the effect

of other charged objects in Eext(r). Such contact positions are difficult electrostatic problems38

to compute efficiently and precisely. Leaving these cases out of consideration, however, does not

influence the derivation of our interpolation formulas.

The external electric field polarizes the dielectrics at the surface of the ion: a charge distribution

∆σ(s) is induced on it, where s is a vector on the ion’s surface (Fig. 1e). The total polarization

charge density on the ion’s surface is non-uniform:

σtot(s) = σs +∆σ(s). (7)

Because there is no source of Eext(r) in the domain r ≤ R and the dielectric coefficient is uniform

in that domain, the integral of ∆σ(s) is zero (due to Gauss’s law), namely, the field only sepa-

rates positive and negative charges. This zero-mean charge distribution corresponds to a multipole
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expansion whose dominant term is a dipole. On the molecular level, the charge distribution rep-

resents distortion of the structure of water molecules in the hydration shell with respect to their

structure in the absence of Eext(r). The non-uniform induced charge density ∆σ(s) changes as

the external electric field changes (because of, for example, the thermal movement of ions or any

charged object).

The different models are polarizable to different degree: the point charge model (ǫion = ǫ) is

not polarizable, while the “bubble ion” model (ǫion = 1) is “fully” polarizable. In this case, the

polarization charge density σpol on the surface of the “bubble ion” represents the polarization

of the surrounding medium, namely, the (mainly orientational) polarization of water molecules

around the ion. The ion’s self polarizability does not appear in this model. The models in between

(1 < ǫion < ǫ) are “partially” polarizable, where the ion’s self polarizability counteracts part of the

water’s polarization.

The problem of the “bubble ion” (Fig. 1e) can be solved self-consistently by the ICC method.

The problem of the crossing “bubble ion” (Fig. 2a) can also be solved by the ICC method. Solving

the numerical problem in every step of the simulation is too expensive to be feasible, however. For

that reason, the “bubble ion” model cannot be used in a computer simulation. It serves, however,

as a useful concept to help in developing our interpolation technique to handle ions crossing the

dielectric boundary in simulations.

The model that can be simulated is the one where the surface of the ion is not polarizable,

namely, we assume that ∆σ(s) = 0 (Fig. 1d). The surface charge σs can then be squeezed into

the center of the ion producing the effective charge in Eq. 4 representing the screening by the

surrounding dielectric. This is the charge used in the screened Coulomb potential of the charged

hard spheres of the PM. The surface of the ion is electrostatically inactive; only the hard wall

remains that prevents ions from overlapping.

This model can be used straightforwardly when ions do not overlap with dielectric boundaries.

The model, however, suffers from the problem of energy divergence as the ion crosses the dielectric

boundary. In this paper, we present an interpolation technique inspired by the “bubble ion” model

to overcome this difficulty. We discuss the errors produced by this approximation to an ion.

III. THE INDUCED CHARGE COMPUTATION METHOD

The electrostatic problem can be treated by solving an integral equation using the induced

charge density as an unknown variable instead of solving partial differential equations (the Poisson’s
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equation with boundary conditions) using the electrical potential as an unknown variable. The

resulting ICC equation8,11 is

ǫ(s)

∆ǫ(s)
h(s) +

1

4π

∫

B

ds′ h(s′)
(s− s′) · n(s)

|s− s′|3
= −

1

4π

∑

k

qk
ǫ(rk)

(s− rk) · n(s)

|s− rk|3
, (8)

where B is the entire dielectric boundary in the system (including the surfaces of the “bubble ions”

if they are present), h(s) is the induced charge density, ǫ and ∆ǫ(s) are the mean and difference of

the dielectric coefficients on the two sides of the boundary at s, and n(s) is the normal vector of

the surface at point s. The right hand side of the equation is proportional to the normal electric

field produced by the source point charges qk in the system. The point charges are in positions rk

in a region of dielectric coefficient ǫ(rk).

The solution of this equation is performed numerically by dividing the whole surface B into

surface elements Bα (tiles). Assuming that hα = h(sα) is constant on the αth tile, where sα is the

center of the αth tile, the equation can be written for sα:

∑

β

hβ

[

ǫ(sα)

∆ǫ(sα)
δαβ +

1

4π
Iαβ

]

= −
1

4π

∑

k

qk
ǫ(rk)

(sα − rk) · n(sα)

|sα − rk|3
, (9)

where the integral

Iαβ =

∫

Bβ

ds′
(sα − s′) · n(sα)

|sα − s′|3
(10)

expresses the mutual polarization between tiles and takes into account the curvature of the tiles.

