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a b s t r a c t

We introduce a model for ionic electrodiffusion and osmotic water flow through cells and tissues. The
model consists of a system of partial differential equations for ionic concentration and fluid flow with
interface conditions at deforming membrane boundaries. The model satisfies a natural energy equality,
in which the sum of the entropic, elastic and electrostatic free energies is dissipated through viscous,
electrodiffusive and osmotic flows. We discuss limiting models when certain dimensionless parameters
are small. Finally, we develop a numerical scheme for the one-dimensional case and present some simple
applications of our model to cell volume control.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Systems in which electrodiffusion and osmotic water flow are
important can be found throughout life [1–3]. Such systems in-
clude brain ionic homeostasis [4,5], fluid secretion by epithelial
systems [6], electrolyte regulation in the kidney [7,8], fluid circu-
lation in ocular systems [9,10], and water uptake by plants [11].

Mathematical models of electrodiffusion and/or osmosis have
been proposed and used in many physiological contexts, and have
formed a central topic in biology for a very long time [1,12,13].
Some are simple models using ordinary differential equations
while others are more detailed in that they include partial dif-
ferential equations (PDEs) describing the spatial variation of the
concentration and flow fields [14–20]. In this paper, we propose a
system of PDEs that describes ionic electrodiffusion and osmotic
water flow at the cellular level. To the best of the authors’ knowl-
edge, this is the first model in which osmotic water flow and
electrodiffusion have been treated within a unified framework
including cells with deformable and capacitance-carrying mem-
branes. A salient feature of our model is that it possesses a natu-
ral thermodynamic structure; it satisfies a free energy equality. As
such, the present work may be viewed as a generalization of the
classical treatment of osmosis and electrodiffusion in irreversible
thermodynamics to spatially extended systems [21–23].
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To introduce our approach, we first focus attention on un-
charged systems. In Section 2, we treat the case in which the dif-
fusing chemical species carry no electric charge. We write down
equations that are satisfied by thewater velocity field u, the chem-
ical concentrations ck, k = 1, . . . ,N and the membrane position
X. The model is shown to satisfy a free energy equality in which
the sum of the entropic free energy and the elastic energy of the
membrane is dissipated through viscouswater flow, bulk diffusion,
transmembrane chemical fluxes and osmotic water flow. One in-
teresting consequence of this analysis is that the classical van’t Hoff
law of osmotic pressure arises naturally from the requirement that
osmotic water flow be dissipative. We note that models with the
similar purpose of describing diffusing non-electrolytes and their
interaction with osmotic water flow across moving membranes,
have been proposed in the literature [19,24,25].

In Section 3, we extend the model of Section 2 to treat the case
of ionic electrodiffusion. We introduce the electrostatic potential
φ which satisfies the Poisson equation. The membrane now
carries capacitance, which can result in a jump in the electrostatic
potential across the membrane. We shall see that this model also
satisfies a free energy equality. The free energy now includes an
electrostatic contribution.

In Section 4, we discuss simplifications of our model. We make
the system dimensionless and assess the relative magnitudes of
the terms in the equations. An important simplification is obtained
whenwe take the electroneutral limit. In this case, the electrostatic
potential becomes a Lagrange multiplier that helps to enforce the
electroneutrality condition.
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Fig. 1. Ωi and Ωe are the extracellular and intracellular spaces respectively. Γt
is the membrane, which may move with time. In the ionic concentrations ck fluid
velocity u, and pressure p are defined in bothΩi andΩe . The position of the time-
dependent membrane location is given by X. Defined on the membrane are the
solute flux fk , water flux fw and the elastic force Fmem . In the electrolyte case, we
also have the electrostatic potentialφ defined inΩi andΩe .n is the outward normal
on Γt .

In Section 5, we develop a computational scheme to simulate
the limiting system obtained in the electroneutral limit, when the
geometry of the cell is assumed spherical. As an application, we
treat animal cell volume control.

2. Diffusion of non-electrolytes and osmotic water flow

2.1. Model formulation

Consider a bounded domain Ω ⊂ R3 and a smooth closed
surface Γ ⊂ Ω . This closed surface divides Ω into two domains.
Let Ωi ⊂ Ω be the region bounded by Γ , and let Ωe = Ω \

(Ωi ∪ Γ ). In the context of cell biology, Ωi may be identified
with the intracellular space andΩe the extracellular space (Fig. 1).
Although cell physiological systems of biological cells serve as our
primary motivation for formulating the models of this paper, this
identification is not necessary.

