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The selectivity filter of the L-type calcium channel works as a Ca2+ binding site with a very large
affinity for Ca2+ versus Na+. Ca2+ replaces half of the Na+ ions in the filter even when these ions
are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong
selectivity is analyzed in this paper. We use Widom’s particle insertion method to compute the space-
dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations.
These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J.
94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines
the advantage that one of the ions has over the other in the competition for space in the crowded
selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in
the bath in larger quantity (Na+) has the “number” advantage which is balanced by the free-energy
advantage of the other ion (Ca2+). The excess chemical potentials are decomposed into hard sphere
exclusion and electrostatic components. The electrostatic terms correspond to interactions with the
mean electric field produced by ions and induced charges as well to ionic correlations beyond the
mean field description. Dielectrics are needed to produce micromolar Ca2+ versus Na+ selectivity
in the L-type channel. We study the behavior of these terms with changes in bath concentrations of
ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore
and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a
similar mechanism. © 2011 American Institute of Physics. [doi:10.1063/1.3532937]

I. INTRODUCTION

The selectivity filter of calcium (Ca) channels, especially
the highly Ca2+ selective L-type Ca channel, is thought to
have a high-affinity binding site for cations.1 The filter, at ap-
propriate pH, is rich in negatively charged carboxyl groups
similar to the binding sites of Ca2+-binding proteins. Point
mutation experiments show that the filter contains four nega-
tive charges that make the filter selective for Ca2+ over mono-
valent cations. The energetics of this selectivity is the main
concern of this paper. We compute the components of the
equilibrium free-energy landscape of various ions as a func-
tion of Ca2+ concentration in the bath to understand how each
component contributes to selectivity.

The calculation of free-energy of binding of a ligand to a
receptor has drawn considerable attention in the last decades.2

Though the theoretical background of free-energy calcula-
tions has been known for some time,3, 4 their practical use
became possible with the appearance of fast computers. Af-
ter the development of the first simulation methods for free-
energy calculations,5–12 application to biomolecular systems
started in the middle of the 1980s.13–18 Most free-energy cal-
culations focus on relative free-energy differences between
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states 1 and 2. This difference is formally given by Zwanzig’s
formula:4

�G = G(2) − G(1) = −kT ln 〈exp (−�U/kT )〉1, (1)

where k is Boltzmann’s constant, T is the absolute tempera-
ture, �U is the energy difference between configurations of
the two states, and the 〈· · ·〉1 denotes an ensemble average in
state 1. Zwanzig introduced this procedure as a perturbation
method, where state 2 is a small perturbation to state 1. There-
fore, it is called the free-energy perturbation (FEP) method. In
practical biological applications states 1 and 2 can be far from
each other, so the difference is usually computed by an inte-
gration through small steps between states 1 and 2.

In the case of Ca channels, we are interested in the bind-
ing free-energy of a given ionic species i in the selectivity
filter from a bath of given ionic concentrations:

�Gi = Gi (filter) − Gi (B), (2)

where B denotes “bath.” The free-energy Gi (B) can be ob-
tained from Eq. (1) assuming that state 1 is the bath electrolyte
and that state 2 is produced by adding an ion to the bath elec-
trolyte:

Gi (B) = −kT ln
〈
exp

(−�U B/kT
)〉

B (3)

0021-9606/2011/134(5)/055102/14/$30.00 © 2011 American Institute of Physics134, 055102-1

Downloaded 01 Feb 2011 to 128.187.97.4. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3532937
http://dx.doi.org/10.1063/1.3532937
http://dx.doi.org/10.1063/1.3532937
mailto: boda@almos.vein.hu


055102-2 Boda et al. J. Chem. Phys. 134, 055102 (2011)

and similarly for Gi (filter). This equation formally corre-
sponds to Widom’s particle insertion method,5 in which a
“ghost” particle is added to the system at uniformly dis-
tributed random locations; the energy cost of this insertion
is calculated; and the Boltzmann factor is averaged in a sim-
ulation sampled over the system without the inserted particle.
(That is why it is called a ghost particle.) Widom’s method es-
timates the excess chemical potential (EXCP) that describes
the influence of intermolecular interactions beyond the ideal
gas approximation:

μi = μTOT
i − kT ln �3

i = kT ln ci (r) + μEX
i (r), (4)

where μi is the configurational chemical potential, �i

= h/
√

2πmi kT is the thermal de Broglie wavelength, h is
Planck’s constant, mi is the mass of the ion, ci (r) is the pos-
sibly space-dependent density (we call it concentration from
now on) profile, and μEX

i (r) is the possibly space-dependent
EXCP. The free-energy Gi (B) then corresponds to the EXCP
of the ion μEX

i (B). The free-energy difference then reduces to
the calculation of the difference of EXCPs:

�Gi = �μEX
i = μEX

i (filter) − μEX
i (B). (5)

Three very important aspects of ion binding in ion channels
must be emphasized.

(1) The EXCP is strongly space dependent in an ion chan-
nel and can change steeply over a wide range. The con-
centration ci (r) necessarily changes steeply over a wide
range too. Ca2+ ions, for example, can have a large den-
sity in the filter (on the order of 10 M), while their
concentration can be less than 10−6 M in the bath (for
example, in biological cells). This variation must be mir-
rored by μEX

i (r) because μi is constant in equilibrium
[see Eq. (4)]. Therefore, the binding free-energy cannot
be characterized simply by a number: one must calcu-
late an EXCP profile �μEX

i (r) (free-energy landscape)
in order to properly describe the energetics of ion bind-
ing. Anything that changes the landscape will change
the binding free-energy. Rate constants derived from that
free-energy are widely used to characterize ion binding
to enzymes19 and their cousin,20 ion channels.21 Binding
constants cannot be constant if free-energy profiles vary.

(2) The other, often overlooked, property of binding free-
energies is that they usually depend strongly on the ionic
concentrations (e.g., of Ca2+ and Na+) in the bath. In
molecular dynamics (MD) simulations, the binding free-
energy is usually computed at infinite dilution22–24 with
little attention paid to the fact that experimental mea-
surements are usually reported over a wide range of con-
centrations and compositions of the bathing solutions.
The ionic composition of the filter (and consequently,
the EXCP) changes as the composition of that bath is
changed. In the L-type Ca channel, for example, Ca2+

gradually replaces Na+ in the selectivity filter as the con-
centration of Ca2+ is increased in the bath from 0 to mil-
limolar. Therefore, EXCP profiles should be reported as
functions of bath electrolyte composition so that simula-
tions can connect to experiments.

