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Bullets 
 

• The law of mass action describes reactants as ideal simple fluids made of concentrations of 
uncharged noninteracting particles. 

• Ionic solutions consist of interacting charged particles and are not ideal. The law of mass 
action is misleading if used with rate constants independent of concentration. Interactions of 
reactants can then be mistaken for complex properties of the chemical reaction or its 
enzymatic catalysts. 

• The theory of complex fluids deals with interactions in a mathematically self-consistent way. 
It is a field theory that deals naturally with boundary conditions and flows. It seems a good 
starting place for a nonequilibrium theory of ionic solutions and mixtures in bulk and in 
proteins.  

• The variational theory of complex fluids is well suited to describe mixtures like biological 
solutions. When a component or force is added, the theory derives — by mathematics 
alone — a new set of partial differential equations that automatically captures the interactions 
of the new with the old.  

• A variational theory of ionic solutions has been implemented and shown to be computable. 
Numerical inefficiencies have delayed a thorough comparison with experiments. 

 
 

Chemical Physics Letters: Frontiers Article 
DOI  10.1016/j.cplett.2011.05.037, in the press



 
 
 
 

Summary 
 

The law of mass action describes reactants as simple ideal fluids of concentrations of 
uncharged noninteracting particles. Ionic solutions contain interacting charged particles and are 
not ideal. Interactions of reactants can then be mistaken for complexities in chemical reactions or 
enzymatic catalysts. The variational theory of complex fluids describes flowing mixtures like 
biological solutions. When a component is added, the theory derives — by mathematics alone —  

a new set of differential equations that automatically captures all interactions. A variational 
theory of ionic solutions (as complex fluids) provides computable description of ions in solutions 
and proteins. Numerical inefficiencies have delayed experimental verification. 
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A great deal of chemistry concerns ions in water. Chemistry and chemists were born in 
aqueous media. Almost all biochemistry is done in water solutions because ions in water are 
life’s solutions. Pure water denatures most proteins and is lethal to biological cells. The liquid of 
life is made of water and ions.  

A great deal of chemistry concerns reactions between ions. Reactants are often ions said 
to move along a path in phase space over a high barrier that separates and defines reactants and 
products. In fact, if one imagines that reactants follow Langevin equations of motion in one 
dimension moving from one concentration to another, it is possible to provide a (nearly) exact 
mathematical description of a chemical reaction as stochastic transport of individual ions from 
one set of concentrations to another. Transport is then a stochastic biased random walk, a drift-
diffusion process over a barrier. Of course, one must not forget the well known problems of 
describing any chemical reaction as motion along a single path (see ‘Rate Models have Their 
Place’ p. 23-279 for references). The Langevin drift-diffusion treatment14 gives rate constants an 
exact mathematical meaning as conditional probabilities of an (originally) doubly conditioned 
stochastic process (see eq. 5.1215).  

Chemical reaction betweens ions can be written in the usual mass action form involving 
concentrations (number densities) of ionic reactants without further approximation. The theory of 
stochastic processes is used to precisely define concentrations as measures of the Brownian 
(back and forth) trajectories of the ions in the Langevin equations.9 14 
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R is the gas constant, F is Faraday’s constant, T is the absolute temperature, transV  is the 
electrical potential across the channel.  

This pleasingly intuitive (as well as mathematically rigorous) description is misleading, 
however, because of assumptions hidden in plain sight. Assumptions are particularly easy to 
overlook in ‘laws’ (like mass action) we learn early in our careers, before our critical skills are 
fully developed.  

Reactants are assumed ideal in the law of mass action that was derived originally for 
uncharged gases so dilute that particles do not interact. Mass action was later embedded in the 
beautiful theory of simple fluids.1,20,41 The law can be applied to charged dilute solutions if 
interactions are described by mean (time averaged) electric fields independent of the 
concentration of any species, including reactants.  

In this idealized view, different concentrations of ions screen the same way so that 
idealized rate constants do not vary with concentration. The actual — not idealized — rate 
constants of chemical reactions depend on the concentration of all mobile ions, of all species, 
including the reactants. More mobile charges mean more screening, different energy, and 
different rate constants. The actual rate constant for one ionic species would then depend on the 
concentration of all other species (as well as on the concentration of its own species) because the 
average field itself depends on the concentration of all species. Screening is produced by all 
charges of all types that move in response to an electric field. 