This system of linear equations can be expressed as a matrix equation

Ah = c, (11)

where matrix A is defined by the expression in brackets in Eq. 9. The vector h contains the surface

charges at the tile centers, while vector c contains the direct effect of the source charges (right hand

side of Eq. 9). This latter quantity changes as ions move in the simulation; the induced charge

can be obtained from an LU backsubstitution. The filling of the matrix and its LU decomposition

is a very time consuming process. Therefore, this method is feasible only if the matrix A can be

precomputed and LU decomposed only once because it does not change in the simulation. This

is the case when the dielectric boundary does not change its geometry in the simulation. If the

moving ions carry dielectric boundaries on their surfaces (like in the case of the “bubble ion”), this

condition does not hold. The “bubble ion” model, therefore, is not practical in simulations.

Once the induced charge densities hα are computed, they are treated as point charges hαaα

placed in the tile centers sα, where aα is the area of the tile. The energy is then calculated from
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the usual Coulomb interactions. The discretized surface charge hα = h(sα) is a representation of

the total induced charge density on the ion’s surface σtot(s) introduced in Eq. 7.

The case of sharp dielectric boundaries is an idealization. In practice, dielectric

boundaries are rather diffuse with the dielectric constant changing gradually over

a finite region. This case, however, is computationally more expensive because the

a volume must be discretized into volume elements rather than just a surface into

surface elements. Most authors use sharp dielectric boundaries in their models for

simulations.

IV. INTERPOLATION OF ENERGY OF THE CROSSING ION

We will illustrate our idea by the example of a spherical ion crossing an infinite, flat boundary

(Fig. 2a). This system makes it possible to test the method on a simple geometry

for which even an analytical solution is available. More extensive simulations for

practical problems (ion channels, double layers) in comparison with experiments will

be published later, but those comparisons would provide a check of the model, not

the method. We denote the position of the sphere’s center with z, which is the coordinate

perpendicular to the surface. The origin (z = 0) is at the interface. The boundary separates two

dielectric media with dielectric coefficients ǫ1 and ǫ2. We denote the induced charge densities on

the two portions of the ion’s surface with which it is in dielectrics 1 and 2 by h1 and h2, respectively.

The areas of these spherical caps are a1 and a2, respectively.

Before we describe the interpolation procedure, we establish two requirements that we expect

from our methodology:

1. The first requirement is a consequence of the fact that we treat the ion as an effective

point charge qk/ǫ(rk) at position rk with its surface not playing any part electrostatically

(Fig. 1d) when it does not overlap the dielectric boundary. As boundary conditions for

our interpolation mechanism, therefore, we expect from the method that it reproduces the

point-charge solutions when the ion is in contact with the boundary on one or the other

side (z = ±R in Fig. 2a). We emphasize that the “bubble ion” model does not meet this

requirement; it is only used as a useful concept to construct the mechanism.

2. The other requirement is additivity: if charge qA (when alone) induces hA polarization charge

density on the dielectric boundaries and qB (when alone) induces hB , then the two charges
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(when they are present together) induce hA + hB .

Let us see, how a “bubble ion” behaves when it crosses a dielectric boundary (Fig. 2a). First

of all, when this happens, the electrostatic problem is solvable (with ICC, for example) and the

energy of the ion changes continuously as the ion crosses the interface. If this is the only ion in the

system, the energy changes continuously between two well-defined limiting values: the self energies

of the ion in contact positions with the boundary in dielectrics 1 and 2. This self-energy has two

parts: the interaction with the induced surface charges on the surface of the ion (h1 and h2) and

with the induced surface charge on the dielectric boundary, hw:

Us = U ion
s + Uw

s . (12)

Note that the boundary has a hole in it when an ion overlaps with it.

The first term of the self energy, U ion
s , has well-defined limiting values on the two sides of the

surface, when the full body of the ion is in dielectric j:

U ion
s,j =

q2

8πǫ0R

(

1

ǫj
− 1

)

, (13)

where ǫj is the dielectric coefficient in region j. This is the well-known Born expression39 for

solvation of a spherical ion in a dielectric. In the “bubble ion” model, this equation is a direct

consequence of Poisson’s equation. This term is U ion
s,1 for z < −R, while it is U ion

s,2 for z > R. This

interaction energy is negative and deeper in the dielectrics with larger ǫj .

The self energy U ion
s,j of a point charge used in the PM diverges (limR→0 U

ion
s,j = −∞), because

the ion’s induced charge is infinitely close to the central point charge. This does not cause any

problem in calculations using the PM in one phase, because this term does not change as ions

move in their host dielectric ǫj . When the ion changes its dielectric environment, i.e., goes from

one phase to another, however, this term must be taken into account. We assume that the ion has

a finite self-energy (solvation energy, see Ref. 40) U ion
s,j despite the fact that we treat the ion as a

point charge in the simulation. Therefore, we can meet requirement 1 if we establish the limiting

values U ion
s (z = −R) = U ion

s,1 and U ion
s (z = R) = U ion

s,2 as given by Eq. 13.