(3) Third, the structure of the binding site alone is not
enough to characterize the conductance properties of
the channel. (In this work, we define the binding site
as the region of the selectivity filter, where the lo-
cal concentration is very large.) As we have pointed
out previously,25–29 regions outside the binding site,
where the ionic concentrations are very small (depletion
zones), are equally important in determining the perme-
ation properties of the channel (as they are in determin-
ing properties of transistors30). We can look at the per-
meation pathway as resistors in series, where a slice of
the channel along the axis corresponds to a resistor. If
the concentration is depleted in such a slice, the resis-
tance in that slice is large. Consequently, the resistance
of the whole channel becomes large too. The depletion
zones are reflected in the EXCP profiles. The energetics
of the EXCP profiles then provides useful information
about the formation of depletion zones and the conduc-
tance properties of the channel. This is especially im-
portant because the current flowing through the channel
at various bath concentrations is the primary experimen-
tal variable to compare with simulations or theories and
also responsible for many biological functions.

The Widom method is frequently overlooked in
biomolecular simulations probably because particle insertion
is inefficient in dense systems with the explicit water usually
used in simulations of biological systems. In this work, we
use a simple implicit-water model for the Ca channel that
has been successful in qualitatively reproducing experimen-
tal data such as the micromolar Ca2+ block of Na+ current
and other mole fraction effects in mixtures of various ions
in the L-type Ca channel.27, 28, 31–34 In our reduced channel
model, the terminal groups of the four glutamate side chains
(EEEE) are treated as mobile structural ions, and the polar-
ization properties in the channel are tuned by adjusting the
dielectric constant of the channel protein.31 Competition of
ions for space in the highly charged and crowded selectivity
filter is the main driving force behind this selectivity, called
the charge-space competition (CSC) mechanism.35, 36

In this study, this reduced channel model is studied
using equilibrium grand canonical Monte Carlo (GCMC)
simulations31, 37–39 and the EXCP profiles are computed with
Widom’s particle insertion method5, 9 (see the Appendix). Fol-
lowing the recipe of Gillespie,40 we decompose the EXCP
into various terms (volume exclusion, electrostatic term due
to ions, electrostatic term due to dielectrics, and a self-term
due to the dielectric barrier) and study how these components
contribute to selectivity. Using a model of the ryanodine re-
ceptor (RyR) calcium channel that both reproduces and pre-
dicts experimental data, Gillespie40 showed that RyR selects
Ca2+ over monovalent cations because Ca2+ ions are screened
(coordinated) better by the four aspartates of the selectivity
filter. The RyR model does not include dielectric interfaces,
which we have shown gives the L-type calcium channel sub-
stantially larger Ca2+ affinity than RyR.31 This paper builds
on the work of Gillespie, not only by including dielectric in-
terfaces, but also by analyzing the effect of changing the pore
geometry on the energetic components of selectivity.
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II. MODEL

In our model, most of the atomic structure of the calcium
channel is reduced to a coarse-grained geometry [Fig. 1(a)].
The channel protein is represented as a continuum solid with
dielectric coefficient εpr. The three-dimensional body of the
protein is obtained by rotating the thick line in Fig. 1(a)
about the r = 0 axis. The protein, thus, forms an aqueous
pore that connects the two baths. Water in the baths and pore
is described as an implicit solvent that is a continuum di-
electrics with uniform dielectric coefficient εw = 80. The cen-
tral cylindrical part of the pore (with radius R = 3.5 − 4.5 Å
and length 10 Å) forms the selectivity filter that includes the
only atoms of the protein that are treated explicitly. These
atoms are eight half-charged “oxygen ions” O1/2−

[Fig. 1(b),
red spheres], representing the charged terminal groups of the
four glutamate residues of the EEEE locus. The structural
oxygen ions are confined to the selectivity filter (their centers
are in the region r ≤ R − 1.4 Å, |z| ≤ 3.6 Å), but they can
move freely inside the filter. The oxygen ions “coordinate”
counter ions as particles of a confined liquid; their arrange-
ment in Fig. 1(b) represents one snapshot of the millions of
configurations sampled during a simulation.

The ions are modeled as charged hard spheres with crys-
tal radii (see caption of Fig. 1). The intermolecular energy
terms due to screened Coulomb potentials and interactions
with polarization charges induced on the dielectric boundaries
[the boundary of the protein and the electrolyte, thick line in
Fig. 1(a)] are described in Sec. III A. Ions are restricted to
the aqueous space of the model and cannot overlap with hard
walls in the system. Figure 1 shows only the small central
region of the simulation cell. The entire simulation cell is a
cylinder with typical dimensions of radius 40 Å and length
180 Å. The channel is embedded in a membrane region that
excludes ions by hard walls as described before.31

III. COMPUTATION OF THE CHEMICAL POTENTIAL
TERMS

In the particle insertion method developed by Widom5, 9

we work with the following operation:

W(U (r)) = −kT ln
〈
e−U (r)/kT

〉
, (6)

where an ion is inserted in a small �V volume around po-
sition r. Its interaction energy with the system is denoted by
U (r), and the brackets denote grand canonical (GC) ensem-
ble average. Widom developed the formula in the canonical
ensemble.9 Following his treatment, we show in the Appendix
that the same formula applies when we simulate the whole
system in the GC ensemble. The quantity W(U ) depends on
position through U (r), namely, on the position where we in-
sert the test particle.