In this section, we formulate a system of PDEs that governs
the diffusion of non-electrolytes and osmotic flow of water in the
presence of membranes. In Section 3, we shall build upon this
model to treat the electrolyte case.

We considerN non-electrolyte chemical specieswhose concen-
trations we call ck, k = 1, . . . ,N . Let ω be the entropic part of the
free energy per unit volume of this solution. Here, we adopt the
following expression for ω:

ω0 =

N−
k=1

kBTck ln ck. (2.1)

This expression is validwhen the ionic solution is sufficiently dilute
and leads to linear diffusion of solutes. Our calculations, however,
do not depend on this choice of ω. If the solution in question
deviates significantly from ideality, other expressions for ω may
be used in place of ω0.

Given ω, the chemical potentialµk of the k-th chemical species
is given as:

µk = σk, σk ≡
∂ω

∂ck
. (2.2)

We have introduced two symbols µk and σk in anticipation of the
discussion of the electrolyte case, where µk and σk are different.

We begin by writing down the equations of ionic concentration
dynamics. At any point inΩi orΩe

∂ck
∂t

+ ∇ · (uck) = ∇ ·


ck

Dk

kBT
∇µk


(2.3)

where Dk is the diffusion coefficient and u is the fluid velocity
field. Using (2.2) and (2.1), we see that ck simply satisfies
the advection–diffusion equation. We have assumed here that
cross-diffusion (concentration gradient of one species driving the
diffusion of another species) is negligible.
We must supplement these equations with boundary condi-
tions. Most formulations of non-equilibrium thermodynamic pro-
cesses seem to be confined either to the bulk or to the interface
between two bulk phases [21,26,23]. Here we must couple the
equations in the bulk and with boundary conditions at the inter-
face, which as a whole give us a consistent thermodynamic treat-
ment of diffusion and osmosis.

On the outer boundary Γout = ∂Ω , for simplicity, we impose
no-flux boundary conditions. Let us now consider the interfacial
boundary conditions on the membrane Γ . Since we want to ac-
count for osmoticwater flow, themembraneΓ will deform in time.
Sometimes, we shall use the notation Γt to make this time depen-
dence explicit. Let Γref be the resting or reference configuration of
Γ . The membrane will then be a smooth deformation of this ref-
erence surface. We may take some (local) coordinate system θ on
Γref, which would serve as a material coordinate for Γt . The trajec-
tory of a point that corresponds to θ = θ0 is given byX(θ0, t) ∈ R3.
For fixed t , X(·, t) gives us the shape of the membrane Γt .

Consider a point x = X(θ, t) on the membrane. Let n be the
outward unit normal on Γ at this point. The boundary conditions
satisfied on the intracellular and extracellular faces of the
membrane are given by:

ck


u −

Dk

kBT
∇µk


· n = ck

∂X
∂t

· n + fk on Γi or Γe. (2.4)

The expression ‘‘on Γi,e’’ indicates that the quantities are to
be evaluated on the intracellular and extracellular faces of Γ
respectively. The term fk is the chemical flux that passes through
the membrane, where the flux going from Ωi to Ωe is taken to
be positive. Eq. (2.4) is just a statement of conservation of ions at
the moving membrane. It is easy to check that (2.3) together with
(2.4) implies conservation of each species. To close the system of
equations, we need constitutive relations for fk. The flux fk is often
given as a function of the solute concentrations on both sides of
the membrane, and will be discussed further in relation to the free
energy identity (2.17) discussed in the next section.

We now discuss force balance. We shall treat the cytosol as a
viscous stokes fluid and the cell membrane as a two-dimensional
surface whose forces can be derived from a suitable energy func-
tional. This encompasses two-dimensional elasticity as well as
surface tension and bending forces (Helfrich forces). The cell mem-
brane itself is just a lipid bilayer, and cannot support a large me-
chanical load. The cell membrane is often mechanically reinforced
by an underlying actin cortex and an overlying system of connec-
tive tissue, and in the case of plant cells, by an overlying cell wall. If
we view these structures as part of the membrane, our treatment
of the membrane being elastic may be a useful simplification. The
cytosol contains a cytoskeletal network andmany other structures
that may render the Stokesian description of the cytosolic fluid in-
adequate. We could, in principle, employ a more complete model
of cell mechanics incorporating such complexities. However, our
emphasis here is on demonstrating howosmosis can be seamlessly
combinedwithmechanics, andwe intentionally keep themechan-
ical model simple to clarify the underlying ideas. Even when the
mechanical model is more complex, the incorporation of osmosis
should proceed along the same lines.

