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In the implicit solvent models of electrolytes (such as the primitive model (PM)), the ions are mod-
eled as point charges in the centers of spheres (hard spheres in the case of the PM). The surfaces
of the spheres are not polarizable which makes these models appropriate to use in computer simula-
tions of electrolyte systems where these ions do not leave their host dielectrics. The same assumption
makes them inappropriate in simulations where these ions cross dielectric boundaries because the in-
teraction energy of the point charge with the polarization charge induced on the dielectric boundary
diverges. In this paper, we propose a procedure to treat the passage of such ions through dielectric in-
terfaces with an interpolation method. Inspired by the “bubble ion” model (in which the ion’s surface
is polarizable), we define a space-dependent effective dielectric coefficient, εeff(r), for the ion that
overlaps with the dielectric boundary. Then, we replace the “bubble ion” with a point charge that has
an effective charge q/εeff(r) and remove the portion of the dielectric boundary where the ion overlaps
with it. We implement the interpolation procedure using the induced charge computation method
[D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Phys. Rev. E 69, 046702
(2004)]. We analyze the various energy terms using a spherical ion passing through an infinite flat
dielectric boundary as an example. © 2011 American Institute of Physics. [doi:10.1063/1.3622857]

I. INTRODUCTION

It is well known that the electrostatic energy diverges
when a point charge approaches a sharp dielectric boundary.
Such a boundary separates two domains with piecewise con-
stant dielectric coefficients. In the implicit solvent approach,
electrolytes are commonly modeled by the primitive model
(PM) where ions are charged hard spheres and the solvent is
a continuum dielectric. Each charged hard sphere has a point
charge at its center. The surface of this sphere is electrostat-
ically inactive: the sole purpose of this surface is to prevent
ions from overlapping. From an electrostatic point of view, a
charged hard sphere is a point charge. Therefore, when an ion
overlaps with the dielectric boundary, the point charge in its
center approaches the boundary, the energy diverges, and this
representation becomes unrealistic.

For this reason, simulations of the PM electrolyte near
a dielectric interface have been, to the best of our knowl-
edge, mostly performed with ions that cannot overlap with the
boundaries.1–17 The dielectric boundaries usually were hard
impenetrable walls or ions were excluded from their vicin-
ity by other walls or some repulsion potential. Even when the
possibility of ions crossing dielectric boundaries is otherwise
a physical reality, authors decided to avoid such events in their
simulations in one way or other. A few representative exam-
ples are the following.

a)Author to whom correspondence should be addressed. Electronic mail:
boda@almos.vein.hu.

In our ion channel simulations,11, 12, 14, 17 we used a di-
electric coefficient inside the channel that was equal to that
of the bath. A similar approach was followed by Coalson and
co-workers.18, 19 In reality, the dielectric coefficient is smaller
in the channel pore than in the bath. This manifests itself in
two major effects. (1) Pair interactions between ions inside
the pore are stronger than between ions outside the pore be-
cause they are less screened by the smaller dielectric coeffi-
cient. (2) There is a solvation penalty (dielectric self-energy)
for an ion as it enters the pore from the bath.19–21 In our ion
channel simulations, these two effects were taken into account
indirectly by applying a smaller dielectric constant (typically
10) inside the protein surrounding the pore. The polarization
surface charge density induced by ions and structural charges
on the protein-pore boundary has effects that are qualitatively
similar to the two effects of the small dielectric coefficient of
the pore mentioned above. Although this boundary and the
induced charge on it are present even if we decrease the di-
electric coefficient inside the pore, these two effects could be
studied directly. Simulations for multiple dielectrics along the
permeation pathway in ion channels are in progress.

The electrochemical double layer (DL) consists of a
charged surface (the electrode) and an electrolyte. It is usual
to assume a layer with a low dielectric constant near the elec-
trode to explain the experimental behavior of the DL capaci-
tance. In our earlier paper, we simulated such a model at zero
electrode charge, but we prevented the ions from penetrating
into the low dielectric constant layer.9 This was a reasonable
assumption because ions are thought to be excluded from a
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compact water layer near the electrode. The assumption, how-
ever, is unreasonable for large electrode charges.

Torrie and Valleau4 have performed simulations for DLs
formed at the boundary layer of two immiscible electrolytes
characterized by different dielectric coefficients. They as-
sumed that the ions cannot leave their host electrolyte so the
boundary between the two liquids acts as a hard wall for the
ions. In reality, the interface between the two liquids is diffuse
and ions can enter from one electrolyte to the other.

Apart from these examples, ions moving from one di-
electric to another can probably occur in any inhomogeneous
electrolyte system. The dielectric constant is reduced in an
electrolyte where large electric fields act due to dielectric
saturation. This can happen near charged electrodes, mem-
branes, in confined systems, protein binding sites, at surfaces
of charged colloid particles, or even in concentrated bulk
electrolytes. It is known from the measurements of Barthel,
Buchner and co-workers22, 23 that even the dielectric constant
of homogeneous electrolytes decreases with increasing ion
concentration so one would expect that inhomogeneous elec-
trolyte systems with varying concentration are, at the same
time, inhomogeneous with varying dielectric coefficient.
These systems are difficult to calculate/simulate so even a
reduced model with ions moving across the boundaries of
piecewise dielectric domains is an important advance.

We mention a few exceptions from the literature, where
ions passing through the boundary were not avoided. Graf
and co-workers24, 25 used a Dynamic Lattice Monte Carlo
(DLMC) simulation technique, where ions are only at lattice
grid points. If the grid points are farther from the interface
than the ion radius, the problem does not arise. Chung and
co-workers26–28 applied a one-particle potential in their Brow-
nian Dynamics (BD) simulations to account for the dielectric
penalty of an ion passing through an ion channel. In our ear-
lier paper, we studied the problem of an ion passing through
a single flat dielectric boundary using image charges.29 This
work provided only a partial solution to the problem as we
will discuss later.