A. Energy terms

Separating the chemical potential into different terms is
based on a separation of the energy of the system into dif-
ferent terms. The ion–ion (denoted by II) interaction energy
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FIG. 1. Model of ion channel, membrane, and electrolyte. The three-
dimensional geometry (B) is obtained by rotating the two-dimensional shape
shown in panel a around the z-axis. The simulation cell is much larger than
shown in the figure. The blue lines represent the grid over which the EXCP
profiles are computed. The grid is finer inside the channel (width 0.5 Å),
while it is coarser outside the channel (width 2 Å). The selectivity filter
(|z| < 5 Å) contains eight half-charged oxygen ions O1/2− (red spheres in
panel b). Green and blue spheres represent Na+ and Ca2+ ions, respectively.
For the radii of the ions, the Pauling radii are used: 0.6, 0.95, 1.33, 0.99, 1.35,
1.81, and 1.4 Å for Li+, Na+, K+, Ca2+, Ba2+, Cl−, and O1/2−, respectively.

between a ghost ion of species i inserted at position r and all
the existing ions in the system is

U II
i (r) =

∑
α

zi zαψ II(r, rα), (7)

where zi is the valence of the inserted ghost ion, the index α

runs over all the existing ions in the system, zα is the valence
of the αth ion, and

ψ II(r, s) = 1

2

e2

4πε0|r − s|
(

1

ε(r)
+ 1

ε(s)

)
(8)

is the interaction energy between two ions with unit valences
at positions r and s, ε(r) is the dielectric constant at position r,
e is the electronic charge, and ε0 is the permittivity of vacuum.
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The ion–dielectric (denoted by ID) interaction energy be-
tween the inserted ion and the polarization charge induced on
the dielectric boundary B by all the other existing ions is

U ID
i (r) = 1

2 ezi

∑
α

zαψ ID(r, rα), (9)

where

ψ ID(r, s) = e

4πε0

∫
B

h(s, r′)
|r − r′|dr′ (10)

is the potential from the polarization charge at position r.
h(s, r′) is the polarization charge at r′ induced by a unit charge
(zα = 1) placed at position s (and vice versa).

The interaction energy between the inserted ion and the
polarization charge induced on B by the ion itself is

U SELF
i (r) = 1

2 z2
i eψSELF(r), (11)

where

ψSELF(r) = ψ ID(r, r) (12)

is the potential from the polarization charge at position r.
The ions are modeled as charged hard spheres (HS). The

HS energy U HS
i is zero if the inserted ion does not overlap

with any other existing particles and infinite otherwise.
The total energy change of the system produced by in-

serting an ion of species i is

Ui (r) = U HS
i (r) + U II

i (r) + U ID
i (r) + U SELF

i (r). (13)

The EXCP of an ionic species i inserted at position r can be
determined from

μEX
i (r) = W

(
U HS

i (r) + U II
i (r) + U ID

i (r) + U SELF
i (r)

)
.

(14)

Note that the interior of the protein and the membrane ex-
cludes ions; therefore, another potential term should be in-
cluded in Eq. (13): an external potential U WALL

i (r), which
is infinite whenever an ion of species i overlaps with these
regions or any hard wall in the system and zero otherwise.
Therefore, rigorously, Eq. (4) should be supplemented with
a corresponding chemical potential term μWALL

i (r). Because
we will show profiles averaged over the ion-accessible area,
where μWALL

i (r) = 0 (see Sec. IV B), this issue is not relevant
from the point of view of our discussion.

B. The components of the excess chemical potential

Now, we separate the EXCP into different terms. Such
a separation is straightforward for the energy, but we have
to apply such a separation with extra care in the case of the
chemical potential. Any separation of the EXCP correspond-
ing to a separation of the energy is necessarily not unique. In
this paper, we propose a possible separation that is physically
well based and helps to understand the energetics of selectiv-
ity, but it is not unique.

The chemical potential of an ionic species in an ideal so-
lution is commonly defined as

μid.sol.
i = kT ln ci + zi eφ, (15)

where φ is the mean electrical potential in the solution. In this
approximation, the EX term is just the interaction with the
mean potential and the ions are treated as point charges.

Using this analogy, we can define a mean field (MF) term
of the EXCP. In fact, we can define various MF terms depend-
ing on what the source of the potential is. The mean potential
from the ions in the system is computed as

φ
II

(r) =
〈∑

α

zαψ II(r, rα)

〉
. (16)

The potential from the polarization charge induced by these
ions is

φ
ID

(r) = 1
2

〈∑
α

zαψ ID(r, rα)

〉
. (17)

The third term is the potential from the polarization charge of
an inserted ion at the position where the ion was inserted:

φ
SELF

(r) = 1
2

〈
ψSELF(r)

〉 = 1
2ψSELF(r). (18)

The mean potentials are computed in the simulation by insert-
ing test charges in various positions, the corresponding poten-
tial terms are computed at these positions, and the results are
averaged over numerous insertions. This is expressed by the
brackets in the above equations. The corresponding MF terms
of the chemical potential then are defined as

μMFI
i (r) = ziφ

II
(r), (19)

μMFD
i (r) = zi eφ

ID
(r), (20)

μSELF
i (r) = z2

i eφ
SELF

(r). (21)

In an ideal solution the ions are point charges. Here, we
often deal with concentrated solutions that are not at all ideal.
Ions have a finite size. Therefore, we would like to have a
term in the EXCP that describes the HS exclusion of ions. We
define this term by inserting particles that have the same di-
ameter as the corresponding ion, but no charge. This means
that we include only the U HS

i term in Eq. (6). The HS compo-
nent of the chemical potential, thus, is defined as

μHS
i (r) = W

(
U HS

i (r)
)
. (22)

If we subtract the HS term and the MF terms from the total
EXCP, what remains corresponds to the electrostatic correla-
tions between ions “beyond mean field” [denoted by SC for
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“screening”]:

μSC
i (r) = μEX

i (r) − [
μHS

i (r) + μMFI
i (r)

+μMFD
i (r) + μSELF

i (r)
]
. (23)

We can see a pattern if we write this equation this way:

μSC
i (r) = W

[
U HS

i (r) + U II
i (r) + U ID

i (r) + U SELF
i (r)

]
− [

μHS
i (r) + μMFI

i (r) + μMFD
i (r) + μSELF

i (r)
]
.

(24)

We have similar contributions in the first and the second term
on the right-hand side. In the first term (the Widom evalu-
ation of the EXCP) we compute the energies corresponding
to the HS, II, ID, and SELF terms and sample all the cross
correlations between these terms. The second term also con-
tains these contributions, but in a mean field way. We subtract
these from the total, so the SC term expresses all the elec-
trostatic correlations that are not included in the MF treat-
ment. Because many studies still use MF theories such as
Poisson–Boltzmann theory or its generalization to nonequi-
librium (Poisson–Nernst–Planck), it is particularly useful to
explicitly evaluate this term in order to show its importance.
The SC term measures the error in mean field theories.

The next step is the separation of the correlation effects
corresponding to ions and induced charges in the SC term.
Formally,

μSC
i r = μSCI

i r + μSCD
i r, (25)

where the superscripts SCI and SCD indicate ionic and dielec-
tric correlations, respectively. If, in the Widom method, we in-
sert ions in the system, but exclude the dielectrics, we can es-
timate a term that contains only the ionic correlations and ex-
cludes all terms involving dielectrics: W

(
U HS

i (r) + U II
i (r)

)
.

