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ABSTRACT 

The role of flexibility in the selectivity of calcium channels is studied using a simple model with 

two parameters that accounts for the selectivity of calcium (and sodium) channels in many ionic 

solutions of different composition and concentration using two parameters with unchanging 

values. We compare the distribution of side chains (oxygens) and cations (Na
+
 and Ca

2+
) and the 

integrated quantities. We compare the occupancies of cations Ca
2+

/ Na
+
 and linearized 

conductance of Na
+
. The distributions show a strong dependence on the locations of fixed side 

chains and the flexibility of the side chains. Holding the side chains fixed at certain 

predetermined locations in the selectivity filter distorts the distribution of Ca
2+

 and Na
+
 in the 

selectivity filter. However, integrated quantities—occupancy and normalized conductance—are 

much less sensitive. Our results show that some flexibility of side chains is necessary to avoid 

obstruction of the ionic pathway by oxygen ions in ‗unfortunate‘ fixed positions. When oxygen 

ions are mobile, they adjust ‗automatically‘ and move ‗out of the way‘, so they can 

accommodate the permeable cations in the selectivity filter. Structure is the computed 

consequence of the forces in this model. The structures are self-organized, at their free energy 

minimum. The relationship of ions and side chains vary with ionic solution. Monte Carlo 

simulations are particularly well suited to compute induced fit, self-organized structures because 

the simulations yield an ensemble of structures near their free energy minimum. The exact 

location and mobility of oxygen ions have little effect on the selectivity behavior of calcium 

channels. Seemingly, nature has chosen a robust mechanism to control selectivity in calcium 

channels: the first order determinant of selectivity is the density of charge in the selectivity filter. 

The density is determined by filter volume along with the charge and excluded volume of 

structural ions confined within it. Flexibility seems a second order determinant.  

These results justify our original assumption that the important factor in Ca
2+

 vs Na
+
 

selectivity is the density of oxygen ions in the selectivity filter along with (charge) polarization 

(i.e., dielectric properties). The assumption of maximum mobility of oxygens seems to be an 

excellent approximate working hypothesis in the absence of exact structural information. These 

conclusions, of course, apply to what we study here. Flexibility and fine structural details may 

have important role in other properties of calcium channels that are not studied in this paper. 

They surely have important roles in other channels, enzymes, and proteins. 
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INTRODUCTION 

 Selectivity arises from the interactions of ions and side chains of proteins constrained by 

the geometry and properties of the rest of the protein, and the surrounding bathing solutions. For 

a long time—as long as the issue of selectivity has been considered by biologists—we have 

believed that selectivity depends on the detailed structure of the binding sites for ions. Selectivity 

has been thought to depend on the exact atomic arrangements of side chains, ions, and other 

nearby molecules [1, 2]. The selectivity of the calcium channel we consider here is particularly 

important because of the enormous importance of the channel [3-21]. The L-type calcium 

channel that we have in mind controls the contraction of the heart and signaling in skeletal 

muscle. Few channels are more important than the calcium channel because calcium 

concentration inside cells is used as a signal in almost every tissue of an animal. 

It has come as a surprise that a model of selectivity that includes only a few features of 

the atomic structure has been able to describe the selectivity properties of calcium and sodium 

channels very well, in all solutions over a wide range of conditions, with only two adjustable 

parameters using crystal radii of ions [22, 23]. This model is skeletal in its simplicity, 

representing side chains as charged spheres unrestrained by connections to the surrounding 

protein. This model represents the selectivity filter of calcium and sodium channels as cylinders 

containing spherical structural ions (modeling the terminal groups of side chains) free to move 

within the cylinder but unable to leave it (Figure 1). Note that water is present in this model only 

as a dielectric: the primitive implicit solvent [24-48] model of ionic solutions is used and 

extended into the channel. The question is how can this simple model possibly work, given that it 

includes no detail of the protein structure, and uses only a crude representation (to put it kindly) 

of the side chains and their interaction with ions.  

The answer we give is that the model works because it captures the features of the 

binding sites of calcium and sodium channels that biology actually uses to produce selectivity. 

Many other physical phenomena could be used to produce selectivity, and probably are in other 

types of channels, transporters, enzymes, and proteins, let alone physical systems in general. It 

seems here however that biology has used only the simplest, the competition between 

electrostatic forces and volume exclusion in very concentrated systems of ions and side chains.  
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The two cations Ca
2+

 and Na
+
 that compete for the channel arrive from a bath of a given 

composition and mix with side chains of the channel protein in our model. The winner of the 

competition is the ionic species whose binding minimizes the free energy F U TS . 

Electrostatic attraction between the side chains and the cations decreases the energy U , while 

competition for space in the crowded selectivity filter chiefly influences the TS  term. The 

entropic term is most directly influenced by the flexibility of side chains. Indirectly, of course, 

everything is influenced by everything. The U and –TS terms are not uncoupled, of course [49], 

but separating U and –TS terms provides a useful framework to understand selectivity. 

Our model assumes a large mobility (flexibility) of the terminal groups (8 half-charged 

oxygen ions, in this paper) of side chains. In reality, the movement of side chains is restricted 

because they are tethered to the polypeptide backbone of a protein. Side chains of acidic and 

basic residues in real proteins are not fully rigid (though they are not entirely mobile either) and 

have considerable mobility during thermal motion.  

The goal of this paper is to study the effect of the flexibility of the side chains on physical 

quantities computed by Monte Carlo simulation. The basic quantities computed by the 

simulation are the profiles of spatial distribution of the various ionic species. These distributions, 

as expected, are very sensitive to restrictions in the mobility of oxygen ions.  

Integration of the ionic profiles provides quantities comparable to experiments. These 

integral properties characterize selectivity from two profoundly different points of view.  