Variable rate constants are needed to make the law of mass action describe reality. Most 
chemists do not like to vary constants and avoid doing so. As a result, the law of mass action (as 
usually used with constant rate constants) is not very useful. Indeed, it is misleading. To ensure 
its validity, special experimental conditions must be chosen in which interactions do not occur, 
or do not vary with concentration. These special conditions rarely occur in biological or 
engineering applications. There, interactions are often substantial, and vary with concentration. 

 Rate constants in the real world vary with concentration. If rate constants in models are 
not allowed to vary, but rate constants in the real world vary with concentration, the models must 
be modified somehow or other to fit data. One way is to introduce additional states into the 
model of the chemical reaction. Another way is to invoke conformational changes or allosteric 
interactions in enzymes that catalyze reactions. Of course, intermediate states and 
conformational changes do occur in the real world and can be important. They are not all 
figments of forced fitting of idealized ideas to real data. 

When reactants interact, the free energy of one type of reactant depends on all species 
present.9,29,35,37,40,49 The free energy then has a component in excess of that in an ideal gas. The 
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excess component is important whenever reactants are concentrated or screened by an ionic 
atmosphere.  

Reactants near catalysts, or enzymes, or in ion channels are often very concentrated 
because evolution (like an engineer) often maximizes the rate of reactions by maximizing the 
number density of reactants. Indeed, one imagines that most chemical reactions that proceed at 
high rates have large local concentrations of reactants. The local concentrations differ 
substantially from the ‘well stirred’ spatially uniform concentrations of classical theories and so 
theories of chemical reactions that allow spatial gradients of reactants are likely to differ 
substantially from classical theories of the same reaction, that assume (impossibly) well stirred 
reactants. States and rates, allosteric and conformational changes needed to fit data are likely to 
be quite different if (some of) the concentration dependence found experimentally arises from 
the excess (nonideal) free energy of the interacting reactants themselves. 
Ionic Solutions are not ideal. This paper argues that ionic solutions are very often — indeed, 
almost always — non-ideal and so the law of mass action (with constant rate constants) is not 
valid. The paper argues that in ionic solutions ‘everything [usually] interacts with everything 
else’ through the electric field. In concentrated solutions, additional strong interactions occur 
because two ions cannot occupy the same space. Steric repulsion produces excess free energy 
that depends on the crowding of charges. These terms can dominate behavior in active sites of 
enzymes, in ion channels, and in catalysts, or near electrodes.  

An ion interacts with ions nearby in its ionic atmosphere even in solutions as dilute as 
1 mM Na+Cl¯. The ionic atmosphere around an ion usually has the opposite charge from the ion 
and so the electric field extending into the bulk solution is reduced (screened) by the ionic 
atmosphere. Solutions with a higher concentration of any mobile ion produce more shielding of a 
central charge because more ions can move to balance the central charge. The free energy (of 
even dilute Na+Cl¯ solutions) contains a large ‘excess’ component that scales with the square 
root of concentration. Ideal solutions do not contain this term. The square root dependence arises 
because ‘everything’ interacts with everything else through the mean electric field. Simple fluids 
do not behave this way. In simple fluids, ‘nothing interacts with nothing’ is the starting rule. 

It is difficult to deal with the interactions of real solutions in the classical theory of simple 
fluids, because every species interacts with every other species.2,7,9,16,18,21,29,30,33,39,40,49 All ions 
produce the ionic atmosphere, not just ions of one type. And so every ion interacts with every 
species. Theories of simple fluids are not designed to deal with such interactions. Usually the 
interactions are treated only in pairs, and put in ‘by hand’. Interactions are usually scaled by at 
least one adjustable parameter for each pair-wise interaction. Multibody interactions are treated 
by truncating closure expansions, even though the expansions have not been proven to be 
convergent or asymptotic. 