Between these limiting values, U ion
s (z) changes continuously as the ion crosses the boundary, be-

cause the common areas of the ionic surface with dielectrics 1 and 2 (a1 and a2) change continuously

(see Fig. 2a):

U ion
s (z) =

1

8πǫ0

q

R
qtot(z), (14)
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where

qtot(z) =

∫

a1

h1da+

∫

a2

h2da (15)

is the total induced charge on the surface of the ion. In general, qtot(z) depends on z through all

the variables h1(z), h2(z), a1(z), and a2(z). We assume, however, that the induced charge densities

on the areas a1 and a2 depend, to first order, only on q, R, and ǫj in the following way (see Eq. 1):

hj =
q

4πR2

(

1

ǫj
− 1

)

, (16)

so they can be taken to be constant and independent of z. This assumption means that we take

into account the polarizing effect of only the central charge; the cross polarization effects between

the charges on the whole dielectric boundary B (expressed by the non-diagonal elements of matrix

A) are ignored. Because the non-diagonal elements of the matrix A are small compared to the

diagonal elements, this assumption is reasonable and results in a solely geometrical problem:

qtot(z) = h1a1(z) + h2a2(z), (17)

namely, we only need to determine the areas ai(z). (The approximation of the surface induced

charge neglecting the off-diagonal entries of the ICC matrix has been studied in detail elsewhere

and called the BIBEE model41.) For a flat boundary (Fig. 2a), the solution is straightforward,

because the area aj = 2πR∆zj of a spherical cap of height ∆zj is proportional to z. The resulting

equations for ai(z) are

a1(z) = 2πR(R− z)

a2(z) = 2πR(R+ z). (18)

These equations imply that qtot(z) and U ion
s (z) also change linearly in the region of overlap.

As far as the other term of the self energy, the interaction with the induced charge density on

the wall, hw, is concerned, the limiting values Uw
s (z = ±R) are also well defined. These values

are the interactions of the effective point charge qj/ǫj placed at z = ±R with the polarization

charge density induced by itself on the dielectric boundary (calculated, for example, with ICC).

Between these limiting values, the term Uw
s (z) changes continuously, because the geometry of the

dielectric boundaries changes continuously as the “bubble ion” is crossing the boundary. Note that

divergence does not occur because the ǫion = 1 interior of the “bubble ion” always separates the

central charge from the boundary.
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In general, the dielectric boundary is not necessarily a single, flat boundary. It can be (1) curved

and (2) it is possible that more than two boundaries meet along a line (the ion channel geometry,

studied in subsequent papers, is an example). We can generalize Eq. 17 for such cases as

qtot(r) =
∑

i

hiai(r). (19)

Based on the approximation in Eq. 19, we suggest the following interpolation scheme to compute

the energy of the system when an ion overlaps with the boundary.

(1) In the first step, we shrink the induced charge qtot into the ion’s center as a point charge

(Fig. 2b). In this case, the surface of the ion becomes electrostatically inactive shown by the

dotted sphere in Fig. 2b. Merging this induced charge qtot(r) with the source charge q we define

the effective charge in the center of the ion and, through this, we define an effective dielectric

coefficient ǫeff(r)

qeff(r) = q + qtot(r) =
q

ǫeff(r)
. (20)

From Eqs. 16, 19 and 20, we obtain that

1

ǫeff(r)
=

∑

i

a∗i (r)

ǫi
, (21)

where a∗i (r) = ai(r)/4πR
2 is the fraction of area ai(r) from the whole ion-surface in ǫi (a normalized

surface). This corresponds to computing the ionic self energy in the usual way using the effective

dielectric coefficient:

U ion
s (r) =

q2

8πǫ0R

(

1

ǫeff(r)
− 1

)

. (22)

We perform this interpolation for every point r of the simulation cell. This way, the effective

dielectric coefficient can be obtained as a position dependent quantity ǫeff(r). This interpolation

has to be performed for every ion species, because the radii of each species is different. If a more

complex dielectric boundary is present (if the boundaries are curved, for example), ǫeff(xl, ym, zn)

can be precomputed on a grid at the beginning of the simulation, tabulated, and interpolated for

an arbitrary r during the simulation.