Image charges are useful mainly for the case of an infinite
flat dielectric boundary and a few other simple symmetrical
geometries.7, 30, 31 For more general geometries, a numerical
method is needed to compute the polarization surface charge
induced on the dielectric boundaries. Various boundary ele-
ment methods (BEM) in apparent surface charge (ASC) cal-
culations were widely used to compute induced charges.32, 33

A variational formalism has been proposed by Allen et al.34

Inspired by this paper, a method called the induced charge
computation (ICC) method was proposed by us8, 11 and used
to study DLs9 and ion channels11, 12, 14, 17 with Monte Carlo
(MC) simulations. In all these studies, the ions stayed in their
native dielectric; they did not cross dielectric boundaries.

In this paper, we propose a method to treat ions crossing a
dielectric boundary in the framework of the ICC method. For
this, we need to step beyond the charged hard sphere model of
the ion and use the concept of the “bubble ion” whose interior
has a dielectric coefficient 1, so the surface of the ion is a po-
larizable surface. We will detail the different models of ions
in Sec. II. We emphasize that while the “bubble ion” is con-
ceptually a better model than the point charge (charged hard

sphere) model, it cannot be simulated because the calculation
of the induced charge density on the ions’ surfaces is an un-
surmountable task in a multi-particle simulation. This model
is used as a tool to construct an interpolation mechanism to
compute the energy as an ion is crossing through a dielectric
boundary.

II. MODEL OF ION

When we construct a molecular model for an ion im-
mersed in an implicit solvent, we consider a charged object
which is usually a sphere for simple inorganic ions. In the PM,
the charge is a point charge in the center of the sphere. This
sphere prevents ions from overlapping and, thus, prevents the
point charges from approaching each other to an arbitrarily
small distance. This feature of the model is not optional in
computer simulations: ions must have finite size, otherwise
the cations and anions would collapse into an infinitely small
neutral particle and vanish from the simulation cell. In the
PM, this is the only role of the sphere: the surface of the ion
is electrostatically inactive; it does not appear in the solution
of Poisson’s equation.

In reality, the surface of the ion separates two different
dielectric media: the interior of the ion and the solvent around
the ion. The ion has a subtle interaction with the dielectrics
around it. For example, the electric field of the ion’s charge
polarizes the solvent molecules around the ion. This manifests
itself in a polarization charge density on the surface of the ion.

To model this, we consider a sphere of radius R immersed
in a dielectric continuum of dielectric coefficient ε. We as-
sume that the system is infinite: the boundary condition of
vanishing electric field at infinity is applied. Therefore, sur-
face charges beyond those on the ion’s surface do not appear
in the solution. The ion’s charge is the only source charge in
the system and no external electric field is applied. We can
represent the ionic charge in two ways:

1. We can place an ionic charge q on the surface of the ion
as a uniform surface charge σ = q/4πR2 and not worry
about the internal structure of the ion [Fig. 1(a)]. In this
case, we solve Poisson’s equation for the domain outside
the ion’s boundary surface: r ≥ R, where the origin of
the coordinate system is set at the center of the ion, r

= |r|. A net polarization charge qpol is distributed on the
surface of the ion as a uniform surface charge density
with magnitude

σpol = qpol

4πR2
=

(
1

ε
− 1

)
q

4πR2
. (1)

This result can be obtained without any information
about the internal structure of the ion.

2. We can place the charge in the center of the ion as a
point charge q [Figs. 1(b)–1(e)]. In this case, we in-
clude the ion’s interior in the solution of Poisson’s equa-
tion. The surface of the ion then becomes a dielectric
boundary. The distribution of the polarization charge qpol

depends on the dielectric coefficient inside the sphere,
εion [Fig. 1(b)]. In this case, a polarization charge qs

is uniformly distributed on the surface of the ion with
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magnitude

σs = qs

4πR2
=

(
1

ε
− 1

εion

)
q

4πR2
, (2)

while a polarization charge appears on the central source
charge as a point charge with magnitude

q0 =
(

1

εion
− 1

)
q. (3)

The sum of these two charges is equal to the total polar-
ization charge: qpol = q0 + qs.
If εion = 1, we talk about the “bubble ion” model, be-
cause there is a vacuum in the interior of the ion. In this
case, σs = σpol and q0 = 0, namely, all the polarization
charge is on the surface of the ion [Fig. 1(c)].
If εion = ε, the charged hard sphere model used in the
PM is obtained [Fig. 1(d)]: the ion’s surface is not
a dielectric boundary (σs = 0) and all the polarization
charge is concentrated in the center of the ion (q0 =
qpol). From outside, it looks like a point charge with an
effective charge

qeff = q + qpol = q

ε
. (4)

It is usual to assign values to εion that are larger than
1 thus taking the internal polarizability of the ion into
account.31, 35 Even shells of different dielectric coeffi-
cients are in use to model ions and hydration shells
around them.36, 37 We emphasize, however, that such
ion models are not used in our simulations because
they refer to polarizable ions. These models are men-
tioned merely to put the idea of the “bubble ion” into
perspective.

Due to spherical symmetry, the solution of the electrostatic
problem from Gauss’s law outside the sphere is the same in
all cases. The integral form of Gauss’s law for any spherical
surface Ar of radius r > R reads∮

Ar

D · da =
∮

Ar

ε0εE · nda = q, (5)

from which the electric field is

E(r) = q

4πε0εr2
n, (6)

where n = r/r is the normal vector to surface Ar and D
= ε0εE is the electric displacement. This solution is obtained
no matter how we distribute the polarization charge between
the ion’s center and its surface. What is more, the same result
is obtained, if we distribute the charge as a volume charge
inside the ion as soon as we do it in a spherically symmetric
way.

The difference between the above models becomes clear
when we place our “lonely” ion into an external electric field
Eext(r) [Fig. 1(e)]. This external field is generally produced
by other ions or any charged object (electrodes, for example).
We can assume that Eext(r) has no source inside and on the
surface of the ion. When this assumption is not valid, for
example, in the case of an ion in contact with a charged
surface or another “bubble ion,” the electrostatic problem
must be solved by considering the two objects in contact
together explicitly instead of including the effect of other
charged objects in Eext(r). Such contact positions are difficult
electrostatic problems38 to compute efficiently and precisely.
Leaving these cases out of consideration, however, does not
influence the derivation of our interpolation formulas.