(1) The integral of the ionic profile (of a given species) itself over a given volume (of the 

selectivity filter, for example) describes the binding affinity of the given ionic species to this 

volume. This quantity—that we call ‗occupancy‘—is proportional to the probability that a given 

ionic species binds to the selectivity filter in competition with other kind of ions. Occupancy is a 

result of minimized free energy, an equilibrium concept, but occupancy exists in non-equilibrium 

systems as well, of course. It just must be computed by a different theory in that case, one that 

includes nonequilibrium parameters (like conductance) and spatially nonuniform boundary 

conditions.[50, 51] 

(2) The resistance of the channel is the sum of the resistance of a series of (infinitesimally 

thin) discs, as described precisely later in Methods section. Resistance is a more dynamic 

variable than occupancy. Each disc has resistance determined by the amount and mobility of the 
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ions in the disc. The amount is proportional to the reciprocal of the concentration of ions, times 

the volume of the disc. The sum is actually the integral of the reciprocal of the profile of ionic 

concentration over a length of the ionic pathway. The integral is proportional to the resistance of 

that length to the current of the ionic species in question. This resistance describes the selectivity 

of ion channels directly measurable from measurements of current or flux through channels 

under near equilibrium conditions. It is more sensitive to local variations in the ionic profiles 

than occupancy. It is expected, therefore, that conductance is more sensitive to variations in 

flexibility of side chains too. 

We will change the flexibility of the oxygen ions in different ways and analyze how the 

physical quantities mentioned above change as flexibility is changed. We obtain quite different 

behavior for the profiles, occupancies, and conductances as a function of varying flexibility.  

An important result of analysis of this model is that the locations of ions and side chains 

have a ‗self adjusting‘ nature as ion concentrations are changed in the bath, or the nature of the 

side chains is altered, for example, from EEEE to EEEA in a calcium channel or DEKA to 

DEEA in a sodium channel. Side chains are mobile in our model and so they change their 

distribution as parameters of the model change. In this picture, the structure of the binding site is 

a computed consequence of thermodynamic and geometrical constraints and all the forces 

present in the system. Thus, by ‘structure‘ we mean the equilibrium profiles of spatial 

distribution of concentration of all the ions obtained as ensemble averages of converged 

simulations. This structure obviously changes as experimental conditions change.  

The sensitivity of the structure to the location and flexibility of side chains helps answer 

the general paradox ―How can a model without a detailed structure account for complicated 

properties of two different types of channels under so many conditions?‖ The answer to the 

question is that the model computes the structure. The channel structure is different in different 

conditions because of the sensitivity of spatial distributions. Thus, biological properties that are 

sensitive to structure will be sensitive to location and flexibility of side chains. Integrated 

properties like conductance are not so sensitive. 

In other words, the model of selectivity is an induced fit model, in which the structure of 

the binding site is induced by all the forces in the system, depending on the ion concentrations in 

the bath, and the other parameters of the problem. The fit of the side chains to the ions is induced 
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by the minimization of the free energies of the system. The model is a self organized model. In 

our model, the only energies that determine the structure are electrostatic and excluded volume. 

No energies with a more chemical flavor are included in the present version of the model.  

Unfortunately, we do not know anything about the actual locations of side chains in real 

calcium and sodium channels because X-ray structures are unavailable. It is possible to 

hypothesize the locations assuming various homologies with the known structure of the KcsA 

potassium channel [52, 53]. We followed a different route as described in the Model section. 

We conclude that ionic distribution profiles are sensitive functions of locations of 

immobilized side chains and their flexibility. Occupancy, on the other hand is less sensitive to 

flexibility because its first order determinant is the density of ions in the selectivity filter as we 

established earlier [54, 55]. Conductance, the most interesting quantity of the three, lies in 

between because it depends on both occupancy (the number of available charge carriers) and fine 

details in the distribution profiles. The conductance of a single channel of fixed diameter 

depends on the sum of many differential ‗resistors‘ because it measures the ‗series resistance‘ of 

the single channel. The conductance depends on the reciprocal of the concentration for this 

reason and is very sensitive to high resistance obstructions in the permeation pathway even if 

they occur over a tiny length. These high resistances are produced by the low concentrations of 

mobile ions in the depletion zones in the ionic profiles [56]. Depletion zones are responsible for 

many of the most important properties of transistors [57-59]. Transistors and channels involve 

quite similar physics and are described by quite similar equations, but the charge carriers of 

transistors are points with no size.  

If three dimensional structures for calcium and sodium channels become available, the 

information gained must be built into our model. Until then, our approach—that allows the side 

chains to find their optimal distribution automatically in the simulation—seems to be a good way 

to proceed. It allows us to construct a functional skeletal model that fits a wide range of data 

from two channel types under many conditions with only two parameters. It makes 

understanding of permeation and selectivity mechanisms of real calcium and sodium channels 

possible, if permeation and selectivity are viewed as outputs of that simplified model.  
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METHODS 

Model of Channel and Electrolyte 

We use a reduced model to represent the L-type calcium channel because a 

crystallographic structure is not available. We know from the experimental literature that Ca
2+

 

selectivity in this channel is determined and regulated by the four glutamates of the pore lining 

loops which form the selectivity filter [60-63]. The negatively charged carboxyl (COO
-
) side 

chains of these glutamates extend into the selectivity filter region of the channel [64]. As Sather 

and McCleskey put it in their review [63] ―The calcium channel field is convinced that the EEEE 

carboxyl side chains project into the pore lumen‖ to form a mixture of ions and side chains that 

has been called an ‗electrical stew‘[65].  

At room temperature of 300K, these side chains as well as the surrounding cations 

interact and exhibit thermal motions. The four glutamates (EEEE) contribute to a fixed charge of 

-4e on the selectivity filter. This existing information about the L-type calcium channel is used to 

build a reduced model [55, 66].  

In our reduced model the channel is represented as a doughnut-shaped object with a pore 

in the middle connecting the two baths (Fig. 1). The protein which forms the pore is represented 

as a continuum solid with dielectric coefficient, εp = 10. The central, cylindrical part of the pore, 

the selectivity filter, is assigned a radius  R  3.5 Å  and length     10 ÅH . The model is 

rotationally symmetric along the pore axis. The selectivity filter ( 5 Å, 5 Å) contains the 

negatively charged side chains extending from the polypeptide backbone of the channel protein 

into the pathway for ionic movement. We represent the carboxyl (COO
-
) side chains as a pair of 

negative half charged oxygen ions (O
1/2-

) resulting in 8 oxygen ions (also called ‗structural 

ions‘). The net charge in the selectivity filter therefore sums to -4e. The side chains are free to 

rearrange inside the selectivity filter of the channel but cannot leave the selectivity filter. The 

mobile ions (Na
+
, Ca

2+
, Cl

- 
) as well as the oxygen ions of the carboxyl groups are hard spheres 

and are assigned Pauling crystal radii (see caption of Figure 1). The structural ions mix with the 

mobile ions producing a flexible but confined environment in the selectivity filter. The structural 

ions have different degrees of flexibility as described later. Water is represented implicitly as a 

dielectric (εw = 80).  