Consider the equations of fluid flow. The flow field u satisfies
the Stokes equation at any point inΩi orΩe:
ν1u − ∇p = 0, ∇ · u = 0 (2.5)
where p is the pressure and ν is the viscosity of the electrolyte
solution. Note that the above equations can also be written as
follows:
∇ ·Σm(u, p) = 0, ∇ · u = 0,

Σm(u, p) = ν(∇u + (∇u)T )− pI ≡ 2ν∇Su − pI
(2.6)

where I is the 3 × 3 identity matrix and (∇u)T is the transpose
of ∇u. Here, Σm is the mechanical stress tensor. It is possible to
carry out much of the calculations to follow even if we retain
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inertial terms and work with the Navier–Stokes equations or use
other constitutive relations for themechanical stress. In particular,
such modifications will not destroy the free energy identity to be
discussed below. We do note, however, that incompressibility is
important for our computations.

We now turn to boundary conditions.We let u = 0 on the outer
boundaryΓout for simplicity. On the cell membraneΓ , we have the
following conditions. Take a point x = X(θ, t) on the boundary Γ ,
and let n be the unit outward normal on Γ at this point. First, by
force balance, we have:

[Σm(u, p)n] = Fmem, (2.7)

where [Σm(u, p)n] is the jump in the mechanical stress across the
membrane. For any quantityw we shall henceforth let:

[w] = w|Γi − w|Γe (2.8)

where ·|Γi,e expresses evaluation of quantities at the intracellular
and extracellular faces of the membrane Γ respectively. In (2.7),
Fmem is the elastic force per unit area of membrane.

We make some assumptions about the form of the membrane
mechanical force. We assume that the membrane mechanical
force can be derived from an energy functional. In the case of
two-dimensional elasticity, the energy functional Emem is most
conveniently written in terms of integration against a reference
coordinate system:

Emem(X) =

∫
Γref

E(X)dmΓref (2.9)

wheremΓref is the surfacemeasure ofΓref andE is the elastic energy
density measured with respect to this measure. It is possible that
E is a function of spatial derivatives of X. The elastic force Fmem(x)
satisfies the relation:
d
ds


s=0

∫
Γref

E(X(θ)+ sY(θ))dmΓref

= −

∫
Γ

Fmem(x) · Y(X−1(x))dmΓ (2.10)

where Y is an arbitrary vector field defined on Γref and mΓ is
the natural measure on the surface Γ and is related to mΓref by
dmΓ = QdmΓref where Q is the Jacobian determinant relating
Γt to the reference configuration Γref. The expression X−1(x) is
the inverse of the map x = X(θ). Thus, Fmem is given as the
variational derivative of the elastic energy up to the Jacobian factor
Q . Consequently, we have the following relation:

d
dt

Emem(X) = −

∫
Γ

Fmem ·
∂X
∂t

dmΓ . (2.11)

In the above, ∂X
∂t should be thought of as a function of x, i.e., ∂X

∂t =

∂X
∂t (X

−1(x)). We shall henceforth abuse notation and let ∂X
∂t be a

function of x or θ depending on the context of the expression.
We point out that surface tension and bending forces (Helfrich

forces), which are usually not considered ‘‘elastic’’, can also be
derived as a variational derivative of a suitable energy functional,
and thus falls within our framework. We shall not treat this case
explicitly here, since the computations are more or less identical.

A variant of (2.7) is the following. Suppose the membrane is
incompressible in the sense that Q ≡ 1 for all time. This is the
condition that themembrane is a two-dimensional incompressible
material. When Q ≡ 1 for all time, we let:

[(Σm(u, p)n)] = Fmem + Fp (2.12)

where Fp is given as:

Fp = λκΓ n − ∇Γ λ. (2.13)
Here, κΓ is the sum of the principal curvatures of themembrane Γ
and ∇Γ = ∇ − n(n · ∇) is the surface gradient on Γ .
The above is a surface pressure and λ is determined so that Q ≡ 1.

In addition to the force balance condition (2.7), we need a
continuity condition on the interface Γ . Since we are allowing
for osmotic water flow, we have a slip between the movement of
the membrane and the flow field. At a point x = X(θ, t) on the
boundary Γ we have:

u −
∂X
∂t

= fwn (2.14)

where fw is water flux through the membrane. We are thus
assuming that water flow is always normal to the membrane and
that there is no slip between the fluid and the membrane in the
direction tangent to the membrane. Given that n is the outward
normal, fw is positivewhenwater is flowing out of the cell. To close
the system of equations, we need constitutive relations for fw . We
will discuss this in relation to the free energy identity (2.17), to
which we now turn.