The external electric field polarizes the dielectrics at the
surface of the ion: a charge distribution �σ (s) is induced on
it, where s is a vector on the ion’s surface [Fig. 1(e)]. The
total polarization charge density on the ion’s surface is non-
uniform

σtot(s) = σs + �σ (s). (7)

Because there is no source of Eext(r) in the domain r ≤ R

and the dielectric coefficient is uniform in that domain, the
integral of �σ (s) is zero (due to Gauss’s law), namely, the
field only separates positive and negative charges. This zero-
mean charge distribution corresponds to a multipole expan-
sion whose dominant term is a dipole. On the molecular level,
the charge distribution represents distortion of the structure of
water molecules in the hydration shell with respect to their
structure in the absence of Eext(r). The non-uniform induced
charge density �σ (s) changes as the external electric field
changes (because of, for example, the thermal movement of
ions or any charged object).

The different models are polarizable to different degree:
the point charge model (εion = ε) is not polarizable, while the
“bubble ion” model (εion = 1) is “fully” polarizable. In this
case, the polarization charge density σpol on the surface of

FIG. 1. Different models of an ion. In model (a), the ion carries a constant surface charge σ = q/A. Poisson’s equation is not solved for the interior of the
ion. All the polarization charge is induced on the ion’s surface (σpol). In models (b–d), the source charge is a point charge at the center of the ion. Polarization
charges are induced either in the center of the ion (q0) or on the surface of the ion (σs). When εion = 1, we talk about the “bubble ion” model (c). In this case,
all the polarizaton charge is on the ion’s surface (σs = σpol). When εion = ε, all the polarization charge is in the center (d). This is the charged hard sphere
model used in the PM: all the charge is in the center as an effective charge qeff = q/ε. When an external field is applied (e), all the ion models are polarizable
(a dipole-like polarization charge �σ appears on the surface), except the model (d) with εion = ε. Because this latter model provides a pairwise additive pair
potential, it can be used in simulations straightforwardly.
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FIG. 2. The crossing ion (a) as a “bubble ion” and (b) the approximate way
as an effective point charge with the overlapped portion of the boundary cut
out. The area of the portion of the ion in dielectrics i is denoted by ai . The
polarization charge induced on it is denoted by hi . The polarization charge
induced on the dielectric wall outside the ion’s body is denoted by hw.

the “bubble ion” represents the polarization of the surround-
ing medium, namely, the (mainly orientational) polarization
of water molecules around the ion. The ion’s self polariz-
ability does not appear in this model. The models in between
(1 < εion < ε) are “partially” polarizable, where the ion’s self
polarizability counteracts part of the water’s polarization.

The problem of the “bubble ion” [Fig. 1(e)] can be solved
self-consistently by the ICC method. The problem of the
crossing “bubble ion” [Fig. 2(a)] can also be solved by the
ICC method. Solving the numerical problem in every step of
the simulation is too expensive to be feasible, however. For
that reason, the “bubble ion” model cannot be used in a com-
puter simulation. It serves, however, as a useful concept to
help in developing our interpolation technique to handle ions
crossing the dielectric boundary in simulations.

The model that can be simulated is the one where the
surface of the ion is not polarizable, namely, we assume
that �σ (s) = 0 [Fig. 1(d)]. The surface charge σs can then
be squeezed into the center of the ion producing the effec-
tive charge in Eq. (4) representing the screening by the sur-
rounding dielectric. This is the charge used in the screened
Coulomb potential of the charged hard spheres of the PM.
The surface of the ion is electrostatically inactive; only the
hard wall remains that prevents ions from overlapping.

This model can be used straightforwardly when ions do
not overlap with dielectric boundaries. The model, however,
suffers from the problem of energy divergence as the ion
crosses the dielectric boundary. In this paper, we present an
interpolation technique inspired by the “bubble ion” model to
overcome this difficulty. We discuss the errors produced by
this approximation to an ion.

III. THE INDUCED CHARGE COMPUTATION METHOD

The electrostatic problem can be treated by solving an
integral equation using the induced charge density as an un-
known variable instead of solving partial differential equa-
tions (the Poisson’s equation with boundary conditions) using
the electrical potential as an unknown variable. The resulting
ICC equation8, 11 is

ε(s)

�ε(s)
h(s) + 1

4π

∫
B

ds′ h(s′)
(s − s′) · n(s)

|s − s′|3

= − 1

4π

∑
k

qk

ε(rk)

(s − rk) · n(s)

|s − rk|3 , (8)

where B is the entire dielectric boundary in the system (in-
cluding the surfaces of the “bubble ions” if they are present),
h(s) is the induced charge density, ε and �ε(s) are the mean
and difference of the dielectric coefficients on the two sides
of the boundary at s, and n(s) is the normal vector of the sur-
face at point s. The right-hand side of the equation is propor-
tional to the normal electric field produced by the source point
charges qk in the system. The point charges are in positions rk

in regions of dielectric coefficient ε(rk).
The solution of this equation is performed numerically by

dividing the whole surface B into surface elements Bα (tiles).
Assuming that hα = h(sα) is constant on the αth tile, where sα

is the center of the αth tile, the equation can be written for sα ,
∑

β

hβ

[
ε(sα)

�ε(sα)
δαβ + 1

4π
Iαβ

]

= − 1

4π

∑
k

qk

ε(rk)

(sα − rk) · n(sα)

|sα − rk|3 , (9)

where the integral

Iαβ =
∫
Bβ

ds′ (sα − s′) · n(sα)

|sα − s′|3 (10)

expresses the mutual polarization between tiles and takes
into account the curvature of the tiles. This system of linear
equations can be expressed as a matrix equation

Ah = c, (11)

where matrix A is defined by the expression in brackets in
Eq. (9). The vector h contains the surface charges at the tile
centers, while vector c contains the direct effect of the source
charges (right-hand side of Eq. (9)). This latter quantity
changes as ions move in the simulation; the induced charge
can be obtained from a backsubstitution. The filling of the
matrix and its LU decomposition [which writes the matrix as
the product of a lower and an upper (LU) triangular matrix]
is a very time consuming process. Therefore, this method is
feasible only if the matrix A can be precomputed and LU
decomposed only once because it does not change in the
simulation. This is the case when the dielectric boundary does
not change its geometry in the simulation. If the moving ions
carry dielectric boundaries on their surfaces (such as in the
case of the “bubble ion”), this condition does not hold. The
“bubble ion” model, therefore, is not practical in simulations.