The simulation cell is a cylindrical compartment that is kept small to save computation 
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time. The simulation cell is checked to be sure that it is large enough that our final results do not 

depend on its size. The dimensions of the simulation cell are chosen depending on the ionic 

concentrations in the surrounding bath solutions. The baths are separated by a lipid membrane 

20 Å thick except where the channel protein is found. Ions are excluded from the lipid 

membrane. The filter is assumed to have a dielectric coefficient of 80. If more realistic values 

were used, the amount of computation required for the electrostatics increased and no significant 

effects were noticed on the simulation results [66, 67].  

Method: Equilibrium Grand Canonical Monte Carlo Simulations  

We perform Monte Carlo (MC) simulations using Metropolis sampling in the grand 

canonical ensemble [68] which allows us to efficiently simulate the very small ionic 

concentrations important for calcium channels. The details of the methods of sampling and their 

acceptance tests have been described in [67-70] and earlier papers. We simulate an equilibrium 

grand canonical ensemble at room temperature 300K. The chemical potentials of ions are the 

inputs chosen for the grand canonical ensemble and are determined separately using an iterative 

method [71, 72]. The acceptance tests of new particle configurations involve the total 

electrostatic energy of a configuration. The net electrostatic energy of the system includes the 

Coulombic interactions between the ions and the side chains and the interactions resulting from 

the charges induced at dielectric boundaries which are computed using the induced charge 

computation method [73]. The GCMC simulations that we present in the results section are 

averages of many runs performed on multiple processors and beginning from different seed 

configurations. Each result is the average of 6 × 10
8
 to 1.2 × 10

9
 MC configurations.  

Simulated Experimental Setup 

The micromolar block of Na
+
 current observed by McCleskey et al. [74, 75] is a 

characteristic behavior of the L-type calcium channel. In this experiment, CaCl2 is gradually 

added to a fixed background of 30 mM NaCl. The experiments show that 1 μM of Ca
2+

 reduces 

the current through the L-type calcium channel to the half its value in the absence of Ca
2+

. This 

result implies that the selectivity filter of the calcium channel contains a high affinity binding site 

for cations, especially for Ca
2+

. The strongly bound Ca
2+

 obstructs the diffusion of Na
+
 ions in 

the packed and narrow selectivity filter. This experiment was the main target of several 

theoretical and simulation studies of the L-type calcium channel[23, 54, 66, 67, 70, 76, 77]. 



 

 Page 9 10/18/2010 

As far as we know, our reduced model is the only one that is able to produce this strong 

Ca
2+

 vs. Na
+
 selectivity in a range of conditions. Indeed most computations of selectivity do not 

contain concentration as a variable at all [1, 2, 78]. Moreover, classical kinetic models of 

selectivity [79, 80] assume the energy landscape or the barrier to be independent of ionic 

concentrations which is an implausible approximation given the ubiquity of shielding in ionic 

solutions and the reality of Gauss‘ law. These and other difficulties with classical models have 

been evident for a long time [81-91]. Indeed, the ‗law‘ of mass action itself has recently been 

shown to apply only to infinitely dilute solutions of noninteracting particles, if it is used with 

constant rate constants as in classical models of channels [79, 80]. 

Our simulations (analyzed with the integrated Nernst-Planck equation, see later eq. (3)) 

show that at 1 μM Ca
2+

 the average number of Na
+
 ions in the selectivity filter drops to half the 

value it has at zero Ca
2+

. Under those conditions, Ca
2+

 ions occupy the central binding site in the 

filter, but they do not contribute to the current because of the depletion zones formed at the 

entrances of the filter [23, 77]. This mechanism is in agreement with an earlier intuitive 

description of the mechanism of this block [92]. 

Some simulations were carried out for the entire range of Ca
2+

 concentrations as used by 

Almers and McCleskey in their experiment (from zero to 10
-2

 M). Others were just carried out 

for the special case when [Ca
2+

] is 1µM. In experiments, the replacement of Na
+
 by Ca

2+
 takes 

place in a narrow concentration range around this value. 

 

Models of Flexibility 

There are two limiting cases of the flexibility of side chains. 

(1) ‗the flexible case‘ is our usual model with maximum flexibility. In this case, oxygen ions are 

perfectly mobile inside the selectivity filter but they are confined within the filter by hard walls. 

In this model, oxygen ions automatically find their average distribution that minimizes free 

energy of the system. As cations (Na
+
 or Ca

2+
) enter the filter, oxygen ions rearrange and make it 

possible for the cations to pass the channel [56]. The distribution of the oxygens is an output of 

the simulation. 

There is agreement [60, 61, 63, 93, 94] that side chains in the filter of calcium channels 

are quite flexible. They are in constant thermal motion and the long (3-carbon) chains allow the 
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COO
−
 end groups considerable freedom to move within the channel. Nonetheless, the maximum 

mobility case obviously overestimates the flexibility of side chains.  

(2) the ‗fixed‘ case  places oxygen ions in fixed positions and allows zero mobility. This 

assumption roughly corresponds to the system at 0 K and underestimates the flexibility of side 

chains.  

Unfortunately, the X-ray structure for the calcium channel is not yet known. Therefore, 

instead of assuming the initial positions of the oxygens, we choose certain fixed oxygen 

configurations from the billions of possible configurations that are computed during an MC 

simulation of the ‗flexible‘ case. The nature of MC simulations ensures that all these 

configurations occur in the sample in a Boltzmann distribution[95, 96]. Each configuration we 

choose as a fixed configuration is one of the configurations of the equilibrated system. In other 

words, they can be called ‗probable‘ configurations.  