2.2. Free energy identity

We now show that the system described above satisfies a free
energy identity. Let

ψ0
w ≡ πw + p,

πw =


ω −

N−
k=1

ckσk


=


ω −

N−
k=1

ck
∂ω

∂ck


(2.15)

where p is the pressure that appeared in (2.5). We also define:

[ψw] = ψw|Γi
− ψw|Γe

ψw|Γi,e
= πw|Γi,e − ((Σm(u, p)n) · n)|Γi,e

(2.16)

where πw was defined in (2.15). Note that [ψw] reduces to

ψ0
w


when the fluid velocity u = 0.We shall see shortly thatψ0

w has the
physical interpretation as the water potential. We may now state
the free energy identity.

Theorem 2.1. Suppose ck,u and p are smooth functions that
satisfy (2.3), (2.5) in Ωi and Ωe and satisfy boundary condi-
tions (2.4), (2.7), (2.14) on the membrane Γ . Suppose further that ck
satisfy no-flux boundary conditions and u = 0 on the outer boundary
Γout. Then, ck,u and p satisfy the following free energy identity.

d
dt
(GS + Emem) = −Ip − J

GS =

∫
Ωi∪Ωe

ωdx

Ip =

∫
Ωi∪Ωe


2ν |∇Su|

2
+

N−
k=1

ck
Dk

kBT
|∇µk|

2


dx

J =

∫
Γ


[ψw]fw +

N−
k=1

[µk]fk


dmΓ .

(2.17)

Here, Emem was given in (2.9), |∇Su| is the Frobenius norm of the 3 ×

3 symmetric rate of deformation matrix ∇Su and [ψw] was defined
in (2.16). Identity (2.17) also holds if (2.12) is used in place of (2.7).

We point out that it is possible to replace 2ν |∇Su|
2 with ν |∇u|

2

in the above identity. The verification of this uses the continuity of
u across Γ and is left to the reader.
An interesting point about the calculation to follow is that the
quantity ψw arises naturally as a result of integrating by parts.
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Proof of Theorem 2.1. First, multiply (2.3) with µk in (3.1) and
integrate overΩi and sum in k:

N−
k=1

∫
Ωi

µk


∂ck
∂t

+ ∇ · (uck)

dx

=

N−
k=1

∫
Ωi

µk∇ ·


ck

Dk

kBT
∇µk


dx. (2.18)

The summand in the right hand side becomes:∫
Ωi

µk∇ ·


ck

Dk

kBT
∇µk


dx =

∫
Γi


µkck

Dk

kBT
∇µk · n


dmΓ

−

∫
Ωi


ck

Dk

kBT
|∇µk|

2

dx (2.19)

where n is the outward normal on Γ . Consider the left hand side
of (2.18).

N−
k=1

µk


∂ck
∂t

+ ∇ · (uck)


=

N−
k=1

∂ω

∂ck


∂ck
∂t

+ u · ∇ck


=
∂ω

∂t
+ ∇ · (uω), (2.20)

where we used (2.2) and the incompressibility condition in (2.5).
Integrating the above overΩi, we have:∫
Ωi


∂ω

∂t
+ ∇ · (uω)


dx =

∫
Ωi

∂ω

∂t
dx +

∫
Γi

ωu · ndmΓ

=
d
dt

∫
Ωi

ωdx

+

∫
Γi

ω


u −

∂X
∂t


· ndmΓ (2.21)

whereweused the fact thatu is divergence free in the first equality.
The term involving ∂X

∂t comes from the fact that themembraneΓ is
moving in time. Performing similar calculations onΩe, and adding
this to the above, we find:

d
dt

∫
Ωi∪Ωe

ωdx +

∫
Γ

[ω]fwdmΓ

=

N−
k=1

∫
Γ

[
µkck

Dk

kBT
∇µk · n

]
dmΓ

−

N−
k=1

∫
Ωi∪Ωe


ck

Dk

kBT
|∇µk|

2

dx (2.22)

where we used (2.14). Using (2.2), (2.4) and (2.14), wemay rewrite
the second boundary integral as follows:∫
Γ

[
µkck

Dk

kBT
∇µk · n

]
dmΓ

=

∫
Γ

([ckσk] fw − [µk]fk) dmΓ . (2.23)