If we follow the pattern in Eq. (24) and subtract the corre-
sponding MF term, we obtain the SCI term as a leftover:

μSCI
i (r) = W

(
U HS

i (r) + U II
i (r)

) − [
μHS

i (r) + μMFI
i (r)

]
.

(26)

The SCD is then what is leftover; it is obtained simply from
Eq. (25). All these terms can be illustrated as

EX︷ ︸︸ ︷
HS + MFI + SCI︸ ︷︷ ︸

ION

+ MFD + SELF + SCD︸ ︷︷ ︸
DIEL

.

(27)

C. Energetics of ion selectivity

Because the system is in equilibrium, the chemical po-
tential is the same in the bath and in the channel:

μi = kT ln ci (B) + μEX
i (B)

= kT ln ci (r) + μEX
i (r). (28)

The EXCP in the bulk (μEX
i (B)) that corresponds to

prescribed ionic concentrations ci (B) is calculated using

the adaptive-GCMC (A-GCMC) method of Malasics and
Boda.41, 42 If we define the difference [see Eq. (5)]

�μEX
i (r) = μEX

i (r) − μEX
i (B), (29)

we obtain

�μEX
i (r) = kT ln

(
ci (r)

ci (B)

)
. (30)

This equation makes it possible to check the consistency of
our calculations because the two sides of the equation are
computed differently in the simulation. The left-hand side is
computed using Widom’s particle insertion, which is an ad-
ditional sampling procedure “on top” of the normal GCMC
simulation. The right-hand side (the concentration) is com-
puted in the GCMC simulation in the usual way as an en-
semble average. Although, the EXCP could be calculated
from the GCMC simulation without the Widom sampling,
the particle insertions are necessary to compute the compo-
nents of the EXCP.

We can define the differences between the channel and
the bulk (B) not only for the excess term, but also for every
term introduced above:

�μHS
i (r) = μHS

i (r) − μHS
i (B), (31)

�μMFI
i (r) = μMFI

i (r) − μMFI
i (B), (32)

�μMFD
i (r) = μMFD

i (r) − μMFD
i (B), (33)

�μSELF
i (r) = μSELF

i (r) − μSELF
i (B), (34)

�μSCI
i (r) = μSCI

i (r) − μSCI
i (B), (35)

�μSCD
i (r) = μSCD

i (r) − μSCD
i (B), (36)

�μSC
i (r) = μSC

i (r) − μSC
i (B). (37)

The μMFI
i (B), μMFD

i (B), and μSELF
i (B) terms are zero be-

cause the corresponding mean potentials (φ
II

(r), φ
ID

(r), and

φ
SELF

(r)) are defined to be zero in the bulk. The sum of the
differences for the HS, MFI, MFD, SELF, SCI, and SCD
terms is the difference of the excess term. Let us now sum-
marize all these differences for Na+ and Ca2+ and express the
differences of differences:

��μHS(r) = �μHS
Na+(r) − �μHS

Ca2+(r), (38)

��μMFI(r) = �μMFI
Na+ (r) − �μMFI

Ca2+(r), (39)

��μMFD(r) = �μMFD
Na+ (r) − �μMFD

Ca2+ (r), (40)

��μSELF(r) = �μSELF
Na+ (r) − �μSELF

Ca2+ (r), (41)
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��μSCI(r) = �μSCI
Na+ (r) − �μSCI

Ca2+(r), (42)

��μSCD(r) = �μSCD
Na+ (r) − �μSCD

Ca2+(r), (43)

��μSC(r) = �μSC
Na+ (r) − �μSC

Ca2+(r). (44)

Following Gillespie,40 these terms are called “advantages” be-
cause a positive value of any of them favors Ca2+ binding (ac-
cumulating) by increasing Ca2+ concentration. Using Eq. (29)
and these terms, we obtain

ln

(
cCa2+(r)

cNa+ (r)

)
= ln

(
cCa2+(B)

cNa+(B)

)
+ ��μEX(r)

kT
, (45)

where

��μEX(r) = ��μHS(r) + ��μMFI(r) + ��μMFD(r)

+��μSELF(r) + ��μSCI(r) + ��μSCD(r).

(46)

In Eq. (45), the left-hand side is called “binding selectivity”
because it expresses the degree to which Ca2+ is favored over
Na+ at location r. The corresponding term on the right-hand
side with the bulk concentrations is called “number advan-
tage” because it expresses the advantage that one ionic species
has from outnumbering the other ionic species in the bulk. If
��μEX

i (r) were zero, the channel would not be selective at
all. The ratio of ion concentrations would be the same in the
channel as in the bulk. The energetic advantage terms on the
right-hand side of Eq. (46) describe to what degree each term
contributes to the binding affinity of Ca2+ over Na+, i.e., how
each term contributes to this selectivity.

IV. METHODS

A. Grand canonical Monte Carlo simulations

MC simulations using Metropolis sampling are per-
formed in the GC ensemble.31, 37–39 This ensemble, as de-
scribed before,31, 33 is especially suitable to simulate the small
ionic concentrations typical of Ca channels (for example,
1 μM Ca2+ versus 30 mM Na+). MC moves include (1)
small displacement from the old position (for sampling re-
gions with large densities; this is the only kind of attempt
used for the oxygen ions in the selectivity filter); (2) changes
to a new position selected randomly from a uniform distri-
bution anywhere in the cell (used for sampling regions with
gaslike densities such as in the baths); (3) moving a par-
ticle from a position in the selectivity filter to a position
in the baths, or vice versa; this move prefers particle ex-
changes between certain subvolumes and thus the acceptance
test includes the subvolume ratio to prevent statistical bias;43

(4) insertion/deletion of individual ions (chemical potentials
of individual ions are determined by the A-GCMC method
of Malasics and Boda42); (5) insertion/deletion of a neutral
group of ions (e.g., Na++Cl− or Ca2++2Cl−); (6) particle
insertions or deletions analogous to (5) but involving sub-
volumes of the simulation cell that we want to sample more
intensely (in particular, the selectivity filter).33 Only cation

insertions or deletions are applied in these subvolumes, Cl−

ions are still inserted/deleted into/from the whole simulation
cell. These attempts are applied randomly with predefined
probabilities. Changing these probabilities does not change
the final result; it only influences the speed with which the
simulation converges to the final result. The typical length
of a GCMC simulation is 5 × 108 sampled configurations
(attempts).