In this paper, we chose configurations that are even ‗more probable‘ using a criteria 

based on electrostatic energy. We determine those configurations by carrying out the usual MC 

simulation for 50 blocks where each block consists of 5×10
5
 trials. After a block is finished, we 

displace the oxygen ions to ensure that the next block samples new configurations. After every 

MC trial in each block we calculate the electrostatic interaction energy of the oxygen ions with 

every other ion. A running average of this energy is updated. At the end of each block, the 

instantaneous locations of the oxygen ions and the corresponding running averages of the energy 

for that block are saved. Therefore, at the end of the simulation for each of the 50 blocks we 

obtain a set consisting of locations for the 8 oxygen ions which represent the instantaneous 

configurations at the end of the block and the corresponding average energy of that block. We 

have chosen 10 configurations of the oxygens from these 50 configurations that have the lowest 

average energy and we call them the ‗low energy‘ configurations. We have performed 

simulations for these cases in the usual way except that MC movements were not performed for 

the oxygen ions. We performed simulations for [CaCl2] = 10
−6

 M and [CaCl2] = 0 M so we can 

relate our results for 10
−6

 M to results in the entire absence of Ca
2+

.  

In addition to these 10 ‗fixed low energy‘ configurations, we chose a configuration of 

oxygens that had the lowest energy in the sample we checked. This configuration does not have 

the lowest energy in general; it just has the lowest energy in the 50 configurations of oxygens we 

examined in our simulation. We will call this case the ‗lowest energy‘ case. We simulated the 
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lowest energy case for concentrations spanning the whole Ca
2+

 concentration range used in 

experiments. 

Because we do not know the exact structure of the selectivity filter, the configurations 

just defined were not selected with the purpose to mimic any realistic structure. They were 

chosen to study the effect of fixing the oxygens somewhere. A large number—hundreds—of 

other configurations were chosen by ad hoc methods in the course of these calculations, as we 

developed our procedures. From all this work, we are quite certain that the conclusions that we 

draw from the results are quite general and independent of the actual positions of the oxygen 

ions. The qualitative conclusions of our work are not sensitive to the exact method of choosing 

the ‗low energy‘ configurations. The exact configuration we call ‗low energy‘ has little 

importance. 

To study the effect of oxygen-flexibility in more detail, we constructed models in which 

oxygen ions have partial flexibility. These models lie between the fixed and flexible cases 

defined above. 

(1) the ‗restricted‘ case restricts the 4 pairs of oxygen ions to stay in four narrow regions. We 

assume that the glutamate residues are not concentrated at one position of the selectivity filter, 

but rather they are distributed along the axis of the pore confined in cylinders defined by the 

filter wall and hard walls at fixed z-coordinates as shown in Fig. 2. The regions in which the 

oxygen-pairs are confined overlap and they prevent a given pair to diffuse elsewhere in the filter. 

The distribution of oxygen ions is more uniform in this case than in the ‗flexible‘ case. We 

performed simulations for this case in the whole Ca
2+

 concentration range where the oxygen ions 

were perfectly mobile in the selectivity filter |z| ≤ 3.6Å.  

(2) the ‗confined‘ case. In this case, we start with the ‗lowest energy fixed‘ position of the 

oxygen ions and gradually allow them more and more mobility in the following way. We define 

spheres of radii Rox around these fixed positions and allow the oxygen ions to move freely inside 

these spheres. The oxygen ions cannot leave these spheres. Then, we gradually increase the size 

of these spheres thus increasing the mobility of the oxygen ions. Any radius that is larger than 

7.2 Å effectively corresponds to the ‗flexible‘ case. Thus, we designed a scheme in which we 

smoothly change the model between the two limiting cases of flexible and fixed. We performed 

simulations in the confined case only for [CaCl2] = 10
−6

 M and [CaCl2] = 0 M. 
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Pore Conductance  

We use the integrated Nernst-Planck formulation of Gillespie and Boda [77, 97] to relate 

the equilibrium GCMC simulation to the linearized slope conductance estimated in experiments 

with equal concentrations of ions on both sides of the channel. The integrated Nernst-Planck 

formulation based on the resistors-in-series model is used to calculate the conductance of each 

ionic species in the pore region. The combination of the integrated Nernst Planck equation (3) 

and MC simulations has been successful in reproducing the anomalous mole fraction effect  in L-

type calcium channel known from experiment [77]. We reproduce here the key equations that we 

use in our calculations.  

The ions are assumed to move diffusively and their current is described by the Nernst 

Planck equation  

 
1

( ) ( ) ( ) ( ),
i i i i

B

D
k T

J x x x x  (1)  

where ( ), , ,  and 
i i i i

DJ x  are the local flux density, diffusion coefficient, density and the 

electrochemical potential respectively of ion species i .The value 
B

k  is the Boltzmann constant 

and T is the temperature. We focus on the selectivity filter region of length L  and cross-sectional 

area ( )A z  confining the structural ions. The chemical potential ( )
i

z  and the diffusion 

coefficient ( )
i

D z are assumed to be uniform over the cross-section of the selectivity filter. With 

these approximations, the total flux of ion species i  through the pore: 

 
( )

( ),
B

T i i
i i

D

k T

d z
J n z

dz
 (2) 

where ( )in z  is the axial number density of ions (number per unit pore length) at axial location z .  

The total conductance  of the pore in the presence of symmetrical bath solutions at the 

end of the selectivity filter region containing several ion species of charge 0iz e  and a very small 

voltage applied across the system is: 

 
/2 /2

1
/2

2 2

0
0

/2

.
( )L L

L
T

i i
i V V i

B i
i i L

J z e dz
e z D

V k T n z
 (3) 
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Note that the conductance depends on the square of the charge of the ions
2 2

0iz e . The axial 

densities of ion species in  are computed from the MC simulations. The diffusion coefficient of 

ions is an external parameter not determined by our simulation that must be provided as an input 

to our computation. We deal with normalized conductances and therefore, it is sufficient to 

specify the ratio of diffusion coefficients of the two cations DCa/DNa. We use the value 

DCa/DNa
+

 = 0.1 in our computation. Dynamical Monte Carlo (DMC) simulation [56] recently 

verified an early suggestion of Nonner and Eisenberg [76] that the diffusion coefficient of Ca
2+ 

in 

the selectivity filter is much smaller than that of Na
+
. 