We now turn to Eq. (2.5). Multiply this by u and integrate overΩi:∫
Ωi

u · (ν1u − ∇p)dx =

∫
Γi

(Σm(u, p)n) · udmΓ

−

∫
Ωi

2ν |∇Su|
2 dx = 0. (2.24)
Performing a similar calculation onΩe and adding this to the above,
we have:∫
Γ

[(Σm(u, p)n)] · udmΓ −

∫
Ωi∪Ωe

2ν |∇Su|
2 dx = 0. (2.25)

We may use (2.7), (2.11) and (2.14) to find

d
dt

Emem(X) =

∫
Γ

[(Σm(u, p)n) · n] jwdmΓ

−

∫
Ωi∪Ωe

2ν |∇Su|
2 dx. (2.26)

Combining (2.22), (2.23) and (2.26), we have:

d
dt

∫
Ωi∪Ωe

ωdx + Emem(X)


= −

N−
k=1

∫
Ωi∪Ωe


ck

Dk

kBT
|∇µk|

2

dx

−

∫
Ωi∪Ωe

2ν |∇Su|
2 dx −

∫
Γ

N−
k=1

[µk]fkdmΓ

−

∫
Γ


ω −

N−
k=1

ckσk − (Σm(u, p)n) · n


fwdmΓ . (2.27)

Recalling the definition of ψw in (2.16), we obtain the desired
equality. A similar calculation shows that the free energy
identity holds under the boundary condition (2.12) (see proof of
Theorem 3.1 in Appendix B). �

Identity (2.17) should be viewed as expressing free energy balance.
The free energy consists of the entropic contribution GS and the
membrane elasticity term Emem. The change in free energy is
through bulk fluxes (the term Ip) and through membrane fluxes
(the term J). The term Ip is clearly positive and thus represents a
dissipation of free energy. It consists of viscous dissipation due to
fluid motion and dissipation due to solute diffusion. The term J is
written as a sum of [µk] fk, the free energy contribution from ions
and [ψw] fw , the free energy contribution from transmembrane
water flow. Expression ψw may thus be interpreted as the change
in free energy as a unit volume of water traverses the membrane.
Thus, [ψw] can be seen as the water potential (the free energy
per unit volume of water) difference across the membrane. Under
conditions of no flow (u = 0), [ψw] reduces to:

[ψw] =

ψ0
w


= [p] − [πw] , [πw] =

N−
k=1

[ck] kBT (2.28)

where we have used (2.16), (2.15) and (2.1) for the expression for
ω. This is indeed the familiar expression for the water potential; it
is given as the sum of the mechanical pressure difference [p] and
the osmotic pressure difference− [πw], where the osmotic pressure
is given by the van’t Hoff formula. In this sense, wemay say thatwe
have derived the van’t Hoff expression for osmotic pressure as a
natural consequence of the free energy identity. The quantity [ψw]
can be seen as the appropriate modification to the water potential
jump under non-zero flow conditions.

The term J does not in general have a definite sign. Let us divide
fk and fw as follows:

fk = jk + ak, fw = jw + aw, (2.29)

and assume that jk and jw together satisfy:

Jp ≡ [ψw] jw +

N−
k=1

[µk] jk ≥ 0. (2.30)
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We also introduce the quantity:

Ja ≡ [ψw] aw +

N−
k=1

[µk] ak (2.31)

so that Jp + Ja = J . Given its positivity, Jp represents dissipation
of the free energy through solute fluxes and water flow across the
membrane. Thus, jk and jw are the passive solute and water fluxes
respectively. The fluxes ak and aw are the active fluxes and Ja does
not have a definite sign. The term Ja represents external free energy
input due to these active fluxes.

It is sometimes useful to rewrite Jp + Ip as:

Jp + Ip = Fw + Fc,

Fw =

∫
Ωi∪Ωe

2ν |∇Su|
2 dx +

∫
Γ

[ψw]jwdmΓ ,

Fc =

∫
Ωi∪Ωe

N−
k=1

ck
Dk

kBT
|∇µk|

2 dx +

∫
Γ

N−
k=1

[µk]jkdmΓ ,

(2.32)

where Fw and Fc are the dissipations due to water flow and solute
diffusion respectively.