Once the induced charge densities hα are computed, they
are treated as point charges hαaα placed in the tile centers
sα , where aα is the area of the tile. The energy is then cal-
culated from the usual Coulomb interactions. The discretized
surface charge hα = h(sα) is a representation of the total in-
duced charge density on the ion’s surface σtot(s) introduced in
Eq. (7).

The case of sharp dielectric boundaries is an idealization.
In practice, dielectric boundaries are rather diffuse with the di-
electric constant changing gradually over a finite region. This
case, however, is computationally more expensive because a
volume must be discretized into volume elements rather than
just a surface into surface elements. For this reason, most
authors use sharp dielectric boundaries in their models for
simulations.
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IV. INTERPOLATION OF ENERGY OF THE
CROSSING ION

We will illustrate our idea by the example of a spherical
ion crossing an infinite, flat boundary [Fig. 2(a)]. This sys-
tem makes it possible to test the method in a simple geometry
for which even an analytical solution is available. More ex-
tensive simulations for practical problems (ion channels, dou-
ble layers) in comparison with experiments will be published
later, but those comparisons would provide a check of the ion
channel or the double layer model, not the simulation method
(which is a goal here). We denote the position of the sphere’s
center with z, which is the coordinate perpendicular to the
surface. The origin (z = 0) is at the interface. The boundary
separates two dielectric media with dielectric coefficients ε1

and ε2. We denote the induced charge densities on the two
portions of the ion’s surface with which it is in dielectrics 1
and 2 by h1 and h2, respectively. The areas of these spherical
caps are a1 and a2, respectively.

Before we describe the interpolation procedure, we estab-
lish two requirements that we expect from our methodology.

1. The first requirement is a consequence of the fact that we
treat the ion as an effective point charge qk/ε(rk) at po-
sition rk with its surface not playing any part electrostat-
ically [Fig. 1(d)] when it does not overlap the dielectric
boundary. As boundary conditions for our interpolation
mechanism, therefore, we expect from the method that
it reproduces the point-charge solutions when the ion is
in contact with the boundary on one or the other side
(z = ±R in Fig. 2(a)). We emphasize that the “bubble
ion” model does not meet this requirement; it is only
used as a useful concept to construct the mechanism.

2. The other requirement is additivity: if charge qA (when
alone) induces hA polarization charge density on the di-
electric boundaries and qB (when alone) induces hB ,
then the two charges (when they are present together)
induce hA + hB .

Let us see, how a “bubble ion” behaves when it crosses a
dielectric boundary [Fig. 2(a)]. First of all, when this happens,
the electrostatic problem is solvable (with ICC, for example)
and the energy of the ion changes continuously as the ion
crosses the interface. If this is the only ion in the system, the
energy changes continuously between two well-defined lim-
iting values: the self energies of the ion in contact positions
with the boundary in dielectrics 1 and 2. This self-energy has
two parts: the interaction with the induced surface charges on
the surface of the ion (h1 and h2) and with the induced surface
charge on the dielectric boundary, hw,

Us = U ion
s + Uw

s . (12)

Note that the boundary has a hole in it when an ion overlaps
with it.

The first term of the self-energy, U ion
s , has well-defined

limiting values on the two sides of the surface, when the full
body of the ion is in dielectric j ,

U ion
s,j = q2

8πε0R

(
1

εj

− 1

)
, (13)

where εj is the dielectric coefficient in region j . This is the
well-known Born expression39 for solvation of a spherical ion
in a dielectric. In the “bubble ion” model, this equation is a di-
rect consequence of Poisson’s equation. This term is U ion

s,1 for
z < −R, while it is U ion

s,2 for z > R. This interaction energy is
negative and deeper in the dielectrics with larger εj .

The self-energy U ion
s,j of a point charge used in the PM

diverges (limR→0 U ion
s,j = −∞), because the ion’s induced

charge is infinitely close to the central point charge. This does
not cause any problem in calculations using the PM in one
phase, because this term does not change as ions move in their
host dielectric εj . When the ion changes its dielectric environ-
ment, i.e., goes from one phase to another; however, this term
must be taken into account. We assume that the ion has a finite
self-energy (solvation energy, see Ref. 40) U ion

s,j despite the
fact that we treat the ion as a point charge in the simulation.
Therefore, we can meet requirement 1, if we establish the lim-
iting values U ion

s (z = −R) = U ion
s,1 and U ion

s (z = R) = U ion
s,2 as

given by Eq. (13).
Between these limiting values, U ion

s (z) changes continu-
ously as the ion crosses the boundary, because the common
areas of the ionic surface with dielectrics 1 and 2 (a1 and a2)
change continuously [see Fig. 2(a)],

U ion
s (z) = 1

8πε0

q

R
qtot(z), (14)

where

qtot(z) =
∫

a1

h1da +
∫

a2

h2da (15)

is the total induced charge on the surface of the ion. In gen-
eral, qtot(z) depends on z through all the variables h1(z), h2(z),
a1(z), and a2(z). We assume, however, that the induced charge
densities on the areas a1 and a2 depend, to first order, only on
q, R, and εj in the following way [see Eq. (1)]:

hj = q

4πR2

(
1

εj

− 1

)
, (16)

so they can be taken to be constant and independent of z. This
assumption means that we take into account the polarizing
effect of only the central charge; the cross polarization ef-
fects between the charges on the whole dielectric boundary
B (expressed by the non-diagonal elements of matrix A) are
ignored. Because the non-diagonal elements of the matrix A
are small compared to the diagonal elements, this assumption
is reasonable and results in a solely geometrical problem,

qtot(z) = h1a1(z) + h2a2(z), (17)