The theory of complex fluids is designed to deal with all interactions, not just pair-wise 
interactions. It offers an alternative view of ionic solutions. This paper describes a variational 
version of the theory of complex fluids designed to deal with interactions of ions, crowded or 
dilute, automatically and self-consistently. Scientific success cannot be claimed: the theory is too 
new and untested. Mathematical success, however, can be claimed (somewhat immodestly), 
because the theory deals with interactions by mathematics alone, established with theorems, 
proofs of existence and uniqueness. The theory deals with mixtures and interactions 
systematically, in a unique way, with minimal parameters, by algebra alone, even when new 
components are added to the solution. It should be emphasized that the theory concerns measures 
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of the trajectories of ions. The theory is more than a continuum model or mean field theory. 
Continuum equations are used throughout the theory of stochastic processes to describe 
properties of discrete random events, like the throwing of coins. 

Classical Theories of Dilute Solutions. Classical theories of ions in dilute (< 150 mM) solutions 
of Na+Cl¯ usually involve the Poisson Boltzmann equation with its mean electric field. The PB 
equation idealizes ions as point charges. It appears in various versions, as the Gouy-Chapman 
equation of planar solution interfaces and, linearized in spherical coordinates, as the Debye-
Hückel theory of dilute solutions of spherical ions. PB is an equilibrium theory in which 
everything is at equilibrium at all times in all conditions. Flow is zero in PB equations. The 
distribution of velocities follows a Maxwellian distribution that is an even function of velocity 
and so has zero mean. Flux of a Maxwellian distribution is identically zero.  

Extensions of PB to include flux (arising from a displaced Maxwellian14) have many 
names. Drift-diffusion equations for the quasi-particles of semiconductors — holes and 
(quasi)‘electrons’8

 — are used to design our digital technology.36 Poisson-Nernst-Planck PNP 
equations are drift-diffusion equations for ions used to design channels and nanodevices in 
biophysics and physical chemistry.3,5,15 I introduced the nickname PNP12 to emphasize the 
relation8 between transport of quasi-particles in semiconductors and ions in solutions. The 
permanent (‘fixed’) charge (e.g., acidic and basic side chains of proteins) might play as 
important a role in ion channels as doping does in transistors, and so I included these charges 
explicitly, and emphasized their role, more or less for the first time, in a series of papers, 
reviewed in8,9,15. I was (and am, so far unsuccessfully) looking for the biological analog of 
triodes in which large ‘diode’ currents — flowing with rectification in a channel between two 
terminals — are modulated by tiny currents, charges, or potentials at a third terminal, 
corresponding to a grid, base, or gate in tubes (valves), bipolar, or field effect transistors. 

The PNP treatment of ions is seriously inadequate because ions are not points. Ions 
cannot overlap. The finite diameter of ions has a surprisingly large effect on electrostatic 
energies because the energy of the electric field of a sphere is not well approximated by the 
electric field of a point. The electric field of a sphere and a point deviate just where the field is 
strongest, near the origin. An arbitrary ‘distance of closest approach’ has to be invoked to make 
PB or PNP satisfactory even at ~1 millimolar concentration (p. 5549). It is not clear how to 
consistently choose a single distance of closest approach (independent of the type and 
concentration of ions) in mixed solutions with many types of ions. There are logical difficulties 
as well. It is not clear how an ion in the center of its own atmosphere has a substantial and 
significant diameter while the same ion is just a point when part of the ionic atmosphere of its 
neighbors.  

A generation of physical chemists just now retiring studied the effects of finite size of 
ions. The scientists may retire, but finite size ions remain. As one of that generation — George 
Stell — said “… it is almost never valid to use Debye-Hückel under physiological conditions” 
(gentle paraphrase of46). This is a view repeated many times by many workers of that generation, 
see2,7,16,18,21,30,33,39 and other references too numerous to cite. Three large books29,40,49 compile the 
relevant experimental results and document some six classical (phenomenological) equations 
p. 4749, latter increased in number.35,49 

Idealizations fail to fit the data because the finite size of one ion type changes the free 
energy of other types. No ion type can be treated independently of the others. It is not correct to 
write equations in which a property of one ion depends on the concentration of just that ion. The 
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electrochemical potential of one ion depends on all other ions. Hundreds of papers reviewed in 
2,7,9,16,18,21,29,30,33,39,40,49 show that the concentration of one ion changes properties of other types of 
ions. Everything interacts with everything else. All the ions interact with each other through the 
electric field, and through crowding. Mixtures of ions are nothing like ideal.  