We now discuss the constitutive relations for jk and jw , which
specify the functional dependence of jk and jw with respect to ck,u
and p evaluated on both sides of the membrane. The flux jk is
in general a function of concentrations of all chemical species on
both sides of the membrane. The chemicals are usually carried by
channels and transporters, and the functional form of jk describes
the kinetic features of these carriers. The water flux jw may
represent passive water flow through the lipid bilayer or through
water channels (aquaporins). If the constitutive relations for jk and
jw satisfy the following inequalities, (2.30) is trivially satisfied:

[µk]jk ≥ 0, for all k, (2.33)
[ψw] jw ≥ 0. (2.34)

The flux functions jk and jw satisfy the above if:

jk = jk([µk]), jk([µk] = 0) = 0,
djk

d[µk]
> 0

jw = jw([ψw]), jw([ψw] = 0) = 0,
djw

d[ψw]
> 0.

(2.35)

The condition on jk says that the transmembrane flux of solute k
is driven by [µk], the difference in chemical potential. Concrete
examples of such a constitutive relation will be given in Section 3.
The condition for jw says that the transmembrane water flux is
driven by the difference in water potential [ψw], which is in turn
given by the sum of mechanical pressure and osmotic pressure.
We thus recover the familiar statement that water flows across
the membrane according to mechanical and osmotic pressure
differences.

There are important instances of passive currents jk and jw
that satisfy (2.30) but do not satisfy (2.33) and (2.34). This is the
case for systems in which different chemical species flow through
one channel or (passive) transporter. Those systems usually
couple fluxes of different chemical species. They often couple
(unidirectional) influx and efflux of the same species (symporters
and antiporters) [27,12,28,2,3]. Thus, the chemical potential
gradient of one solute species can influence the flux of a different
solute species. We note that such cross-diffusion can be relevant
even in bulk solution [29–33].

If [µk] and [ψw] remain small, the dissipation Jp in (2.17) may
be approximated by a quadratic form in the jumps:

Jp =

∫
Γ

[µ] · jdmΓ =

∫
Γ

[µ] · (L [µ])dmΓ ,

µ = (µ1, . . . , µN , ψw)
T , j = (j1, . . . , jN , jw)T ,

(2.36)
whereL is a symmetric (N +1)× (N +1)matrix. Requiring that Jp
be positive wheneverµ is not zero implies that L must be positive
definite. Themaximum dissipation principle requires that j be given
as variational derivatives of Jp/2 with respect to [µ]:

j = L [µ] . (2.37)

Note that, without the maximum dissipation principle, (2.36) only
implies j = (L + L̃) [µ] where L̃ is an arbitrary skew symmetric
matrix. The symmetry of the coefficient matrix L relating [µ] and
j is an instance of the Onsager reciprocity relation [26,21,23].

A lipid bilayer membrane is impermeable to many solutes, but
only approximately so. In this case, a water flux may induce a
solute flux, and this may be expressed as Lkw ≠ 0 where Lkw
is the (k,N + 1) entry of the matrix L. This is known as solvent
drag. Given the presence of such cross coefficients, (2.33) and
(2.34) are not necessarily true, whereas condition (2.30) is true by
construction.

The active fluxes ak and aw are typically due to ionic pump
currents often driven by chemical energy expenditure (most
commonly, the hydrolysis of ATP) [28,2,3].

3. Electrodiffusion of ions and osmotic water flow

3.1. Model formulation

Let us now consider the case in which the chemical species
are electrically charged. As in the previous section, we let ck, k =

1, . . . ,N be the concentrations of the ionic species. Given ω, the
entropic part of the free energy per unit volume, the chemical
potential µk of the k-th species of ion is given as:

µk =
∂ω

∂ck
+ qzkφ = σk + qzkφ. (3.1)

The chemical potential is thus a sum of the entropic term σk
and the electrostatic term. In the electrostatic term, q is the
elementary charge, zk is the valence of the k-th species of ion,
and φ is the electrostatic potential. The definitions of the water
potential, ψ0

w and ψw , remain the same. The ionic concentrations
ck satisfy (2.3) and (2.4) except that we now use (3.1) as our
expression for the chemical potential. Ions are thus subject to drift
by the electric field in addition to diffusion and advection by the
local flow field. In addition to the dependences discussed in the
previous section, the transmembrane flux fk is now a function
also of the jump in electrostatic potential across the membrane
[φ] = φ |Γi

−φ |Γe (the membrane potential). We shall discuss the
constitutive relations for fk in relation to the free energy identity to
be presented in Theorem 3.1.