The acceptance tests for new particle configurations in-
volve the total electrostatic energy of the system, as described
in Sec. III A. Computation of the energy terms involving
dielectrics (U ID

i (r) and U SELF
i (r)) assumes the computation

of the polarization surface charge h(r, s) induced on the di-
electric boundaries. We compute the polarization charge us-
ing a boundary element method that we have called “induced
charge computation”.31, 44 The Poisson equation with bound-
ary conditions is transformed into an integral equation and
solved by surface discretization. For a given dielectric geome-
try, the coefficient matrix produced by the discretized integral
equation does not depend on the ion configuration. It is in-
verted at the beginning of the simulation and used repeatedly
(millions of times) during the simulation to determine h(r, s).
Vectors of discretized induced charge for varied ion configu-
rations are computed thereafter by a matrix–vector multipli-
cation.

B. Numerical implementation of the Widom sampling

To compute the space-dependent EXCP profiles with
Widom’s particle insertion method5, 9 (see the Appendix) we
have constructed a two-dimensional grid shown in Fig. 1(a).
Because the system is rotationally symmetric, we defined the
subvolumes described in the Appendix as a function of only
two variables z and r . In the channel we used squares of
width 0.5 Å, while outside the channel near the channel en-
trances we used squares of width 2 Å. These squares cor-
respond to rings in three dimensions. In the two baths, we
used large cylinders far from the hard walls of the system.
We inserted test particles into these rings with equal proba-
bilities. Thus, we insert particles into the rings in proportion
to their cross sectional area in the (r, z)-plane instead of their
volume.

Figure 2 shows �μEX
Na+(z, r ) (part a) and �μEX

Ca2+(z, r )
(part b) for the state point that we use as an exam-
ple throughout our paper: R = 3.5 Å, εpr = 10, cNa+(B)
= 30 mM, cCa2+(B) = 1 μM. This is the case that corresponds
to the IC50 of the experiment of Almers and McCleskey:45, 46

1 μM Ca2+ reduces the current of 30 mM Na+ to half of that
measured in the absence of Ca2+. As we have pointed out,27

our model with the geometrical parameters used in this paper
and protein dielectric coefficient εpr = 10 is able to reproduce
this experimental result. At these bath concentrations, the fil-
ter binds about the same amount of Na+ and Ca2+, the amount
of Na+ being half of that bound if Ca2+ is not present in
the baths. Therefore, Na+ current is half the current in the
absence of Ca2+. Ca2+ ions do not carry significant current in
the case shown in Fig. 2, because depletion zones are formed
at the filter entrances in the density profile of Ca2+. We
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FIG. 2. Free-energy landscapes: the excess chemical potential profiles (in units of kT ) for Na+ (top) and Ca2+ (bottom) as functions of the z and r coordinates
for cCa2+ (B) = 10−6 M, cNa+ (B) = 30 mM, R = 3.5 Å, and εpr = 10.

have previously used the integrated Nernst–Planck equation
to quantify how these depletion zones form high-resistance
elements along the ionic pathway in a simplified situation.27

Peaks in Fig. 2 correspond to these depletion zones [where
ci (r) is small, μEX

i (r) is large]. The ridges at |z| ≈ 5 Å rep-
resent these depletion zones, while the valley in the center of
the filter represents the binding site for the ions.

Because it is quite difficult to distill relevant information
from such landscapes and because we are primarily interested

in the behavior of the system along the ionic pathway, we av-
erage these profiles over the r -dimension:

�μEX
i (z) = 2

R2
min

∫ Rmin

0
r �μEX

i (z, r ) dr. (47)

Similar expressions apply for all the other chemical poten-
tial terms. When averaging, one must be careful. We need
to average the profiles for Na+ and Ca2+ over the same
range of r in order to compute the difference ��μEX(z)
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= �μEX
Na+ (z) − �μEX

Ca2+(z) properly. The range over which we
average is the range that is accessible to the center of the
largest ion: Rmin = R − Rlargest ion. In this way we can com-
pare EXCPs for the two ions over a cross section that both
ions occupy. We will drop the overline from now on to sim-
plify the notation.

Equation (30) makes it possible to check the self-
consistency of our simulations. Figure 3 shows both the pro-
file �μEX

Ca2+(z)/kT and the profile ln[cCa2+(z)/cCa2+ (B)]. It is

apparent that in regions of small Ca2+ concentrations (outside
the central binding site) the Widom sampling works better. In
these regions, sampling of Ca2+ concentration can be poor.
In some volume elements, Ca2+ concentration can be zero;
therefore, the logarithm diverges making the average over
the cross section in Eq. (47) diverge too. The Widom sam-
pling, on the other hand, can be poor in regions of large con-
centrations because particle insertion is problematic in high-
density regions. Therefore, we mix a �μEX

Ca2+(z)/kT profile
from these two functions. We define a central region where we
use ln (ci (r)) (|z| = 3 Å in Fig. 3). We define another region
outside the central region where we use Widom sampling to
obtain �μEX

i (r). The profiles shown from now on are mixed
in this way. The two kinds of profiles are practically identi-
cal for Na+ ions (data not shown), because sampling is much
better for Na+ than for Ca2+.

V. RESULTS

We will present our results using the point (R = 3.5 Å,
εpr = 10, cNa+ (B) = 30 mM, cCa2+(B) = 1 μM) as a reference
point. Then, we will show the effects of changing cCa2+ (B),
εpr, filter radius (R), and the radius of the monovalent cation
on the chemical potential profiles.

Figure 4 shows the chemical potential terms (compared
to bulk) introduced in Eqs. (31)–(37). The EX term is much
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FIG. 4. Chemical potential terms (relative to bulk) for Ca2+ (top panel) and
Na+ (bottom panel) as functions of z for the same state point as in Fig. 2. The
MFI, SCI, MFD, SCD, and SELF electrostatic terms are shown.

deeper for Ca2+ than for Na+, but this difference is necessary
to overcome the large number advantage of Na+ over Ca2+.
The EX term is the sum of all the other terms shown in Fig. 4.
This division shows how this large (free) energetic advantage
for Ca2+ decomposes into different contributions, which we
describe in detail below.