(2) In the next step, we show how to compute this problem with the ICC method. Most

importantly, the subsurface of the dielectric boundary inside the ion’s body, namely, where the ion

overlaps with the dielectric boundary (shown by dashed line in Fig. 2b), has to be removed when

we compute the induced charge density of the overlapping ion. This is easy conceptually, but more

difficult in practice. Because the matrix A takes so long to build and invert, we would rather not
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change it by removing the overlapping tiles. Below we outline an approximate way to accomplish

the same thing without changing the matrix.

The overlapping tiles must be left in the calculation when we compute the induced charge density

of a non-overlapping ion. This a consequence of requirement 2: the induced charge densities of the

overlapping and non-overlapping ions must be additive. So, if the overlapping ion is not present, the

induced charge density of the non-overlapping ion must be computed with the dielectric boundary

intact. This means that the induced charge density of the non-overlapping ion must be computed

for every surface element whether or not another ion might overlap with that surface element time

to time.

Due to additivity, the ICC equation (Eq. 8) can be solved using individual ions as source charges

separately (the sum over k on the right hand side is absent). The right hand side of such an equation

is computed as

cα,k =











0 if |sα − rk| ≤ Rk

−
1

4π

qk
ǫeff(rk)

(sα − rk) · n(sα)

|sα − rk|3
if |sα − rk| > Rk

(23)

where Rk is the radius of the kth ion. With this approach we eliminate the direct polarizing

effect of an ion on the tiles that are overlapped with this particular ion (the distance of ion center

and tile center is smaller than the ion radius). The polarization effects of other tiles on these

overlapping tiles is still nonzero (because we use the original matrix A) but they are small. In this

way, we do not have to recompute the matrix; the method does not impose any additional cost

on the computation apart from computing ǫeff(r). Computing ǫeff(r), however, is fast compared to

computing the induced charge h. Note that ǫeff(rk) is used in Eq. 23 as the dielectric coefficient of

the ion at position rk.

Then, the polarization charge density, hα,k induced by ion k on surface element α can be

obtained from an LU backsubstitution. The total induced charge density on tile α can be obtained

as a sum over the ions:

hα =
∑

k

hα,k, (24)

where the sum is taken for ions that do not overlap with surface element α.

The interaction energy between two ions is

uion−ion
ij (ri, rj) =

qiqj
8πǫ0|ri − rj|

(

1

ǫeff(ri)
+

1

ǫeff(rj)

)

. (25)
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The interaction energy between an ion and an induced charge in the center of a tile is

uion−ind
iα (sα, ri) =











0 if |sα − ri| ≤ Ri

qihαaα
8πǫ0|sα − ri|

if |sα − ri| > Ri.
(26)

With this equation, we eliminate the interaction of an ion with the tiles that overlap with it

mimicking the bubble ion. The total energy is

U =
∑

i

∑

j<i

uion−ion
ij +

∑

i

∑

α

uion−ind
iα . (27)

V. RESULTS FOR AN ION CROSSING A FLAT DIELECTRIC BOUNDARY

Our procedure is illustrated by the example of a spherical ion (with radius R) crossing an

infinite, flat, and sharp dielectric boundary separating two regions with dielectric coefficients ǫ1

and ǫ2 (Fig. 3). There is another ion in a fixed position zf = −4R with an effective point charge

qf/ǫ1 and a crossing ion whose center is at coordinate z. We will plot our results as functions of

this variable. The charge of the crossing ion is qc in the “bubble ion” model in the center of the

bubble together with the induced charge dxensities on the bubble’s surface (h1, h2), while it is a

qc/ǫeff(z) effective charge in the interpolation method. In this study, we use the elementary charge

for both the crossing and the fixed ion: qc = qf = e. Using other values does not influence our

main conclusions.

We will study the induced charge densities (and the interaction energies with them) on three

distinct dielectric boundaries: (1) the ion’s surface in dielectric ǫ1, (2) the ion’s surface in dielectric

ǫ2, and (3) the flat dielectric boundary outside the ion’s body. We denote the induced charge

densities (induced by q) on these surfaces by h1,q, h2,q, and hw,q, respectively. We report charges

in the unit of the elementary charge, while we report the energies in unit of e2/R.

We use the ICC method8 to compute the induced charges. For this, the surface of the dielectric

boundary must be discretized into surface elements (Bα). We performed this discretization with

the method given in the Supplementary Material of Ref. 11. On the surface of the ion and on the

flat dielectric boundary near the ion we defined surface elements of the size roughly 0.16×0.16 (in R

unit). Using finer grid does not influence our results very much. For the numerical method, we must

represent the otherwise infinite surface with a finite sheet. We used a circular sheet of radius 30R.