If the electrolyte solution is sufficiently dilute, the chemical
potential µk is given by (3.1) with ω equal to (2.1). However,
deviations from ideality can be significant in electrolyte solutions,
especially in higher concentrations [34–38]. Cross-diffusion (or
flux coupling) in the bulk can also be significant in electrolyte
solutions [29–33]. These effects are clearly important in describing
the molecular physiology of ion channel pores and enzyme active
sites atwhich ionic concentrations can reach tens ofmolars [38,39].
The question ofwhether these effects are significant in formulating
phenomenologicalmodels in cellular physiology, where the typical
ionic concentrations are two orders of magnitude lower, is
largely unexplored. This exploration is beyond the scope of the
present paper, but we point out that our formalism allows the
incorporation of such effects [40].

The electrostatic potential φ satisfies the Poisson equation:

− ∇ · (ϵ∇φ) =

N−
k=1

qzkck (3.2)
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where ϵ is the dielectric constant. We shall assume that ϵ is
constant in space and time. This restriction may be lifted, at the
expense of introducing a relation that describes the evolution of
ϵ. We also assume that there is no fixed background charge. It
is easy to generalize the calculations below to the case when the
immobile charges, if present, always stay away from the moving
membrane. Otherwise, one would need to introduce ‘‘collision
rules’’ to determine what happens when the membrane hits the
immobile charges. We impose Neumann boundary conditions for
(3.2) on the outer boundary Γout for simplicity. On the membrane
Γ , we impose the following boundary condition:

− ϵ
∂φ

∂n


Γi

= −ϵ
∂φ

∂n


Γe

= Cm[φ] (3.3)

where Cm is the capacitance per unit area of membrane. The above
is simply a statement about the continuity of the electric flux
density. Since the membrane is moving, the capacitance Cm is
itself an evolving quantity. We assume the following family of
constitutive laws for Cm. At x = X(θ, t),

Cm(x) = Cm(Q (X)) (3.4)

where Q (X) is the Jacobian or metric determinant of the config-
uration Γt at time t with respect to the reference configuration
Γref. This factor describes the extent to which the membrane is
stretched from the rest configuration. A simple example of (3.4)
would be:

Cm(x) = C0
m = const. (3.5)

As another example, we may set:

Cm(x) = C0
mQ (X) (3.6)

where C0
m = const is the capacitance per unit area measured in

the reference configuration. Relation (3.6) is the natural scaling
if we assume that the membrane is made of an incompressible
material, as can be seen as follows. Suppose themembrane ismade
of a material whose dielectric constant is ϵm. If the thickness of
the membrane at the point x = X(θ, t) is d(x), the membrane
capacitance there is given by ϵm/d(x). The incompressibility of
the material implies that the local membrane volume remains
constant in time: d(x)Q (X) = const. Thus, Cm(x) must be
proportional to Q (X).

Force balance must be modified to take into account electro-
static forces. The flow field u satisfies the Stokes equation inΩi or
Ωe with an electrostatic force term:

ν1u − ∇p −


N−

k=1

qzkck


∇φ = 0, ∇ · u = 0. (3.7)

Note that the above equations can also be written as follows:

∇ · (Σm(u, p)+Σe(φ)) = 0, ∇ · u = 0,

Σe(φ) = ϵ


∇φ ⊗ ∇φ −

1
2

|∇φ|
2 I

.

(3.8)

Here,Σm(u, p) is the stress tensor for the Stokes fluid given in (2.6)
andΣe is the Maxwell stress tensor generated by the electric field.
Note that we have used (3.2) to rewrite the electrostatic force in
(3.7) in terms ofΣe.

We now turn to boundary conditions. We continue to let u = 0
on the outer boundary Γout. On the cell membrane Γ , we have the
following conditions. First, by force balance, we have:

[(Σm(u, p)+Σe(φ))n] = Fmem + Fcap. (3.9)
In addition to Fmem, we have an additional term Fcap which arises
because themembrane carries capacitive energy.We shall call this
the capacitive force, which is given as:

Fcap = τcapκΓ n − ∇Γ τcap, τcap =
1
2


Cm + Q

∂Cm

∂Q


[φ]

2 (3.10)

where κΓ is the sum of the principal curvatures of the membrane
Γ and ∇Γ = ∇ − n(n · ∇) is the surface gradient on Γ . The above
expression shows that the capacitive force can be seen as a surface
tension of strength −τcap. The above capacitive force is chosen so
that Theorem 3.1 holds, and in this sense, the proof of Theorem 3.1
provides a variational interpretation of this force. In Appendix A,
we give a physical interpretation of expression (3.10).