Little trace of these facts appears in the conventional wisdom of biochemistry, molecular 
biology or biophysics, or their texts, probably because mathematical descriptions of interactions 
are so arbitrary and ugly35,49 compared to the seductive beauty of idealized theories.1,20,41 

Interactions in Crowded Charged Solutions. Interactions need to be described naturally and 
self-consistently when mathematical models describe real solutions. Traditional models deal with 
interactions in an ad hoc and often subjective way. They add pair-wise interactions one at a time 
into a theory of simple (noninteracting) fluids. It is not clear that any finite sum of pair-wise 
interactions can approximate the interactions of all types of particles with each other. Traditional 
models indeed are phenomenological and use a large number of ill-determined coefficients that 
change as any component of the system is changed.26,29,35,37,39,49 This paper proposes a 
mathematical approach — from the theory of complex fluids6,32,34,48

 — that objectively and 
automatically captures all interactions. This approach is designed mathematically so its 
differential equations describe all the forces, interactions, fields, and flows of complex mixtures 
with a minimal number of parameters.  

Ionic solutions seem not to have been treated previously as complex fluids. The 
mathematics of this approach has been proven (in theorems and existence proofs) and has been 
shown to be practical and useful in physical applications. But the application to ionic solutions 
appears to be new. I now argue that a variational approach is more or less essential when flows 
are involved or concentrations are high, in the molar region.  

Ion concentrations are large in most devices — physical or biological — that use them. Ions 
are packed closely next to electrodes in batteries, power cells, and other electrochemical devices. 
Ions are at enormous densities in ion channels because the fixed charge of acidic and basic side 
chains of proteins demands equal amounts of charge nearby. (Small violations of even local 
electroneutrality would produce electric fields comparable to forces between valence electrons 
and the rest of the atom. Such strong electric fields are known to ionize atoms and destroy 
proteins, channels, and membranes.) Calcium and sodium channels have ~30 molar 
concentrations of ions — comparable to the 37 M concentration of solid Na+Cl¯. The charge 
density of side chains in active sites is ~20 M in ~600 enzymes, found in an automated search of 
a library of enzymes of known structure and function.24  

The crowded conditions of active sites of enzymes (like channels13) form a special 
environment likely to have important effects on chemical reactions and biological function. The 
mathematics used to describe this crowded environment must deal naturally with interactions 
because everything is coupled. Everything interacts with everything else. Nothing is ideal. The 
free energy of one ion depends on the concentration of others.  

Electrolyte Solutions as Complex Fluids. I suggest starting a theory of electrolytes11,23 with the 
theory of complex fluids of mixtures of hard spherical ions in implicit (primitive) solvents.2,16,33 
More complex representations of ions and solvent can be added later as needed to fit data.22 

The variational theory of complex fluids6,32,34,48 has been developed by mathematicians 
interested in abstract as well as practical issues: how to derive Navier-Stokes equations from 
variational principles. The theory has been used by physicists interested in liquid crystals and 
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other systems containing complex components that change shape and size, even fission and fuse, 
as they mix and flow far from equilibrium. The flows successfully computed can be much more 
complicated than those we see every morning in our showers and bathroom sinks. The liquid 
crystal displays (LCD’s) of our everyday technology are successfully computed.6,32  

The theory of complex fluids deals naturally with nonequilibrium properties. It deals with 
flows driven by pressure, concentration, and voltage gradients all together. Describing such 
flows of ionic solutions has been the despair of physical chemists. The ionic interactions that 
cannot be described at rest are even harder to describe in flow.26,43 Each flowing species has its 
own mobility, and each mobility depends on the concentrations, flows, and nonideal properties 
of all the other ions. Every nonequilibrium property interacts with every other nonequilibrium 
property, as well as with every equilibrium property, which in turn interacts with all the others. It 
is obvious that pair-wise descriptions cannot possibly describe the flows of ions, solvent, and 
solution in electrolytes. 