The approximations and equations used to calculate the pore conductance  quantifies 

the current through the channel. It is very important here to emphasize that the estimation of pore 

conductance requires only the spatial (i.e., cross sectional) uniformity of the chemical potential, 

which does not imply that the other variables, such as the spatial number density of the ions or 

the electrical potential are spatially uniform. The concentration profiles used in these calculations 

are obtained from simulations performed under equilibrium conditions and with self-consistent 

electrostatics. When the system is off equilibrium the concentration profiles will have to be 

recomputed to be self-consistent as done in Density Functional/Poisson Nernst Planck theory 

[77, 97-101] or more recently with variational methods[50, 51, 102]. Thus, our conductance  of 

eq. (3) does not include the nonlinear effects that may occur when other voltages or 

concentration gradients are applied. The non-equilibrium effects on the potential profiles cannot 

be determined by the equations given here. Non-equilibrium effects are important in channels 

because channels are devices that use gradients of free energy to perform their function. Non-

equilibrium effects are responsible, for example, for the properties of semiconductor devices and 

those effects are not present near equilibrium where our conductance equation applies. Such 

effects can be computed by Poisson Nernst Planck equations if charge carriers have zero 

diameter or by a modification of those equations if the charge carriers have finite diameter [50, 

51, 99, 102-106]. The slope conductance  is nonetheless quite informative, because 

experiments show that current-voltage curves are linear in wide voltage range around 

equilibrium. 
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RESULTS 

We analyze our results on various levels of abstraction. The primary output of our 

simulations is concentration profiles. These profiles describe the probability of various ions 

being found in a given position, or, looking at the same thing from a more dynamical point of 

view, they describe the relative amount of time that these ions spend in a given location. We will 

show profiles averaged over the cross-section of the channel. We can derive two kinds of 

integrated quantities from the concentration profiles. 

(1) The integral of the concentration profile provides the average number of the given ionic 

species in a certain sub-volume of the system. We will show average number of ions integrated 

over the selectivity filter and we will call these numbers occupancies. The occupancies of Na
+
 

and Ca
2+

 describe equilibrium binding affinity of these ions to the selectivity filter. 

(2) The other integrated quantity of interest is the integral of the reciprocal of the concentration 

profile based on the Nernst-Planck equation (see Methods section, eq. (3)). This integral is 

proportional to the resistance of the pore to a given ionic species in the region of validity of the 

equation. We will show conductance values γ that are the reciprocals of the resistances. We will 

concentrate on conductances of Na
+
, because Ca

2+
 does not conduct significant current in the 

conditions of interest, at micromolar [CaCl2]. 

We work with normalized conductances. Usually, we normalize with respect to the Na
+ 

conductance computed in the absence of Ca
2+

. Because in this paper we compare different 

systems, we have two choices regarding how we normalize the conductance. 

(A)  First, each model (‗flexible‘, ‗restricted‘, ‗fixed‘ or ‗constrained’ cases) can be normalized 

by its own zero-Ca
2+

 conductance. Each model is normalized by itself. In this way, g is always 

normalized to 1 in the limit [CaCl2] → 0. This kind of normalization is used in the experimental 

literature [60, 61, 63, 74, 75, 94]. 

(B) To compare the absolute values of conductances computed from different models, we can 

normalize with respect to one fixed value in all cases. This way, we can draw conclusions about 

how changing the flexibility of the oxygen ions influences the ability of the channel to conduct 

Na
+
. Correlations between the integrated quantities are shown by plotting one integrated quantity 

on the ordinate, and the other integrated quantity on the abscissa. 

Fig. 3 shows concentration profiles for the (A) ‗flexible‘, (B) ‗restricted‘, (C) ‗lowest 

energy fixed‘, and (D) the average of the 10 ‗low energy fixed‘ cases. The oxygen concentration 
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profiles (top panels of Figs. 3A-D) are similar in the ‗flexible‘ and ‗restricted‘ cases: oxygen ions 

tend to accumulate at the entrances of the filter because the negative oxygen ions repel each 

other to the confining walls of their compartment. A third peak appears in the center of the filter 

in the ‗flexible‘ case because of packing. In the ‗restricted‘ case, the total oxygen profile is a sum 

of the four profiles for the four oxygen pairs. The ‗restricted‘ case has two additional peaks. The 

distribution of oxygens is more flat than in the ‗flexible‘ case. The vertical lines in the ‗lowest 

energy fixed‘ case represent Dirac-delta functionals describing the positions of the fixed 

oxygens. 

Each simulation performed with a given fixed oxygen configuration provides an adequate 

sampling of all possible configurations of the free ions (Na
+
, Ca

2+
, and Cl

-
), because of the large 

number of configurations calculated (and examined) in each simulation. Many of the 

configurations we have chosen for the fixed oxygens produce configurations of the free ions that 

resemble results of simulations of the totally ‗flexible‘ case. The 10 selected ‗low energy fixed‘ 

simulations then correspond to a sample that resembles a sample of the ‗flexible‘ case. The 

resemblance is approximate because we have only 10 ‗low energy fixed‘ oxygen configurations  

compared to the millions of oxygen configurations found in a usual simulation for the entire 

‗flexible‘ case. (Remember the result of a Monte Carlo simulation is a set of configurations, not a 

single configuration.) To test this idea, we averaged the concentration profiles obtained from the 

10 simulations for the 10 ‗low energy fixed‘ cases. The oxygen profile shown in the top panel of  

Fig. 3D was calculated using a wide (1 Å) bin. The overall behavior of the curve is very similar 

to the oxygen profile for the ‗flexible‘ case despite the small (10) sample for the oxygens in the 

‗low energy fixed‘ case. 

The bottom panels of Figs. 3A-D show the results for the free ions (Na
+
 and Ca

2+
) for 

[CaCl2] = 10
−6 

M and [CaCl2] = 0 M. A micromolar amount of Ca
2+

 in the bath is sufficient to 

decrease the Na
+
 concentration in the pore to the half of its value in the absence of Ca

2+
. 