The finite size of the discretized dielectric boundary is the main source of inaccuracies compared

to analytical values (that, in some cases, can be obtained from the image charge method). This

small inaccuracy, however, if we keep its reason in mind, does not influence our main conclusions.
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While “bubble ions” are computationally prohibitive in simulations, it is feasible to calculate

the energies of two such ions near each other with one crossing the dielectric boundary in a model

case. We do this using the ICC method where the matrix A is recalculated and inverted for every

position of the moving ion. Symbols in subsequent figures represent these calculations. Solid lines,

on the other hand, represent results of the interpolation scheme, when the crossing ion is a point

charge q/ǫeff(r). Outside the overlapping region (represented by area of gray shade in the figures),

this is the way as we normally compute energy in simulations for the PM. Therefore, solid lines

at contact positions, z = ±R, represent the limiting values for the energies between which the

interpolation must work.

The profile of the effective dielectric coefficient as computed from Eqs. 18 and 21 is

ǫeff(z) =























ǫ1 if z ≤ −R

1

2

(

1− z/R

ǫ1
+

1 + z/R

ǫ2

)−1

if −R < z < R

ǫ2 if z ≥ R.

(28)

and plotted in Fig. 4.

The polarization charges induced by the crossing ion integrated over three distinct dielectric

boundaries are plotted in Fig. 5. The total induced charge on the ion’s surface is 1/ǫ1 − 1 = −0.95

on the left hand side (z ≤ −R), while it is 1/ǫ2−1 = −0.9875 on the right hand side (z ≥ R). These

are the limiting values for the total induced charges
∫

a1(z)
h1,qcda and

∫

a2(z)
h2,qcda. These functions

change linearly with z between the limiting values in the case of the interpolation method (see Eqs.

17 and 18) as shown by the red and green solid lines. In particular,
∫

a1(z)
h1,qcda changes linearly

between 1/ǫ1 − 1 (when a1 = 4πR2) and 0 (when a1 = 0). The exact solutions for the “bubble

ion” are plotted by symbols (open red circles and green squares) and agree with the interpolated

results very well. This indicates that the approximation introduced in Eq. 19 is reasonable.

The total induced charge on the flat dielectric boundary (which has a hole, when the ion

overlaps with it) also has two well-defined limiting values: (ǫ1− ǫ2)/ǫ1(ǫ1+ ǫ2) = −0.03 for z ≤ −R

and (ǫ2 − ǫ1)/ǫ2(ǫ1 + ǫ2) = 0.0075 for z ≥ R. The total charge in the overlap region (|z| < R)

changes almost linearly in the “bubble ion” model (open blue diamonds), while the shape of the

interpolated curve (solid blue line) is different from this linear solution (the same is valid for the

total charge – black curve and triangles). The main source of the deviation is the assumption

that the qc/ǫeff(z) effective charge has the same polarizing effect on the dielectric boundary as the

“bubble ion” has. The result, however, obeys the boundary conditions at z = −R and z = R and

produces a continuous curve between the limiting values.



16

We denote the interaction energy of qi with the polarization charge induced by qj on a given

segment of the dielectric boundary by U(qi−hγ,qj), where i and j denotes the crossing or the fixed

ion (c or f) and γ denotes the segment (1, 2, or w). Figure 6 shows the interaction energies of

qc with its own induced charges induced on the various segments of the dielectric boundary. The

energies U(qc−h1,qc) and U(qc−h2,qc) behave the same way as the total induced charges
∫

a1
h1,qcda

and
∫

a1
h2,qcda (compare the top panel of Fig. 6 with Fig. 5) because the distance of qc from h1,qc

(and also from h2,qc) is constant (R). The figure shows the solution that we obtain by assuming

that the ions are point charges (dashed lines). For this special case, these curves can be (and are)

calculated with the image charge method.

The next term, U(qc−hw,qc), is the one that causes the divergence problem when point charges

are used. Outside the overlapping region, the three models (“bubble ion”, interpolation, and point

charge) give practically (apart from numerical errors) identical results. In the overlapping region,

the point-charge curves diverge as |z| → 0, while the interpolation gives a curve that is quite similar

to the “bubble ion” result and changes smoothly between the limiting values. The same is true for

the sum of these energies.

The polarization charge induced by the other, fixed ion is shown in Fig. 7. The induced charges

on the spherical caps,
∫

a1
h1,qfda and

∫

a2
h2,qfda, indicate a zero-mean dipole-like distribution in

the “bubble-ion” model (magnified in the inset). The total induced charge on the left and right

caps are positive and negative, respectively, and they are equal in magnitude as they are supposed

to be according to Gauss’s law. These charges separately are not distinguished in the interpolation

method, while their sum is taken to be zero (solid black line).