Life is not at equilibrium. Dealing with nonequilibrium mixtures is particularly important in 
life. Biological systems live only when they maintain large flows to keep them far from the 
equilibrium of death. Nearly every system in biology requires nonequilibrium conditions and 
flows of mixed ionic solutions, as does manmade technology. Electron flows are the electrical 
signals in coaxial cables of our technology. Ionic flows are the electrical signals in the cables 
(nerve axons) of our nervous system and Purkinje fibers and transverse tubules of our cardiac 
and skeletal muscles.  

Our technology is like our life. Flows are needed to create the conditions that allow 
devices or axons to have simple properties. Amplifiers follow simple laws only when energized 
by power supplies. Axons inactivate when they have no resting potential. An amplifier without 
power follows no simple law. Only when is it is powered is the output proportional to the input. 
Many highly nonlinear devices (usually transistors) are needed connected into a complex circuit 
structure (working far from equilibrium) to produce an output proportional to the input. In 
engineering, thermodynamic equilibrium occurs when power fails. In biology, thermodynamic 
equilibrium occurs when organisms die.  

Theories developed to exploit the special properties of thermodynamic equilibrium had 
an enormously important role in the historical development of science,1,4,20,41 but they must be 
abandoned in their original form, if the interacting nonequilibrium reality of ionic solutions is to 
be explained as it is actually measured and used in life and technology. One can argue that 
semiconductor technology was possible exactly because semiconductor engineers never assumed 
equilibrium42,45 or spatial uniformity of fields. They did not even assume spatially uniform 
boundary conditions. They always dealt with separate input, outputs and power terminals and so 
with different boundary conditions at different places. The resulting spatially nonuniform 
boundary conditions produce gradients of electrochemical potential and (almost always) flow 
with its inevitable friction and dissipation. The engineers abandoned the beauty of equilibrium 
theories so they could build devices. Their devices only work when they dissipate heat. 

The variational theory of complex fluids is designed to deal with flows of mixtures. 
Variational principles describe the energy and friction (dissipation) of the components of flowing 
complex fluids. The field equations derived from these principles describe flow within spatially 
nonuniform boundaries like those imposed by electrodes or concentrations of ions inside and 
outside biological cells. The field equations are not restricted to chemical equilibrium. They deal 
with flow as they deal with no flow. Both are consequences of the components and forces 
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expressed in the underlying variational principle and the spatially nonuniform boundary 
conditions. The partial differential equations of the field theory are derived from variational 
principles by mathematics alone. Only algebra is used. No approximations or additional 
arguments are needed to describe interactions. 

Additional components. If a new component is added to a complex fluid, the component 
interacts with everything else in the system, and the resulting analysis must reflect that 
interaction. Interactions are not pair-wise, not even approximately. These interactions have rarely 
been guessed in full when analysis begins with the differential equations instead of a variational 
principle. There are too many possible descriptions and too many interactions that are easily 
overlooked. 

If a new component is added into the variational principle, the interactions of all the 
components with all others appear automatically in the resulting partial differential equations. 
These are the interactions of the energy and dissipation terms in the variational functional and in 
the functions of the resulting differential equations. The interaction terms of the differential 
equations are objective outputs of a mathematical analysis, the Euler Lagrange process. They are 
not assumed.  

Of course, the variational principle is not magic. If the components of the energy or 
dissipation are incorrectly or incompletely described, the field equations will be incorrect 
physically, albeit self-consistent mathematically. For example, if a chaotropic additive changes 
the free energy of water, a primitive model2,16,18,33 of an ionic solution (with constant free energy 
of water) will fail. We cannot know how important such effects are from mathematics. A 
physical theory must be constructed and compared to specific experimental data29,40,49 to see if it 
actually works. The field equations of a variational theory will always be consistent 
mathematically, but they will be consistent physics only if they contain enough detail to deal 
with the conditions of experiments. We do not yet know what detail is enough to deal with the 
range of conditions found in chemistry and biology. 

Simulations. This variational approach contrasts with attempts to simulate macroscopic 
properties by direct calculation of motions of all atoms in molecular dynamics. The problems of 
going from atomic to macroscopic scales — in simulations that are calibrated and actually fit 
experimental data over a range of nonequilibrium conditions — are much larger and more serious 
than most scientists have wished to consider.10 Calibrated and accurate simulations are usually 
needed when dealing with devices, whether in technology or biology, because devices often 
balance two different forces. Small differences then determine the qualitative properties of the 
device.  