(Compare the thick solid and thin dashed lines.) From this point of view, the four models behave 

similarly. The similarity is especially striking in the case of the ‗lowest energy fixed‘ oxygen 

configuration: although the details of the distribution of Na
+
 ions are very different from those in 

the ‗flexible‘ and ‗restricted‘ cases, the relative behavior with respect to the zero-Ca
2+

 curve is 

similar. This is also true for the average of the 10 ‗low energy fixed‘ cases. 
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This is the first important conclusion of our paper: adding Ca
2+

 to the systems simply 

scales the Na
+
 spatial profiles but it does not change the shape of the spatial distribution. 

Furthermore, adding 1 μM Ca
2+

 scales the Na
+
 profiles similarly in the three different cases, thus 

producing similar selectivity behavior. This scaling is shown by Fig. 4, where we plot the ratio of 

the Na
+
 concentration spatial profiles for [CaCl2] = 10

−6 
M and [CaCl2] = 0 M. This ratio is 

similar for the three cases plotted showing that these three models have similar selectivity 

behavior. The 10 ‗low energy fixed‘ cases have the same behavior on average. The shape of the 

curves is very similar in the individual cases too (data not shown). 

Ca
2+

 profiles also behave similarly in the various cases in this respect. As Ca
2+

 is added, 

it appears in the selectivity filter wherever space is available (at the minima of the oxygen 

profiles).The common feature is that Ca
2+

 is absent at the filter entrances (3.0 ≤ |z| ≤5Å).  

Depletion zones—here at the filter entrances—have the property that the reciprocal of the 

Ca
2+

 concentration is large at these locations, so the integral (of the reciprocal of the 

concentration profile, which is the resistance) is also large. Various slices of the channel along 

the pore axis behave as resistors connected in series. One high-resistance element makes the 

resistance of the whole circuit high. Therefore, Ca
2+

 does not carry any current at this 

concentration; it only blocks (reduces) the current of Na
+
.  

Here we see the origin of the most noted experimental property of the calcium channel, 

calcium block. Calcium block of sodium current is produced by the selective binding of Ca
2+

 in 

the selectivity filter. The absence of calcium current (an important part of the block) is produced 

by depletion zones. The depletion zones are computed outputs of our model, not assumed inputs. 

To describe further the selectivity behavior of the channel models using the integrated 

quantities, we show titration curves. We plot these integrated quantities as a function of the 

concentration of added Ca
2+

.  

Fig. 5A shows the occupancy curves for both Na
+
 and Ca

2+
. Ca

2+
 gradually replaces Na

+
 

in the filter as [CaCl2] increases. At about 1 μM, the two ions have equal amount in the filter. 

Also, at this Ca
2+

 concentration the amount of Na
+
 drops to half in the filter. The three different 

cases behave similarly in spite of the differences in fine details in the concentration profiles (see 

Fig. 3). 

Fig. 5B shows the normalized Na
+
 conductances (normalized by their own zero-Ca

2+
 

values) for the three different cases. The current carried by Na
+
 is gradually decreased as Ca

2+
 is 
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added in accordance with the experiment of Almers and McCleskey [74, 75]. As we 

demonstrated before, we reproduce the micromolar block of the current by Ca
2+

, our curves 

agree well with the experimental curve in the low [CaCl2] range. Ca
2+

 starts to conduct at high 

[CaCl2]. In this regime, our agreement with experiments is only qualitative due to differences 

between the theoretical and experimental situations as described previously [77]. (In 

experiments, Ca
2+

 is added only to the extracellular side, while our setup is symmetrical.) Note 

that the occupancy and conductance curves for Na
+
 behave similarly indicating a strong 

correlation between these two quantities (see later discussion). 

Fig. 6 shows the correlation between Na
+
 conductance and Na

+
 occupancy. The 

correlation was evident from Fig. 5, but this figure shows it clearly: the more Na
+
 we have in the 

filter, the larger the pore‘s conductance for Na
+
. Again, the various ‗fixed‘ oxygen points scatter 

over a relatively wide range, but this figure clearly shows that the large drop in both occupancy 

and conductance occurs in a relatively narrow concentration range around 1 μM. In the range of 

lower and higher [CaCl2] (below and above 10
−6

 M), the values do not change very much. Also, 

the average of the 10 ‗low energy fixed‘ cases is quite close the ‗flexible‘ and ‗restricted‘ cases 

that allow (some) movement of the oxygens. 

In the previous figures, conductances were normalized by the conductances obtained at 

zero Ca
2+

 for a given case. Fig. 7 was designed to show correlation between the conductances 

normalized in the two different ways described previously, if correlations existed. No 

correlations were found. Normalization of results from a model by the zero Ca
2+ 

conductance of 

that model shows the selectivity of that model. The lower this normalized value (shown on the 

abscissa), the more selective the model is for Ca
2+

. On the other hand, if we normalize by one 

specific value—the zero Ca
2+

 conductance for the ‗flexible‘ case—we can tell how the 

conductance of the model for Na
+
 changes as we change the flexibility of the oxygen ions. The 

lack of correlation indicates that a given fixed oxygen configuration can favor selectivity and 

conductance independently. Conductance is sensitive to the presence of depletion zones, while 

selectivity is more sensitive to the degree of competition between Ca
2+

 and Na
+
. 

The relative conductance in comparisons between different models depends primarily on 

the oxygen configuration. A configuration can be ‗fortunate‘ (large conductance) so that Na
+
 

ions find enough space between the crowding oxygen ions. A configuration could also be 

‗unfortunate‘, meaning that the oxygen ions are in positions that act as obstacles for the passing 
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Na
+
 ions and produce deep depletion zones for them. Indeed, sometimes the location of oxygens 

create depletion zones where Na
+
 concentration is zero, so the conductance is also zero. The 

‗flexible‘ and ‗restricted‘ cases are statistical averages of the many ‗fixed‘ configurations in some 

sense or other. Therefore, these averaged cases do not suffer from the unfortunate configurations 

found in individual unaveraged cases: there are always enough configurations in the sample in 

the averaged cases in which oxygen ions move away and give way to the Na
+
 ions. The average 

of the 10 ‗low energy fixed‘ cases is another example where the fortunate cases balance the 

unfortunate cases. Another interesting result shown in the figure is that the conductance of the 

‗restricted‘ model is larger than that of the ‗flexible‘ model. The conductance is larger because 

the distribution of Na
+
 ions is more spatially uniform for this model (see Fig. 2). Therefore, the 

depletion zones of Na
+
 are less deep in this case. 