namely, we only need to determine the areas ai(z). (The ap-
proximation of the surface induced charge neglecting the off-
diagonal entries of the ICC matrix has been studied in detail
elsewhere and called the BIBEE model.41) For a flat bound-
ary [Fig. 2(a)], the solution is straightforward, because the
area aj = 2πR�zj of a spherical cap of height �zj is pro-
portional to z. The resulting equations for ai(z) are

a1(z) = 2πR(R − z),

a2(z) = 2πR(R + z). (18)
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These equations imply that qtot(z) and U ion
s (z) also change lin-

early in the region of overlap.
As far as the other term of the self-energy, the interac-

tion with the induced charge density on the wall, hw, is con-
cerned, the limiting values Uw

s (z = ±R) are also well defined.
These values are the interactions of the effective point charge
qj/εj placed at z = ±R with the polarization charge density
induced by itself on the dielectric boundary (calculated, for
example, with ICC). Between these limiting values, the term
Uw

s (z) changes continuously, because the geometry of the di-
electric boundaries changes continuously as the “bubble ion”
is crossing the boundary. Note that divergence does not oc-
cur because the εion = 1 interior of the “bubble ion” always
separates the central charge from the boundary.

In general, the dielectric boundary is not necessarily a
single, flat boundary. It can be (1) curved and (2) it is possi-
ble that more than two boundaries meet along a line (the ion
channel geometry, studied in subsequent papers, is an exam-
ple). We can generalize Eq. (17) for such cases as

qtot(r) =
∑

i

hiai(r). (19)

Based on the approximation in Eq. (19), we suggest the fol-
lowing interpolation scheme to compute the energy of the sys-
tem when an ion overlaps with the boundary.

(1) In the first step, we shrink the induced charge qtot into
the ion’s center as a point charge [Fig. 2(b)]. In this case, the
surface of the ion becomes electrostatically inactive shown
by the dotted sphere in Fig. 2(b). Merging this induced charge
qtot(r) with the source charge q, we define the effective charge
in the center of the ion and, through this, we define an effec-
tive dielectric coefficient εeff(r),

qeff(r) = q + qtot(r) = q

εeff(r)
. (20)

From Eqs. (16), (19) and (20) we obtain that

1

εeff(r)
=

∑
i

a∗
i (r)

εi

, (21)

where a∗
i (r) = ai(r)/4πR2 is the fraction of area ai(r) from

the whole ion-surface in εi (a normalized surface). This cor-
responds to computing the ionic self-energy in the usual way
using the effective dielectric coefficient

U ion
s (r) = q2

8πε0R

(
1

εeff(r)
− 1

)
. (22)

We perform this interpolation for every point r of the simula-
tion cell. This way, the effective dielectric coefficient can be
obtained as a position-dependent quantity εeff(r). This inter-
polation has to be performed for every ion species, because
the radii of each species is different. If a more complex di-
electric boundary is present (if the boundaries are curved, for
example), εeff(xl, ym, zn) can be precomputed on a grid at the
beginning of the simulation, tabulated, and interpolated for an
arbitrary r during the simulation.

(2) In the next step, we show how to compute this prob-
lem with the ICC method. Most importantly, the subsur-
face of the dielectric boundary inside the ion’s body, namely,
where the ion overlaps with the dielectric boundary (shown by

dashed line in Fig. 2(b)), has to be removed when we compute
the induced charge density of the overlapping ion. This is easy
conceptually, but more difficult in practice. Because the ma-
trix A takes so long to build and invert, we would rather not
change it by removing the overlapping tiles. Below we out-
line an approximate way to accomplish the same thing with-
out changing the matrix.

The overlapping tiles must be left in the calculation when
we compute the induced charge density of a non-overlapping
ion. This a consequence of requirement 2: the induced charge
densities of the overlapping and non-overlapping ions must
be additive. So, if the overlapping ion is not present, the in-
duced charge density of the non-overlapping ion must be com-
puted with the dielectric boundary intact. This means that the
induced charge density of the non-overlapping ion must be
computed for every surface element whether or not another
ion might overlap with that surface element time to time.

Due to additivity, the ICC equation [Eq. (8)] can be
solved using individual ions as source charges separately (the
sum over k on the right-hand side is absent). The right-hand
side of such an equation is computed as

cα,k =
⎧⎨
⎩

0, if |sα − rk| ≤ Rk,

− 1

4π

qk

εeff(rk)

(sα − rk) · n(sα)

|sα − rk|3 , if |sα − rk| > Rk,

(23)

where Rk is the radius of the kth ion. With this approach we
eliminate the direct polarizing effect of an ion on the tiles that
are overlapped with this particular ion (the distance of ion
center and tile center is smaller than the ion radius). The po-
larization effects of other tiles on these overlapping tiles is
still nonzero (because we use the original matrix A) but they
are small. In this way, we do not have to recompute the ma-
trix; the method does not impose any additional cost on the
computation apart from computing εeff(r). Computing εeff(r),
however, is fast compared to computing the induced charge
h. Note that εeff(rk) is used in Eq. (23) as the dielectric coeffi-
cient of the ion at position rk .

Then, the polarization charge density, hα,k induced by ion
k on surface element α can be obtained from a LU backsub-
stitution. The total induced charge density on tile α can be
obtained as a sum over the ions

hα =
∑

k

hα,k, (24)

where the sum is taken for ions that do not overlap with the
surface element α.

The interaction energy between two ions is

uion−ion
ij (ri , rj ) = qiqj

8πε0|ri − rj |
(

1

εeff(ri)
+ 1

εeff(rj )

)
.

(25)
The interaction energy between an ion and an induced charge
in the center of a tile is

uion−ind
iα (sα, ri) =

⎧⎨
⎩

0, if |sα − ri | ≤ Ri,
qihαaα

8πε0|sα − ri | , if |sα − ri | > Ri.