The problems of dealing with life’s structures (with 0.1% accuracy in three dimensions) 
that change significantly in 10-14 sec are particularly serious, because biological structures 
perform their natural functions by moving 1010 times slower than atoms. In quantitative 
applications, molecular dynamics is limited (for the time being) by its inability to calculate the 
properties of flowing mixtures of electrolytes on the biological time scale (10-4 to 109 sec) and 
length scale (10-11 to 101 meter) in biological mixed solutions (with significant components 
ranging in concentration from 10-11 to 101 M).  

On the other hand, in qualitative applications, molecular dynamics provides an 
indispensable dynamic extension of the statics of structural biology. Molecular dynamics —
 along with structural and molecular biology — are absolutely needed to construct appropriate 
reduced models for variational analysis. 
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Variational Analysis. The variational analysis of ionic solutions, and ions in channels, can begin 
with the energetic variational principle of Chun Liu34,48, built on the work of many others, 
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This principle has been applied to a model of electrolytes in which ions are represented as 
spheres in a frictional dielectric.11 This primitive model of an ionic solution — that uses a 
dielectric to describe implicitly the properties of water — is well-precedented and more 
successful than most in dealing with experimental data,2,16,33 but it will certainly need to be 
extended to include more chemical and atomic detail.22  

If ions are modeled as Lennard Jones spheres, the variational principle produces ‘Euler 
Lagrange’ equations of a drift-diffusion theory with finite sized solutes, a generalization and 
correction of PNP.  
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combined with the Poisson Equation  
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We write the equation only for negative monovalent ions with valence 1
n

z −=  to keep the 
formulas reasonably compact. Programs have been written for all valences. , ( )p nc y  is the number 

density of positive p or negative n ions at location y . ,p nD is the corresponding diffusion 

coefficient. Bk T  is the thermal energy, Bk  the Boltzmann constant, and T  the absolute 
temperature. ,n nε  and ,n pε  are coupling coefficients. .p na  are the radii of ions. ε  (without 

subscript) is the dielectric coefficient. The electrical potential is φ . 0ρ  represents the charge 
density of the protein, as it represents the charge density of doping in semiconductors. 0ρ  
depends on location and is zero in bulk solutions. 
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We note that the field satisfies the dissipation principle.  
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=
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

Conservative

 

,i jΨ  represent the Lennard Jones crowded charges terms defined in references11,23. 

These equations have been integrated numerically11 to predict binding of ions in crowded 
conditions, or the time dependent, voltage and concentration dependent flow of ions through 
channels. These physical variables determine the conditional probabilities, and rate constants of 
eq.(1) - (5). The calculations are successful and the methods are feasible. But numerical 
inefficiencies limit the number of cases and complexities of structures that can be studied so 
optimization of parameters has not been done. Until parameters are optimized, and realistic 
structures computed, one unfortunately cannot tell how well the theory actually deals with the 
wide range of data2,7,9,16,18,21,29,30,33,39,40,49 in diverse conditions and applications.  

Conclusion. The variational treatment of electrolyte mixtures has just started. It begins in the 
right place, in my view, with the successful variational theory of complex fluids. The variational 
treatment has substantial advantages. It describes solutions in a systematic way, even those in 
which everything interacts with everything else, as they do in life and its solutions. A variational 
theory can be a complete description of all the properties of ionic mixtures in flow and in 
equilibrium. It can be a good approximation to the properties of ions in and around proteins 
when the protein has a well defined average structure. But the variational approach is not yet 
sufficiently developed or checked. Other approaches are being used17-19,21,22,25,27-29,31,38,43,44,47,50 to 
deal with solutions of a single monovalent salt like Na+Cl¯ at equilibrium (and many other 
papers inadvertently overlooked, I fear) and one hopes for their early success. 

It is not clear, however, that other approaches can deal with divalents like Ca2+, or with 
multicomponent systems with ions of unequal diameter and charge, as they flow. Life’s solutions 
are flowing mixtures of ions of unequal diameter—think of blood or biological plasmas. Theories 
and simulations must deal naturally with these complexities, interactions and flows. Variational 
methods give hope, at least to me, that this can be done.   
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