Fig. 8 shows the concentration profiles for O
−1/2

, Na
+
, and Ca

2+
 for our other model with 

different oxygen flexibility. When the oxygen ions are fixed (Rox = 0 Å), the Na
+
 and Ca

2+
 ions 

have high peaks in the regions where oxygen ions are absent. As the Rox is increased, the peaks 

become lower, the valleys become less deep, and the curves eventually converge to those of the 

‗flexible‘ model. 

Fig. 9 shows the conductance and occupancy of Na
+
 as a function of Rox. The 

conductances are normalized by the value at Rox = 0 Å. There are two maxima in the 

conductance. It seems that conductance is larger in a model that is not perfectly ‗flexible‘, but not 

perfectly ‗fixed‘ either. In the ‗fixed‘ model, the oxygen ions act as obstacles as described above, 

especially if their configuration is ‗unlucky‘. In the ‗flexible‘ case, the oxygen ions act as 

obstacles because they pile up at the filter entrances thus producing depletion zones for the Na
+
 

ions. 

There is a clear correlation between conductance and occupancy: less Na
+
 means more 

Na
+
-conductance. Intuitively, we might expect the opposite. The explanation is that although we 

have less Na
+
 (smaller peaks), as Rox is increased, we also—in the same profile—have shallower 

depletion zones (see Fig. 8). 
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DISCUSSION 

Some Flexibility of Side Chains is Required for Calcium Selectivity 

We investigated the role of flexibility by comparing differential quantities and integral 

quantities in the selectivity filter of the ‗flexible‘, ‗fixed‘ and ‗restricted‘ models. We compared 

the differential quantities, the distribution of the side chains (oxygens) and the cations (Na
+
 and 

Ca
2+

) and the integrated quantities, the occupancies of cations Ca
2+

/ Na
+
 and linearized 

conductance of Na
+
. 

 The differential quantities that we obtain from our model show a strong dependence on 

the locations of fixed side chains and the flexibility of the side chains. We show that holding the 

side chains fixed at certain predetermined locations in the selectivity filter distorts the 

distribution of Ca
2+

 and Na
+
 in the selectivity filter. This distortion can result in a loss in 

selectivity because the distribution of the cations is determined by the distribution of the side 

chains (Figure 3C). This reasoning is further supported (1) by calculations (Fig. 8) which vary 

the mobility of the side chains in the radial direction from frozen to perfectly mobile and (2) by 

calculations (Figures 3, A and B) of the ‗restricted model‘ in which the side chains are allowed to 

have a limited flexibility along the channel axis. The results are similar to the usual ‗flexible‘ 

case.  

 However, the behavior described by the integrated quantities (occupancy and normalized 

conductance) is much less sensitive, as might be expected from averaged, i.e., integrated 

quantities which are, as a rule, much less sensitive than differential quantities. Behavior of 

integrated quantities is similar in the ‗restricted‘, ‗fixed‘, and ‗flexible‘ models. The occupancy 

of Ca
2+

 increases with the increasing bath concentration of Ca
2+

 (while occupancy of Na
+ 

decreasing) and the normalized conductance of Na
+
 is reduced with increasing amount of Ca

2+
 in 

bath. Thus, the integrated quantities obtained from our model are much less sensitive to details of 

structure. They do not show sensitivity to the flexibility and the locations of the side chains.  

 Our results show that some flexibility of side chains is necessary to avoid obstruction of 

the ionic pathway by oxygen ions in 'unlucky' fixed positions. When oxygen ions are mobile, 

they adjust 'automatically' to accommodate to the permeable cations in the selectivity filter. 

 Beyond the rigid (fixed oxygen) case, however, our results seem quite insensitive to how 

and what degree do we make the side chains flexible. Density profiles and selectivity (expressed 
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in term of either occupancy or conductance) behave similarly in the different models of 

flexibility ("flexible", "restricted", and "confined"). 

 The exact location and mobility of oxygen ions (let alone even finer details of structure) 

have little effect on the selectivity behavior of calcium channels. Seemingly, nature has chosen a 

robust mechanism to control selectivity in calcium channels: the first order determinant of 

selectivity is the volume of the selectivity filter with the charge and excluded volume of 

structural ions confined within it. Flexibility of side chains seem to belong to the group of second 

order determinants. These conclusions of course apply to what we study here. Flexibility and fine 

structural details may have important role in other properties of calcium channels that are not 

studied in this paper. 

 These results justify our early assumption—suggested by Nonner et al. [55] using theory 

and further studied with MC simulations [54, 66, 107]—that the important factor in Ca
2+

 vs Na
+
 

selectivity is the density of oxygen ions in the selectivity filter. Later studies (41,42) showed the 

importance of (charge) polarization (i.e., dielectric properties). The assumption of maximum 

mobility of oxygens (‗flexible‘ case), seems to be an excellent approximate working hypothesis 

in the absence of exact structural information. We look forward to seeing how well the real 

structure fits within this hypothesis, when it becomes available. 

Self-organized Induced Fit Model of Selectivity 

Our results from the simulations of the zero flexibility model and the restricted flexibility 

model suggest that the reduced model is actually an induced fit model of selectivity, a specific 

version of the induced fit model of enzymes [108] in which biological function is controlled by 

the flexibility of the side chains that allows the side chains to self-organize into structures that 

change with changing ionic conditions.  

The variation of binding with concentration and type of ions arise from different 

structures that self-organize under different ionic conditions. The fit of the protein side chains to 

the ions, and the fit of the ions to the protein, change with conditions. The different fit in 

different types of ions produces selectivity. The structures—in the sense defined in this paper—

vary with concentration as well as type of ion. The energy of the structures varies with 

concentration and type of ion and we know of no simple theory to calculate this change in 

energy. Simulations are needed in a range of concentrations and types of solutions. Calculations 

that characterize selectivity by a single free energy of binding do not address these issues. They 
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also do not address the issue of how selectivity occurs in life or in experiments in which ions 

appear in mixed solutions of varying concentration. 