The total polarization charge on the flat boundary,
∫

hw,qfda, is constant in the interpolation

method according to our assumption of additivity. It is independent of the position of the crossing

ion. The “bubble ion” model reproduces this result within 0.4 % error. The deviation (hidden by

the scale of the figure) is due to the finite size of the flat boundary used in the ICC calculations.

The interaction energy of the crossing charge (qc) with the polarization charges induced by the

fixed ion (qf/ǫ1) is shown in Fig. 8. The interactions with the charges on the spherical caps (top

panel) reflect the behavior of the total induced charges (Fig. 7) on these caps because the distance

of qc from these charges is constant (R). The interaction with hw,qf shows interesting behavior

(bottom panel). The interpolation method yields a symmetrical curve because the interaction

depends on |z|. The jumps in the curve are due to the nature of discretization of the flat dielectric

boundary. As the crossing ion proceeds through the boundary, the surface element with which

it overlaps vanishes from the calculation abruptly because this overlap is checked by the distance
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from the center of the surface element.

The “bubble ion” model provides a smooth curve, but it is not symmetrical for the following

reason. The “bubble ion” is polarized by qf : a dipole-like charge distribution appears on its surface.

This induced dipole is larger when the crossing ion is closer to the fixed ion. This dipole has an

additional polarizing effect on the flat dielectric boundary: it changes hw,qf . In the “bubble ion”

model, the requirement for additivity, therefore, is not fulfilled. It makes sense to talk about

additivity only if the dielectric boundaries do not change as ions move. In the “bubble ion” model,

however, the dielectric boundary is changed as the “bubble ion” moves in space. Furthermore, the

“bubble ion” model does not meet the other requirement either: it does not reproduce the limiting

values at z = −R and z = R (also because of the induced dipole). These limiting values are the

values given by the solid curves at z = ±R in all the figures. These facts show that the “bubble

ion” model is here being used only as a helpful concept to develop the interpolation mechanism.

It could be used (in theory) to compute the energy in the overlap-region, but only if we use the

same model outside the overlap-region too. Because this is too time consuming, we use the point

charge model on the two sides of the overlap-region and an interpolation scheme in between.

The image charge solution neglects the size of the crossing ion (dashed line). Outside the

overlap-region, the solution agrees with the numerical solution (apart from numerical errors). As

the point charge approaches the dielectric boundary, its interaction with the surface charge induced

by another ion approaches a finite value. This interaction term, therefore, is not a source of the

divergence despite the fact that the point charge gets infinitely close to the charge on the wall.

The image charge solution, therefore, could be a suitable approximation for this energy term. As

a matter of fact, we used this approximation in our earlier study29 though, at that time, we were

not aware of all the subtleties discussed in this work.

The interaction energy of the fixed charge (qf) with the polarization charge of the crossing

charge (hγ,qc) also shows an interesting behavior (Fig. 9). The top panel shows the interaction of

qf with the charges on the spherical caps. The curves show a behavior similar to those for the

U(qc−h1,qc) and U(qc−h2,qc) interactions (see top panel of Fig. 6) except that the limiting values

differ more on the two sides now because not only are the charges different in the two positions, but

also the distance of qf from the spherical caps (this distance was R in the case of the U(qc − h1,qc)

and U(qc − h2,qc) interactions).

The sum of these two energy terms gives a smooth curve in the case of the “bubble ion” and

the interpolated models. The agreement between them is excellent. The point charge solution,

however, shows a jump in the interaction energy at the interface (dashed line, see inset of the
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top panel). This solution was obtained by computing the interaction with the induced charge on

the crossing point-charge ion; this induced charge is also a point charge of magnitude (1/ǫi − 1)qc

“on top” of the ionic point charge qc. The jump in ǫi explains the jump in the interaction energy

between qf and this charge.

The interaction energy with hw,qc also changes continuously in the “bubble ion” and the inter-

polation models (middle panel). Again, the point charge solution (computed from image charges)

has a jump at the interface. This is because the hw,qc surface charge is induced by a qc/ǫ1 effective

charge on the left hand side, while it is induced by a qc/ǫ2 effective charge on the right hand side.

The abrupt jump in ǫi results in a jump in hw,qc , and, consequently, in the interaction energy

U(qf − hw,qc).

The sum of these terms, however, results in a smooth function (bottom panel), not only in the

numerical solutions (“bubble ion” and interpolation models), but also in the point charge solution.

The two jumps in the top and middle panels compensate each other. This also justifies our

simplified treatment in our earlier work29. In a general case, however, a simple solution from image

charges is not available. In such cases, a numerical method and the algorithm that interpolates for

the overlap-region is necessary.