(26)
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With this equation, we eliminate the interaction of an ion with
the tiles that overlap with it mimicking the bubble ion. The
total energy is

U =
∑

i

∑
j<i

uion−ion
ij +

∑
i

∑
α

uion−ind
iα . (27)

V. RESULTS FOR AN ION CROSSING A FLAT
DIELECTRIC BOUNDARY

Our procedure is illustrated by the example of a spher-
ical ion (with radius R) crossing an infinite, flat, and sharp
dielectric boundary separating two regions with dielectric co-
efficients ε1 and ε2 (Fig. 3). There is another ion in a fixed
position zf = −4R with an effective point charge qf/ε1 and a
crossing ion whose center is at coordinate z. We will plot our
results as functions of this variable. The charge of the cross-
ing ion is qc in the “bubble ion” model in the center of the
bubble together with the induced charge densities on the bub-
ble’s surface (h1, h2), while it is a qc/εeff(z) effective charge in
the interpolation method. In this study, we use the elementary
charge for both the crossing and the fixed ion: qc = qf = e.
Using other values does not influence our main conclusions.

We will study the induced charge densities (and the inter-
action energies with them) on three distinct dielectric bound-
aries: (1) the ion’s surface in dielectric ε1, (2) the ion’s surface
in dielectric ε2, and (3) the flat dielectric boundary outside the
ion’s body. We denote the induced charge densities (induced
by q) on these surfaces by h1,q , h2,q , and hw,q , respectively.
We report charges in the unit of the elementary charge, while
we report the energies in unit of e2/R.

We use the ICC method8 to compute the induced charges.
For this, the surface of the dielectric boundary must be dis-
cretized into surface elements (Bα). We performed this dis-
cretization with the method given in the supplementary ma-
terial of Ref. 11. On the surface of the ion and on the flat
dielectric boundary near the ion we defined surface elements
of the size roughly 0.16 × 0.16 (in R unit). Using finer grid
does not influence our results very much. For the numerical
method, we must represent the otherwise infinite surface with
a finite sheet. We used a circular sheet of radius 30R. The
finite size of the discretized dielectric boundary is the main
source of inaccuracies compared to analytical values (that, in
some cases, can be obtained from the image charge method).
This small inaccuracy, however, if we keep its reason in mind,
does not influence our main conclusions.

FIG. 3. An ion of charge qc is crossing the dielectric boundary (separating
regions ε1 = 20 and ε2 = 80) and approaching an ion with effective charge
qf/ε1 at fixed position zf = −4R.

FIG. 4. The effective dielectric coefficient profile as computed from Eq. (28)
for ε1 = 20 and ε2 = 80.

While “bubble ions” are computationally prohibitive in
simulations, it is feasible to calculate the energies of two such
ions near each other with one crossing the dielectric boundary
in a model case. We do this using the ICC method where the
matrix A is recalculated and inverted for every position of the
moving ion. Symbols in subsequent figures represent these
calculations. Solid lines, on the other hand, represent results
of the interpolation scheme, when the crossing ion is a point
charge q/εeff(r). Outside the overlapping region (represented
by area of gray shade in the figures), this is the way as we nor-
mally compute energy in simulations for the PM. Therefore,
solid lines at contact positions, z = ±R, represent the limit-
ing values for the energies between which the interpolation
must work.

The profile of the effective dielectric coefficient as com-
puted from Eqs. (18) and (21) is

εeff(z)=

⎧⎪⎪⎨
⎪⎪⎩

ε1, if z ≤ −R,

1

2

(
1 − z/R

ε1
+ 1 + z/R

ε2

)−1

, if − R < z < R,

ε2, if z ≥ R,

(28)

and plotted in Fig. 4.
The polarization charges induced by the crossing ion

integrated over three distinct dielectric boundaries are plot-
ted in Fig. 5. The total induced charge on the ion’s surface
is 1/ε1 − 1 = −0.95 on the left-hand side (z ≤ −R), while
it is 1/ε2 − 1 = −0.9875 on the right-hand side (z ≥ R).
These are the limiting values for the total induced charges∫
a1(z) h1,qcda and

∫
a2(z) h2,qcda. These functions change lin-

early with z between the limiting values in the case of the
interpolation method (see Eqs. (17) and (18)) as shown by the
red and green solid lines. In particular,

∫
a1(z) h1,qcda changes

linearly between 1/ε1 − 1 (when a1 = 4πR2) and 0 (when
a1 = 0). The exact solutions for the “bubble ion” are plotted
by symbols (open red circles and green squares) and agree
with the interpolated results very well. This indicates that the
approximation introduced in Eq. (19) is reasonable.

The total induced charge on the flat dielectric boundary
(which has a hole, when the ion overlaps with it) also has two
well-defined limiting values: (ε1 − ε2)/ε1(ε1 + ε2) = −0.03
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FIG. 5. The total polarization charge induced by the crossing ion, qc = e,
on the left (

∫
a1

h1,qc da) and right (
∫
a2

h2,qc da) spherical caps of the crossing

ion and on the dielectric boundary outside the body of the ion (
∫

hw,qc da)
as functions of the z-coordinate (in R-unit) of the crossing ion. In this figure
and following figures, symbols represent results for the “bubble ion” model,
while solid lines represent results obtained with the interpolation scheme for
|r| < R and with the point charge model for |r| ≥ R.

for z ≤ −R and (ε2 − ε1)/ε2(ε1 + ε2) = 0.0075 for z ≥ R.
The total charge in the overlap region (|z| < R) changes
almost linearly in the “bubble ion” model (open blue dia-
monds), while the shape of the interpolated curve (solid blue
line) is different from this linear solution (the same is valid for
the total charge – black curve and triangles). The main source
of the deviation is the assumption that the qc/εeff(z) effective
charge has the same polarizing effect on the dielectric bound-
ary as the “bubble ion” has. The result, however, obeys the
boundary conditions at z = −R and z = R and produces a
continuous curve between the limiting values.

We denote the interaction energy of qi with the polar-
ization charge induced by qj on a given segment of the di-
electric boundary by U (qi − hγ,qj

), where i and j denotes
the crossing or the fixed ion (c or f) and γ denotes the seg-
ment (1, 2, or w). Figure 6 shows the interaction energies of
qc with its own induced charges induced on the various seg-
ments of the dielectric boundary. The energies U (qc − h1,qc )
and U (qc − h2,qc ) behave the same way as the total induced
charges

∫
a1

h1,qcda and
∫
a1

h2,qcda (compare the top panel of
Fig. 6 with Fig. 5) because the distance of qc from h1,qc (and
also from h2,qc ) is constant (R). The figure shows the solution
that we obtain by assuming that the ions are point charges
(dashed lines). For this special case, these curves can be (and
are) calculated with the image charge method.