 Induced fit and self-organized models have traditionally been focused on the average 

structure of the protein. Here we view the locations of ions as part of the structure and we find 

that the distribution of locations (‗flexibility‘, ‘entropy‘) is also important. Monte Carlo methods 

used by Boda et al. [69, 70, 77, 107, 109, 110] seem ideally suited to make the qualitative idea of 

self-organized systems and induced fit of enzymes into a quantitatively specific (and testable) 

hypothesis of protein function. The self-organized/induced fit theory says that all relevant atoms 

are in an equilibrium distribution of positions and (perhaps) velocities. Monte Carlo methods are 

used to estimate such distributions in many areas of physics. These methods seem to be less 

sensitive to sampling errors than traditional forms of molecular dynamics for many reasons 

discussed at length in the literature [111, 112]. 

 Selectivity in these channels arises from the interaction of the flexible side chains with 

the ions. The balance of the two main competing forces—electrostatic and excluded volume—in 

the crowded selectivity filter of the reduced model determines the binding site for Ca
2+

. The 

structure of the binding site is an output of the calculations which rearranges according to the 

surrounding ionic conditions. The word ‗structure‘ is somewhat inadequate to describe what is 

happening here. The thermal motions of the structure are as important as the average location. 

The biologically important properties depend on the entire ensemble of trajectories of ions and 

side chains. The distributions of location and velocities are involved. Traditional self-

organized/induced fit models need to be generalized to include the self-organized/induced 

entropy (i.e., flexibility) as well as the self-organized/induced energy (i.e., location).  

The success of the self-organized induced fit model of selectivity arises because it 

calculates structures instead of assuming them. Assuming a preformed structure, independent of 

conditions, distorts the model significantly. Evidently, assuming a constant structure involves 

applying an artificial constraint not present in real channels. We suspect, but have not proven, 

that the difficulty is fundamentally similar to that which arises when a protein is described by a 

potential surface independent of conditions instead of as a distribution of permanent and 

dielectric charge [87, 88]. 

 Monte Carlo methods developed by Boda et al. seem ideally suited to compute the 

equilibrium properties of these self-organized systems. Other methods are needed to extend to 



 

 Page 22 10/18/2010 

the general non-equilibrium conditions in which most channels and proteins function, for 

example, variational methods like EnVarA [105, 106] or PNP-DFT [99, 103, 104]. 
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Figures and Captions 

 

Fig. 1: Geometry of the model of the ion channel. The parameters R = 3.5 Å, H = 10 Å, and εpr = 10 are 

used in the simulations in this paper. 
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Fig. 2: In the ‗restricted‘ case, four pairs of oxygen ions are restricted to four overlapping regions in the 

selectivity filter along the z-axis of the pore. The ion centers are restricted to the following intervals: E1: [-

3.6, 0], E2: [-2.4, 1.2], E3: [-1.2, 2.4], and E4: [0, 3.6]. 
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Fig. 3: Concentration profiles for oxygen (top row) and free ions (bottom row) for three different 

restrictions of the oxygens. (A) ‗Flexible‘ case: the oxygen ions are fully mobile inside the selectivity 

filter, but cannot leave it. (B) ‗Restricted‘ case: four pairs of oxygens are restricted to four overlapping 

regions inside the selectivity filter as shown in Fig. 2. Profiles with different symbols and colors in the top 

panel of Fig. 3B refer to these four oxygen pairs. The solid black line is the sum of these four profiles. (C) 

‗Fixed‘ case: the eight oxygens are fixed in positions that correspond to the lowest-energy configuration 

of a finite sample. The vertical lines in the top panel of Fig. 3C represent Dirac deltas corresponding to 

these fixed positions. In the bottom row, we show the profiles for Na+ at [CaCl2] = 0 M (dashed black 

line) and [CaCl2] = 10−6 M (thick solid black line). The thin solid red line represent the Ca2+ profiles for 

[CaCl2] = 10−6 M. (D) ‗Average‘ case: is similar to Fig. 3C, but represents the averages of the ten low 

energy configurations.  
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Fig. 4: The ratio of the Na+ concentration profiles for [CaCl2] = 10−6 M and 0 M for the three 

cases depicted in Fig. 3. 
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Fig. 5: (A) The average number (occupancy) of Na+ (decreasing curves) and Ca2+ (increasing curves) ions 

as functions of log10 [CaCl2] for the three different cases depicted in Fig. 3. (B) The conductance of Na+ 

ions normalized by the conductance at [CaCl2] = 0 M as a function of log10 [CaCl2] for the three different 

cases. 
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Fig. 6: Normalized conductance of Na+ versus occupancy of Na+ in the selectivity filter at different CaCl2 

concentrations for the three different cases depicted in Fig. 3. The green × symbols represent results for 

the lowest-energy ‗fixed‘ oxygen configuration used in Fig. 3. The blue + symbols represent results for 10 

selected ‗fixed‘ oxygen configurations with low energies. The pink □ symbols represent averaged results 

for 10 selected ‗fixed‘ oxygen configurations with low energies. The numbers near the symbol denote the 

values of log10 [CaCl2]. Na+-conductance for a given case is normalized by the Na+-conductance for that 

particular case in the absence of Ca2+. 
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Fig. 7: Correlation between Na+ conductances normalized by two different ways for [CaCl2] = 10−6 M. 

The ordinate shows conductance of Na+ normalized by the Na+ conductance in the absence of Ca2+ for the 

‗flexible‘ case. The abscissa shows conductance of Na+ for a given case normalized by the Na+ 

conductance in the absence of Ca2+ for that particular case. Symbols have the same meaning as in Fig. 6. 
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Fig. 8: Concentration profiles of O−1/2, Na+, and Ca2+ for the ‗flexible‘ (red circles) and the lowest-energy 

‗fixed‘ (solid black line) cases, as well as cases when the oxygens are restricted in spheres of radii Rox 

centered around the ‗fixed‘ positions (various colored non-solid curves) at [CaCl2] = 10−6 M. 
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Fig. 9: (A) Normalized conductance and (B) occupancy of Na+ ions as functions of the spheres confining 

the oxygens Rox for [CaCl2] = 10−6 M. The conductance is normalized by the ‗fixed‘ (Rox = 0 Å) case. 