The HS term describes the free-energy that is necessary
to insert a neutral hard sphere (with the same diameter as the
corresponding ion) into the system. This term is repulsive and
has similar magnitude for Ca2+ and Na+ because these two
ions have similar size. The HS profiles have large peaks more
or less where the oxygen concentration profiles have peaks
(|z| = 3.6 Å), namely, where the probability that an inserted
particle overlaps a particle already in the system is the largest.

The SELF term is the consequence of a dielectric penalty
of an ion passing through the channel; it measures the inter-
action of the ion with the polarization charge induced by the
ion itself.47, 48 This term is positive for both ions because the
ions induce repulsive charge on the dielectric interface. This
dielectric penalty is four times larger for Ca2+ than for Na+.

The MF terms describe the interaction of an inserted ion
with the mean electrostatic potential. The mean electrostatic
potential is averaged over the millions of sampled configura-
tions and is related to the average ionic concentration profiles
(and, thus, to the EXCP profiles) through Poisson’s equation.
Thus, the MF terms describe the channel’s ability to attract
cations electrostatically in an average manner. The mean po-
tential is negative because the channel is not charge neutral (it
is net negative): cations are unable to neutralize the oxygen
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ions perfectly because the channel is narrow and crowded.
The balancing charge is outside the channel.

The MF terms can be split into the MFI and MFD terms
depending on the source of the potential (MFI from ions
and MFD from dielectric induced charge). The MFI pro-
files follow the variation in the profile of the ionic charges,∑

i zi eci (r). Peaks in oxygen ion profiles produce minima in
the MFI profiles. The MFD profile follows the variation of the
induced charge on the dielectric interface: the induced charge
is negative in the filter (because the net charge of the filter
is negative) and it changes smoothly going outward from the
center of the channel (see Fig. 11 of Boda et al.31). The in-
duced charge is positive on the outer surface of the protein.
Although the net amount of induced charge is zero on the
whole surface of the protein due to Gauss’s law, the mean po-
tential it produces (MFD) inside the channel is negative. The
MFI and MFD terms have similar magnitude at this value of
the protein dielectric constant. The MFI and MFD terms to-
gether (MF term) overcome the repulsive SELF term, but the
electrostatic terms beyond the MF terms (SC) are crucial to
produce the deep excess terms resulting in the strong Ca2+

versus Na+ selectivity.
The SC terms describe electrostatic correlations beyond

the MF terms. Formally, they can be interpreted by the differ-
ence

− kT ln
〈
e−ψ/kT

〉 − 〈ψ〉 , (48)

where ψ denotes some kind of energy in the system. (Note
that this equation is a simplification for pedagogical purposes.
The exact computation of the SC terms is given in Sec. III B.)
In particular, the SCI term is related to the ability of the local
surrounding electrolyte to screen the charge of the ion inserted
into a given position in the system. (This screening should not
be confused with screening by water, which is represented by
the dielectric coefficient.)

The difference between the MFI and SCI terms can be
illustrated by the example of bulk electrolytes. In a bulk elec-
trolyte, the MFI term is zero because the average electric po-
tential is zero, while the EXCP is equal to the sum of the
HS and SCI terms. The SCI term is then the electrostatic
part of the EXCP that describes the deviation from ideal-
ity. This term is commonly (and approximately) described
by the textbook theory of Debye and Hückel (this theory ig-
nores the HS term and thus is in error under many important
conditions).

To understand the SCD term, first we consider the MFD
term which represents the potential from the average induced
charge [second term in Eq. (48)]. The induced charge, how-
ever, varies as ions change positions in the channel during MC
sampling. A successfully inserted (no overlap) test ion will
then experience the potential of the induced charge of a given
ionic configuration. Different successfully inserted ions will
experience different forces. The average over all these con-
figurations is computed by the Widom sampling [first term in
Eq. (48)]. The difference of these two terms defines the SCD
term.

The SCI term in Fig. 4 has a nonmonotonic behavior. It
has a positive maximum where the MFI profile has a mini-
mum. At these positions it is more difficult for the surround-
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FIG. 5. Chemical potential terms (relative to bulk) for Ca2+ (top panel) and
Na+ (bottom panel) as functions of z for the same state point as in Fig. 2. The
ION and DIEL electrostatic terms are shown.

ing ions to screen the inserted ion compared to the average.
The SCD term can be very different from the mean (MFD) as
seen in Fig. 4: the SCD term is deeper (more attractive) than
the MFD term under the given conditions. Note that the ef-
fect of the charge induced by the inserted test ion itself is not
included in the SCD term, that is the SELF term.

Different insight can be gained if we separate the EXCP
into components corresponding to interactions with ions
(ION=MFI+SCI) and to interactions with induced charge
(DIEL=SELF+MFD+SCD), see Eq. (27). The results are
shown in Fig. 5. Interestingly, the ION term is a nonoscil-
lating function of z (apart from the one minimum), while its
components (MFI and SCI) are oscillating. The DIEL term is
also nonoscillating. Figure 5 shows that at this value of εpr the
DIEL term is even deeper than the ION term. The ions occupy
positions in the filter with higher probability with which they
minimize free-energy. The number of such configurations is
limited. Therefore, the SCI term has its limitations in drawing
more ions into the filter. It is the DIEL term that has a large
additional attractive effect, if εpr is small.

Figure 5 gives the impression that it is the HS term and
volume exclusion effects between ions that produce the oscil-
latory behavior of the EXCP and thus the peaks in the ionic
profiles. This impression is false, however, because large den-
sity has its consequences not only directly in the HS term,
but also indirectly in the electrostatic terms. The cations try
to find positions between the oxygens with the best possible
screening. Together with the effects of confinement from the
pore wall and the oxygen ions, this results in layering in the
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density profiles. The oscillations in the SCI and MFI profiles
reflect this phenomenon.

In the next step, we take the differences of the �μi (z)
functions shown in Fig. 4 [Eqs. (38)–(44)] and express bind-
ing selectivity and the advantages stemming from the dif-
ferent terms [Eq. (46)]. Figure 6 shows these ��μ(z) func-
tions. The number advantage favors Na+ over Ca2+ because
there is much more Na+ in the bulk than Ca2+ (ln(10−6/0.03)
= −10.3, a constant). This expresses the higher probability
of Na+ ions diffusing in the vicinity of the channel relative to
Ca2+. The binding selectivity curve equals the number advan-
tage curve in the baths outside the channel. Inside the chan-
nel, however, the binding selectivity curve increases and in
the binding site (center) of the selectivity filter it is positive,
meaning that this site favors Ca2+ over Na+ under the given
conditions. To overcome the large number disadvantage, a
large EXCP advantage (��μEX(z)) is needed for Ca2+.