The interaction energy of the fixed ion (qf) with its own induced charge (hγ,qf ) is shown in

Fig. 10. For the “bubble ion“ model, the interaction with the charge on the ion’s surface (black

triangles in the top panel) increases as the crossing ion approaches the fixed ion. The explanation,

again, is that the fixed ion polarizes the crossing ion. This energy term reflects the interaction

of qf with the induced dipole on the crossing ion. In the interpolation model, this energy is zero,

because the ion is not polarizable, so the induced dipole does not appear.

The interaction with the induced charge on the dielectric wall is obviously constant in the

interpolation method (solid line in the middle panel). It is different from the image charge solution

(dashed line) due to the finite size of the boundary used in ICC. The “bubble ion” model shows

a deviation from this constant (symbols) because of the polarizing effect of the induced dipole on

the wall (same effect as in the bottom panel of Fig. 8).

The total interaction energy between qf and its induced charge (bottom panel) shows a consid-

erable increase as the crossing “bubble ion” approaches the fixed ion due mainly to the interaction

with the induced dipole. Because the model ions we study are not polarizable, this solution is not

appropriate for our purpose.

The total energy is the sum of all the electrostatic energies in the system (Fig. 11): the sum

of the charge – induced charge energies plotted in Figs. 6, 8-10 plus the direct interaction energy
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between the two charges. The interaction energy between qc and the induced charge on qf must also

be added: it is a point charge and the interaction can be expressed analytically (see the caption of

Fig. 11). The figure is quite similar to the bottom panel of Fig. 6, so as a general conclusion we

can state that the main source of the inaccuracy of the interpolation method is the self energy.

VI. CONCLUSIONS

We have proposed a general scheme for simulation of ions crossing a sharp dielectric boundary in

the implicit solvent framework. The ions are modeled as point charges embedded inside the body of

the ion. The dielectric coefficient is the same inside and outside the ions, while the induced charge

appears on top of the point source charge also as a point charge. This model can be simulated

straightforwardly because the computation of the source charge - induced charge interactions does

not require resources in addition to the source charge – source charge interactions. In this study,

we considered spherical ions with the charges in the centers of the spheres defined by hard sphere

potential (PM of electrolytes). It is straightforward, however, to extend the model for non-spherical

ions or for ions with a soft core potential (the Lennard-Jones potential, for example).

We have reported detailed results for an ion crossing a flat boundary, but the procedure is

given (and has been programmed) for dielectric boundaries of any shape. As a matter of fact, we

applied the method for our ion channel geometry where there is a penetrable dielectric boundary

between the solution inside and outside the channel. Using the point charge approach without the

interpolation method described here, the ions that approach the dielectric boundary from the low

dielectric side are trapped in low-energy positions (the diverging self-energy is attractive in this

case, see Fig. 6 left from the interface). These trapped ions result in high unphysical peaks in

the simulation. Using the interpolation method, however, we obtained density profiles that behave

smoothly in the neighborhood of the dielectric boundary. We will report these results in subsequent

papers along with checks on the procedure with curved boundaries. Numerical checks need to be

done on actual curved surfaces, because procedures can fail on curve boundaries that work well on

flat ones, as we have discussed previously11.

We have reported the results using the ICC method to treat dielectric boundaries and induced

charge densities. The general scheme, however, can be used for any other Poisson equation solver.
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15 J. Reščič and P. Linse, J. Chem. Phys. 129, 114505 (2008).

16 Z. Y. Wang and Y. Q. Ma, J. Chem. Phys. 131, 244715 (2009).

17 D. Boda, J. Giri, D. Henderson, B. Eisenberg, and D. Gillespie, J. Chem. Phys. 134, 055102 (2011).

18 R. D. Coalson and M. G. Kurnikova, IEEE Trans. Nanobiosci. 4, 81 (2005).

19 M. H. Cheng and R. D. Coalson, J. Phys. Chem. B 109, 488 (2005).

20 B. Corry, S. Kuyucak, and S.-H. Chung, Biophys. J. 84, 3594 (2003).
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CAPTIONS OF FIGURES

Figure 1: Different models of an ion. In model (a), the ion carries a constant surface charge

σ = q/A. Poisson’s equation is not solved for the interior of the ion. All the polarization

charge is induced on the ion’s surface (σpol). In models (b-d), the source charge is a point

charge at the center of the ion. Polarization charges are induced either in the center of the ion

(q0) or on the surface of the ion (σs). When ǫion = 1, we talk about the “bubble ion” model

(c) In this case, all the polarizaton charge is on the ion’s surface (σs = σpol). When ǫion = ǫ,

all the polarization charge is in the center (d). This is the charged hard sphere model used

in the PM: all the charge is in the center as an effective charge qeff = q/ǫ. When an external

field is applied (e), all the ion models are polarizable (a dipole-like polarization charge ∆σ

appears on the surface), except the model (d) with ǫion = ǫ. Because this latter model

provides a pair-wise additive pair potential, it can be used in simulations straightforwardly.