The next term, U (qc − hw,qc ), is the one that causes the
divergence problem when point charges are used. Outside the
overlapping region, the three models (“bubble ion,” interpo-
lation, and point charge) give practically (apart from numer-
ical errors) identical results. In the overlapping region, the
point-charge curves diverge as |z| → 0, while the interpola-
tion gives a curve that is quite similar to the “bubble ion” re-
sult and changes smoothly between the limiting values. The
same is true for the sum of these energies.

The polarization charge induced by the other, fixed ion is
shown in Fig. 7. The induced charges on the spherical caps,∫
a1

h1,qfda and
∫
a2

h2,qfda, indicate a zero-mean dipole-like

FIG. 6. The interaction energy of charge qc with the polarization charge in-
duced by itself (self-energy) as a function of the position of the crossing ion
(z). Interactions with the charge on the left (

∫
a1

h1da) and right (
∫
a2

h2da)
spherical caps are shown in the top panel. Interaction with the charge induced
on the dielectric boundary outside the body of the ion (

∫
hwda) is shown in

the middle panel. The total interaction energy is shown in the bottom panel.
The meaning of symbols and solid lines is the same as in Fig. 5. Here and in
subsequent figures, the dashed lines represent results of image charge calcu-
lations assuming that the crossing ion is a point charge.

distribution in the “bubble-ion” model (magnified in the in-
set). The total induced charge on the left and right caps are
positive and negative, respectively, and they are equal in mag-
nitude as they are supposed to be according to Gauss’s law.
These charges separately are not distinguished in the interpo-
lation method, while their sum is taken to be zero (solid black
line).

The total polarization charge on the flat boundary,∫
hw,qfda, is constant in the interpolation method according

to our assumption of additivity. It is independent of the posi-
tion of the crossing ion. The “bubble ion” model reproduces
this result within 0.4% error. The deviation (hidden by the
scale of the figure) is due to the finite size of the flat boundary
used in the ICC calculations.

The interaction energy of the crossing charge (qc) with
the polarization charges induced by the fixed ion (qf/ε1) is
shown in Fig. 8. The interactions with the charges on the
spherical caps (top panel) reflect the behavior of the total in-
duced charges (Fig. 7) on these caps because the distance of qc
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FIG. 7. The total polarization charge induced by the fixed ion, qf = e, on
the left (

∫
a1

h1,qf da) and right (
∫
a2

h2,qf da) spherical caps of the crossing

ion and on the dielectric boundary outside the body of the ion (
∫

hw,qf da)
as functions of the z-coordinate of the crossing ion. The meaning of symbols
and lines is the same as in Fig. 6.

from these charges is constant (R). The interaction with hw,qf

shows interesting behavior (bottom panel). The interpolation
method yields a symmetrical curve because the interaction de-
pends on |z|. The jumps in the curve are due to the nature of
discretization of the flat dielectric boundary. As the crossing
ion proceeds through the boundary, the surface element with
which it overlaps vanishes from the calculation abruptly be-
cause this overlap is checked by the distance from the center
of the surface element.

The “bubble ion” model provides a smooth curve, but it
is not symmetrical for the following reason. The “bubble ion”
is polarized by qf: a dipole-like charge distribution appears on
its surface. This induced dipole is larger when the crossing ion
is closer to the fixed ion. This dipole has an additional polar-
izing effect on the flat dielectric boundary: it changes hw,qf . In
the “bubble ion” model, the requirement for additivity, there-
fore, is not fulfilled. It makes sense to talk about additivity
only if the dielectric boundaries do not change as ions move.
In the “bubble ion” model, however, the dielectric boundary is
changed as the “bubble ion” moves in space. Furthermore, the
“bubble ion” model does not meet the other requirement ei-
ther: it does not reproduce the limiting values at z = −R and
z = R (also because of the induced dipole). These limiting
values are the values given by the solid curves at z = ±R in
all the figures. These facts show that the “bubble ion” model is
here being used only as a helpful concept to develop the inter-
polation mechanism. It could be used (in theory) to compute
the energy in the overlap-region, but only if we use the same
model outside the overlap-region too. Because this is too time
consuming, we use the point charge model on the two sides of
the overlap-region and an interpolation scheme in between.

The image charge solution neglects the size of the cross-
ing ion (dashed line). Outside the overlap-region, the solution
agrees with the numerical solution (apart from numerical er-
rors). As the point charge approaches the dielectric boundary,
its interaction with the surface charge induced by another ion
approaches a finite value. This interaction term, therefore, is
not a source of the divergence despite the fact that the point
charge gets infinitely close to the charge on the wall. The im-

FIG. 8. The interaction energy of the crossing charge qc with the polariza-
tion charge induced by the fixed ion qf as a function of the position of the
crossing ion (z). Interactions with the charge on the left, U (qc − h1,qf ), and
right, U (qc − h2,qf ), spherical caps are shown in the top panel. Interaction
with the charge induced on the dielectric boundary outside the body of the
ion, U (qc − hw,qf ), is shown in the bottom panel. The meaning of symbols
and lines is the same as in Fig. 6.

age charge solution, therefore, could be a suitable approxima-
tion for this energy term. As a matter of fact, we used this
approximation in our earlier study29 though, at that time, we
were not aware of all the subtleties discussed in this work.

The interaction energy of the fixed charge (qf) with the
polarization charge of the crossing charge (hγ,qc ) also shows
an interesting behavior (Fig. 9). The top panel shows the in-
teraction of qf with the charges on the spherical caps. The
curves show a behavior similar to those for the U (qc − h1,qc )
and U (qc − h2,qc ) interactions (see top panel of Fig. 6) except
that the limiting values differ more on the two sides now be-
cause not only are the charges different in the two positions,
but also the distance of qf from the spherical caps (this dis-
tance was R in the case of the U (qc − h1,qc ) and U (qc − h2,qc )
interactions).