Figure 6 shows how this advantage splits into different
terms. The HS advantage is close to zero because the size of
the two ions is very similar. Both the MFI and MFD terms fa-
vor Ca2+, as expected, because the double charge of Ca2+ has
double the interaction energy with the MF potentials (φ

II
(z)

and φ
ID

(z)) compared to Na+. The most favorable term for
Ca2+ is the SCD term. The SCD term is so large that it (to-
gether with the MFI, MFD, and SCI terms) can overcome the
unfavorable SELF term. The self-term is the only term that is
very unfavorable for Ca2+ because Ca2+ has four times the
interaction energy with its own repulsive induced charge than
Na+ does.
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Next, we analyze the effect of various parameters on ion
selectivity and the role of the different advantage terms in
the change of selectivity. First, we consider the Ca2+ titra-
tion experiment performed by Almers and McCleskey45, 46

and change cCa2+(B) in the fixed 30 mM Na+ background.
Figure 7 shows the various advantage terms for different
values of the bulk Ca2+ concentration. (Note that different
advantage terms will be shown for different problems in
Figs. 7–11 depending on which term is more important for a
given case.) The basic conclusions are similar to those drawn
by Gillespie40 for the RyR Ca channel in a similar experi-
ment. Binding selectivity increases (becomes more favorable
for Ca2+) as cCa2+(B) increases (the Na+ number advantage
decreases). The MFI and MFD terms decrease with increasing
cCa2+ (B) because the channel becomes more charge neutral;
Ca2+ ions are more efficient in neutralizing the oxygen ions.
Therefore, the decrease of the MF terms is the main reason
of the saturation of selectivity at large Ca2+ concentrations.
The SCI and SCD terms change less with increasing cCa2+ (B),
while the HS and the SELF term do not change at all.

The Ca2+ versus Na+ selectivity of the model channel
can be characterized by the Ca2+ concentration at which the
number of Na+ ions in the filter is half of that in the absence
of Ca2+. As we have shown before,27, 28, 34 this value coincides
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with the IC50 value with which selectivity is characterized in
experiments.

In a series of publications,27, 28, 31, 32, 34 we have shown
that the shape of the titration curves (average number of Ca2+

and Na+ ions in the filter as functions of log10[cCa2+(B)]) is
similar in different conditions: Ca2+ gradually replaces Na+

in the filter as cCa2+(B) is increased. The titration curves dif-
fer, however, in their position along the abscissa; namely, at
which cCa2+ (B) this replacement occurs. The titration curves
are shifted whenever we change the radius of the filter (Fig. 2
of Ref. 32); the length of the filter (Fig. 6 of Ref. 34); the
dielectric coefficient of the protein (Fig. 8 of Ref. 31); the
concentration of the background Na+ (Fig. 6 of Ref. 28); the
radius of the monovalent cation [Fig. 7(a) of Ref. 28)]; or
the radius of the divalent cation [Fig. 7(b) of Ref. 28)]. Chang-
ing any of these parameters changes the energetics of the com-
petition between the two cations, and, consequently selectiv-
ity. The CSC mechanism states that the selectivity filter fa-
vors Ca2+ because it is more efficient at balancing the charge
of the oxygen ions than Na+. It provides twice the charge in
the same excluded volume. In this picture, the fact that the fil-
ter is crowded has a special significance. All the parameters
listed in the preceding paragraph influence the ionic density
in the filter somehow, and, thus, they influence the strength
of the competition between cations for the limited amount of
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space available in the filter. The radius and length of the fil-
ter, for example, change the volume of the filter, and, thus,
ionic density. The smaller dielectric coefficient of the protein
acts to attracts more cations into the filter thus making it more
crowded.

Excluded volume obviously is a dominant feature of se-
lectivity filters. Thus, it may seem counter intuitive that Ca2+

versus Na+ selectivity does not depend on the HS term very
much. This is because the HS terms express the direct effect of
the steric exclusion of the ions on their abilities to find space
in the filter. If two ions have the same size, these direct effects
are the same. The crowded nature of the selectivity filter, how-
ever, has a profound indirect effect on the electrostatic parts
of the EXCP. Because the filter is crowded, ions have diffi-
culty finding space in it. The filter, therefore, is never charge
neutral; due to confinement and limited space, cations within
the filter can only partially balance the negative oxygen ions.
Some of the balancing charge is outside the filter. The result-
ing negative filter produces a free-energy well for the cations.
In this large-density negatively charged environment, many-
body ionic correlations are very important, as shown by the
SC terms.

Figure 8 shows the dependence of our results on the pro-
tein dielectric coefficient, εpr, relative to the reference condi-
tion of R = 3.5 Å, cNa+(B) = 30 mM, cCa2+(B) = 1 μM. Be-
cause the bulk concentrations are fixed, the number advantage
is the same for all values of εpr. Binding selectivity, however,
increases (the channel becomes more Ca2+ selective) as εpr

decreases from 80. The ION term decreases with decreasing
εpr. The principal source of this decrease is the MFI term.
When εpr is small, more cations are attracted into the channel
as discussed in our previous work.31 The energetic explana-
tion is that it takes energy to polarize the dielectric boundaries
so the system is trying to minimize the induced charge. This is
possible only by making the channel more charge neutral by
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attracting more cations into it. Because the channel is closer
to charge neutrality at small εpr, the MFI advantage decreases
with decreasing εpr.

The term that increasingly favors Ca2+ with decreas-
ing εpr is, of course, the DIEL term. Although the SELF
term favors Na+ with decreasing εpr, the other two dielec-
tric terms (MFD and SCD) increasingly favor Ca2+ with
decreasing εpr. This result is expected because the induced
charges are larger when the difference between the dielec-
tric coefficients on the two sides of the dielectric interface is
larger.