Figure 2: The crossing ion (a) as a “bubble ion” and (b) the approximate way as an effective

point charge with the overlapped portion of the boundary cut out. The area of the portion of

the ion in dielectrics i is denoted by ai. The polarization charge induced on it is denoted by

hi. The polarization charge induced on the dielectric wall outside the ion’s body is denoted

by hw.

Figure 3: An ion of charge qc is crossing the dielectric boundary (separating regions ǫ1 = 20 and

ǫ2 = 80) and approaching an ion with effective charge qf/ǫ1 at fixed position zf = −4R.

Figure 4: The effective dielectric coefficient profile as computed from Eq. 28 for ǫ1 = 20 and

ǫ2 = 80.

Figure 5: The total polarization charge induced by the crossing ion, qc = e, on the left (
∫

a1
h1,qcda)

and right (
∫

a2
h2,qcda) spherical caps of the crossing ion and on the dielectric boundary

outside the body of the ion (
∫

hw,qcda) as functions of the z-coordinate (in R-unit) of the

crossing ion. In this figure and following figures, symbols represent results for the “bubble

ion” model, while solid lines represent results obtained with the interpolation scheme for

|r| < R and with the point charge model for |r| ≥ R.

Figure 6: The interaction energy of charge qc with the polarization charge induced by itself (self-

energy) as a function of the position of the crossing ion (z). Interactions with the charge on

the left (
∫

a1
h1da) and right (

∫

a2
h2da) spherical caps are shown in the top panel. Interaction



23

with the charge induced on the dielectric boundary outside the body of the ion (
∫

hwda) is

shown in the middle panel. The total interaction energy is shown in the bottom panel. The

meaning of symbols and solid lines is the same is in Fig. 5. Here and in subsequent figures,

the dashed lines represent results of image charge calculations assuming that the crossing

ion is a point charge.

Figure 7: The total polarization charge induced by the fixed ion, qf = e, on the left (
∫

a1
h1,qfda)

and right (
∫

a2
h2,qfda) spherical caps of the crossing ion and on the dielectric boundary

outside the body of the ion (
∫

hw,qfda) as functions of the z-coordinate of the crossing ion.

The meaning of symbols and lines is the same is in Fig. 6.

Figure 8: The interaction energy of the crossing charge qc with the polarization charge induced

by the fixed ion qf as a function of the position of the crossing ion (z). Interactions with the

charge on the left, U(qc−h1,qf ), and right, U(qc−h2,qf ), spherical caps are shown in the top

panel. Interaction with the charge induced on the dielectric boundary outside the body of

the ion, U(qc − hw,qf ), is shown in the bottom panel. The meaning of symbols and lines is

the same is in Fig. 6.

Figure 9: The interaction energy of the fixed charge qf with the polarization charge induced by

the crossing ion qc as a function of the position of the crossing ion (z). Interactions with the

charge on the left, U(qf −h1,qc), and right, U(qf −h2,qc), spherical caps are shown in the top

panel. Interaction with the charge induced on the dielectric boundary outside the body of

the ion, U(qf −hw,qc), is shown in the middle panel. The total interaction energy is shown in

the bottom panel. Insets magnify the region close to the boundary. The meaning of symbols

and lines is the same is in Fig. 6.

Figure 10: The interaction energy of the fixed charge qf with the polarization charge induced by

itself as a function of the position of the crossing ion (z). Interactions with the charge on

the left, U(qf − h1,qf ), and right, U(qf − h2,qf ), spherical caps are shown in the top panel.

Interaction with the charge induced on the dielectric boundary outside the body of the ion,

U(qf − hw,qf ), is shown in the middle panel. The total interaction energy is shown in the

bottom panel. The meaning of symbols and lines is the same is in Fig. 6.

Figure 11: Total energy of the system as a function of the position of the crossing ion (z). This

energy contains the direct interaction between the two charges (qcqf/|zf − zc|) and the inter-

action between qc and the induced charge on qf (
1
2qc(1/ǫ1 − 1)qf/|zf − zc|) in all methods.
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FIG. 1. Boda et al., J. Chem. Phys.
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FIG. 2. Boda et al., J. Chem. Phys.
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FIG. 3. Boda et al., J. Chem. Phys.
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FIG. 4. Boda et al., J. Chem. Phys.
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FIG. 7. Boda et al., J. Chem. Phys.



31
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