The sum of these two energy terms gives a smooth curve
in the case of the “bubble ion” and the interpolated models.
The agreement between them is excellent. The point charge
solution, however, shows a jump in the interaction energy at
the interface (dashed line, see inset of the top panel). This
solution was obtained by computing the interaction with the
induced charge on the crossing point-charge ion; this induced
charge is also a point charge of magnitude (1/εi − 1)qc “on
top” of the ionic point charge qc. The jump in εi explains the
jump in the interaction energy between qf and this charge.

The interaction energy with hw,qc also changes contin-
uously in the “bubble ion” and the interpolation models
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FIG. 9. The interaction energy of the fixed charge qf with the polarization
charge induced by the crossing ion qc as a function of the position of the
crossing ion (z). Interactions with the charge on the left, U (qf − h1,qc ), and
right, U (qf − h2,qc ), spherical caps are shown in the top panel. Interaction
with the charge induced on the dielectric boundary outside the body of the
ion, U (qf − hw,qc ), is shown in the middle panel. The total interaction energy
is shown in the bottom panel. Insets magnify the region close to the boundary.
The meaning of symbols and lines is the same is in Fig. 6.

(middle panel). Again, the point charge solution (computed
from image charges) has a jump at the interface. This is be-
cause the hw,qc surface charge is induced by a qc/ε1 effective
charge on the left-hand side, while it is induced by a qc/ε2

effective charge on the right-hand side. The abrupt jump in εi

results in a jump in hw,qc and, consequently, in the interaction
energy U (qf − hw,qc ).

The sum of these terms, however, results in a smooth
function (bottom panel), not only in the numerical solutions
(“bubble ion” and interpolation models), but also in the point
charge solution. The two jumps in the top and middle pan-
els compensate each other. This also justifies our simplified
treatment in our earlier work.29 In a general case, however, a
simple solution from image charges is not available. In such
cases, a numerical method and the algorithm that interpolates
for the overlap-region is necessary.

The interaction energy of the fixed ion (qf) with its own
induced charge (hγ,qf ) is shown in Fig. 10. For the “bubble
ion” model, the interaction with the charge on the ion’s sur-
face (black triangles in the top panel) increases as the cross-

FIG. 10. The interaction energy of the fixed charge qf with the polariza-
tion charge induced by itself as a function of the position of the crossing
ion (z). Interactions with the charge on the left, U (qf − h1,qf ), and right,
U (qf − h2,qf ), spherical caps are shown in the top panel. Interaction with
the charge induced on the dielectric boundary outside the body of the ion,
U (qf − hw,qf ), is shown in the middle panel. The total interaction energy is
shown in the bottom panel. The meaning of symbols and lines is the same as
in Fig. 6.

ing ion approaches the fixed ion. The explanation, again, is
that the fixed ion polarizes the crossing ion. This energy term
reflects the interaction of qf with the induced dipole on the
crossing ion. In the interpolation model, this energy is zero,
because the ion is not polarizable, so the induced dipole does
not appear.

The interaction with the induced charge on the dielectric
wall is obviously constant in the interpolation method (solid
line in the middle panel). It is different from the image charge
solution (dashed line) due to the finite size of the boundary
used in ICC. The “bubble ion” model shows a deviation from
this constant (symbols) because of the polarizing effect of the
induced dipole on the wall (same effect as in the bottom panel
of Fig. 8).

The total interaction energy between qf and its induced
charge (bottom panel) shows a considerable increase as the
crossing “bubble ion” approaches the fixed ion due mainly to
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FIG. 11. Total energy of the system as a function of the position of the
crossing ion (z). This energy contains the direct interaction between the
two charges (qcqf/|zf − zc|) and the interaction between qc and the induced
charge on qf (0.5qc(1/ε1 − 1)qf/|zf − zc|) in all methods.

the interaction with the induced dipole. Because the model
ions we study are not polarizable, this solution is not appro-
priate for our purpose.

The total energy is the sum of all the electrostatic ener-
gies in the system (Fig. 11): the sum of the charge – induced
charge energies plotted in Figs. 6, 8–10 plus the direct interac-
tion energy between the two charges. The interaction energy
between qc and the induced charge on qf must also be added:
it is a point charge and the interaction can be expressed analyt-
ically (see the caption of Fig. 11). The figure is quite similar
to the bottom panel of Fig. 6, so as a general conclusion we
can state that the main source of the inaccuracy of the inter-
polation method is the self-energy.

VI. CONCLUSIONS

We have proposed a general scheme for simulation of
ions crossing a sharp dielectric boundary in the implicit
solvent framework. The ions are modeled as point charges
embedded inside the body of the ion. The dielectric coef-
ficient is the same inside and outside the ions, while the
induced charge appears on top of the point source charge
also as a point charge. This model can be simulated straight-
forwardly because the computation of the source charge –
induced charge interactions does not require resources in
addition to the source charge – source charge interactions.
In this study, we considered spherical ions with the charges
in the centers of the spheres defined by hard sphere potential
(PM of electrolytes). It is straightforward, however, to extend
the model for non-spherical ions.

We have reported detailed results for an ion crossing a
flat boundary, but the procedure is given (and has been pro-
grammed) for dielectric boundaries of any shape. As a matter
of fact, we applied the method for our ion channel geome-
try where there is a penetrable dielectric boundary between
the solution inside and outside the channel. Using the point
charge approach without the interpolation method described

here, the ions that approach the dielectric boundary from the
low dielectric side are trapped in low-energy positions (the
diverging self-energy is attractive in this case, see Fig. 6 left
from the interface). These trapped ions result in high unphys-
ical peaks in the simulation. Using the interpolation method,
however, we obtained density profiles that behave smoothly in
the neighborhood of the dielectric boundary. We will report
these results in subsequent papers along with checks on the
procedure with curved boundaries. Numerical checks need to
be done on actual curved surfaces, because procedures can
fail on curve boundaries that work well on flat ones, as we
have discussed previously.11

We have reported the results using the ICC method to
treat dielectric boundaries and induced charge densities. The
general scheme, however, can be used for any other Poisson
equation solver.
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