If we keep εpr = 10 constant and change the radius of
the filter, R, instead, we obtain the results shown in Fig. 9.
Binding selectivity increases as R decreases. The ION term
changes only a little with changing R; the DIEL term, on
the other hand, changes a lot. Apparently, the value of εpr

is the first order determinant of the number of cations at-
tracted into the filter. The value of εpr determines the de-
gree of charge neutrality of the filter, which, in turn, de-
termines the MFI term. The ions seem to coordinate to
get efficient screening even when R is small. The impor-
tant term that determines selectivity with changing R is
the DIEL term. In a more narrow pore ions are closer to
the pore wall on average. Therefore, the induced charge
is larger and the potential produced by it in the filter is
also larger. The low dielectrics surrounding the pore focuses
field lines, making the total field density in the filter larger.
The filter with a smaller radius focuses the field lines even
more strongly. These findings are in agreement with Fig. 3
of Boda et al.32 which shows that Ca2+ versus Na+ selectiv-
ity is more sensitive to R when εpr = 10 than in the case when
εpr = 80.

If we change the size of the monovalent ion (by switch-
ing ion type to Li+, Na+, and K+, using the corresponding
Pauling radii), we obtain the results shown in Fig. 10. Ca2+

-10 -5 0 5 10

z / Å

-1

0

1

2

3

4

5

ΔΔ
μ(

z)
 / 

kT

bind. sel.
num. adv.
HS
ION
DIEL

FIG. 11. Binding selectivity of Ca2+ over Ba+ and various advantage terms
as functions of z for cCa2+ (B) = cBa2+ (B) = 50 mM, R = 3.5 Å, and εpr

= 10. The ION and DIEL electrostatic terms are shown.

binding selectivity increases as the radius of the monovalent
ion increases. One of the important terms is the HS term that
increases considerably as the radius of the monovalent ion in-
creases. Ca2+ can compete more efficiently for space with
the larger monovalent cations. The other important term is
the DIEL term, which has the same behavior. The induced
charges are smaller for the larger ions because ion centers
(where charges are) are farther from the dielectric boundary.
Larger positive ions, therefore, induce less positive induced
charge, leaving the total induced charge more negative. More
negative induced charge favors the binding of Ca2+ as we de-
scribed above.

Figure 11 shows the results for the competition of two
cations of the same charge but different size. The bath concen-
tration of both Ca2+ and Ba2+ is the same (50 mM), so the nu-
merical advantage of Ca2+ over Ba2+ is zero. The HS term is
the main source of the large binding selectivity of the smaller
Ca2+ over the larger Ba2+, while the electrostatic terms are of
little importance in this case.

VI. SUMMARY

We have analyzed the energetics of selectivity for a re-
duced model of the L-type calcium channel in terms of var-
ious components of the EXCP. These components included
those due to volume exclusion (HS) and various electro-
static terms. The electrostatic terms included the MF terms
due to interactions with the average field of ions and in-
duced charges. The terms beyond the MF terms are due to
many-body correlations between ions (SCI), as well as be-
tween ions and induced charges (SCD). These correlations
are crucial in the case of calcium channels, where the ionic
density in the selectivity filter is very large and everything in-
teracts with everything else strongly.

Polarization, in particular, plays an important role in the
behavior of the selectivity filter of the L-type calcium channel.
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It makes the electric field in the filter stronger and, thus, it
makes the competition between the cations stronger. In this
competition, multivalent and smaller ions have the advantage
in the highly charged and crowded selectivity filter. This is
consistent with experimental data on both L-type and RyR
calcium channels.

Even in our very reduced model of the channel we en-
countered a complex picture. Different terms played different
roles depending on which variable was changed: bath ion
concentrations, ion charges, ion radii, pore radius, or protein
dielectric coefficient. It is important to emphasize that this
complexity is an automatic consequence of our model and
an output of our calculations. All the terms we computed
must have analogs in more detailed models of the protein
and electrolyte. Therefore, it is likely that this rich behavior
will be present not only in real calcium channels, but also
in other carboxylate-rich binding sites like those of calcium
binding proteins (e.g., calmodulin) and chelators [e.g.,
ethylenediamine tetra-acetic acid (EDTA), ethylene glycol
tetraacetic acid (EGTA)].
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APPENDIX: COMPUTATION OF THE EXCESS
CHEMICAL POTENTIAL PROFILE IN AN
INHOMOGENEOUS SYSTEM USING WIDOM’S
METHOD IN THE GRAND CANONICAL ENSEMBLE

Let us assume that we have a large simulation cell of
volume V at temperature T where the thermodynamic state
is set by fixing the chemical potentials of the components
μTOT

i . The system can be inhomogeneous with external forces
(walls, electric field, etc.) acting on the particles. This means
that the concentration and the EXCP can be position depen-
dent.

We introduce the formalism for a pure fluid of spherical
particles; the extension for mixtures and nonspherical parti-
cles is straightforward. The grand partition function is

	 =
∑

N

eβμTOT N

�3N N !

∫
V

· · ·
∫

V
dr1 · · · drN

exp [−βUN (r1 · · · rN )] , (A1)

where β = 1/kT . The one-particle density is

ρ(r) = 〈Nδ(r − rN )〉

= 1

	

∑
N

eβμTOT N

�3N (N − 1)!

∫
V

· · ·
∫

V
dr1 · · · drN−1

exp
[−βUN (r1 · · · rN−1, r)

]
. (A2)

Treating the N th particle as a perturbation (ghost particle), the
energy splits into two terms:

UN (r1 · · · r) = UN−1(r1 · · · rN−1) + �UN (r1 · · · r). (A3)

Therefore,

ρ(r) = eβμ

�3

1

	

∑
N

eβμTOT(N−1)

�3(N−1)(N − 1)!

×
∫

V
· · ·

∫
V

dr1 · · · drN−1 e−β�UN e−βUN−1

= eβμ

�3

〈
e−β�UN (r)

〉
. (A4)

On the right-hand side, we find the GC ensemble average of
exp [−β�UN (r)], where the N th particle acts as a test particle
added to a (N − 1)-particle system at position r. Expressing
μ, we obtain

μ = kT ln �3 + kT ln ρ(r)

−kT ln 〈exp [−β�UN (r)]〉 . (A5)

This equation corresponds to Eq. (4). Therefore, the space-
dependent EXCP can be computed by inserting test particles
at position r of the full GC system.

In practice, we insert particles into a small subvolume
around position r uniformly and average over many such in-
sertions. This subvolume must be small enough that the con-
centration and the EXCP can be assumed constant in this
subvolume. At the same time, the subvolume must be large
enough for adequate sampling. The subvolume is open, so
particles can enter and leave all the time during thermal mo-
tion. In this respect, the subvolume is related to the small sys-
tem grand canonical ensemble.49
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