In the same way as discussed in the previous section, we may
impose the membrane incompressibility constraint Q ≡ 1. In this
case, the boundary condition (3.9) is modified as follows:

[(Σm(u, p)+Σe(φ))n] = Fmem + Fp (3.11)

where the expression for Fp is the same as in (2.13). In (3.11) we
do not need a capacitive force since it can be absorbed into the
surface pressure term. Note that this condition of two-dimensional
incompressibility is not the same as assuming that the membrane
is made of a (three-dimensional) incompressible material. In the
case of three-dimensional incompressibility, the membrane may
stretch, but this would lead to a thinning of themembrane, leading
to the constitutive law (3.6) as we saw earlier.

The continuity condition (2.14) remains the same. We shall
discuss the constitutive relation for fw in relation to Theorem 3.1.

We remark that the model we just proposed in the bulk is noth-
ing other than the Poisson–Nernst–Planck–Stokes system if we let
ω = ω0 given in (2.1) [41]. Indeed, the Poisson–Nernst–Planck
system has received much attention in the field of semiconduc-
tors [42–44], ionic channels [45], ion exchangemembranes and de-
salination [41] as well as physical chemistry [46]. The novelty here
is in the interface conditions at the membrane, (2.4), (3.3), (3.9)
and (2.14). Most non-equilibrium thermodynamic field theories
have focused on the bulk equations, and boundary conditions are
usually very simple (Neumann or Dirichlet) if not an afterthought.
On the other hand, non-equilibrium thermodynamic theories of
membranes that dealwith osmosis and/or electrodiffusion are usu-
ally ODE models that neglect any kind of spatial variation. Our
model is the first in which bulk and membrane biophysical pro-
cesses are seamlessly linked to produce a consistent thermody-
namic field theory of electrodiffusion and osmosis. Indeed, the free
energy identity, to which we now turn, consists of bothmembrane
and bulk terms. We note that the inclusion of such spatial varia-
tion is potentially important in many biophysical systems. A clas-
sical example in the case of electrodiffusion is the ‘‘concentration
polarization’’ effect studied by Frankenhaeuser and Hodgkin [47].

3.2. Free energy identity

We now show that the system described in the previous
section possesses a natural free energy. The proof of this result is
somewhat technical and is relegated to Appendix B.

Theorem 3.1. Suppose ck,u, p and φ are smooth functions that
satisfy (2.3), (3.7) and (3.2) in Ωi and Ωe and satisfy boundary
conditions (2.4), (3.9), (2.14) and (3.3) on the membrane Γ . Suppose
further that ck and φ satisfy no-flux boundary conditions and u = 0
on the outer boundary Γout. Then, ck,u, p and φ satisfy the following
free energy identity.

d
dt
(GS + Emem + Eelec) = −Ip − J

Eelec =

∫
Ωe∪Ωe

1
2
ϵ |∇φ|

2 dx +

∫
Γ

1
2
Cm[φ]

2dmΓ .
(3.12)
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Here, GS, Emem, Ip, J are the same as in (2.17). The same identity holds
if we require Q ≡ 1 and adopt (3.11) instead of (3.9).

In (3.12), in addition to the terms present in (2.17), we now have
an electrostatic term in the energy.

Similarly to the non-electrolyte case, we let fk = jk + ak and
fw = jw + aw so that jk and jw express passive fluxes. The property
that jk and jw are passive is expressed by condition (2.30). The free
energy is thus monotone decreasing if ak = aw = 0. In contrast
to the non-electrolyte case, however, the chemical potential jump
[µk] now depend on the membrane potential [φ], and thus, jk (and
jw) may strongly depend on the membrane potential.

Let us briefly discuss the constitutive relations for jk. The
passive ionic flux is typically carried through ionic channels and
transporters. Some of the popular choices jk include [14,12,48]:

jHHk = gk[µk] = gk


zk[φ] + ln


ck|Γi
ck|Γe


, (3.13)

jGHKk = Pkzkφ′


ck|Γi exp(zkφ

′)− ck|Γe
exp(zkφ′)− 1


, φ′

=
q [φ]
kBT

, (3.14)

where gk and Pk are positive and depend on the gating variables
in certain modeling contexts [12,48]. It is easily seen that both
jHHk and jGHKk satisfy (2.33), which, together with (2.34), constitutes
a sufficient condition for (2.30) to hold. We shall use expression
(3.14) in our numerical computations in Section 5.

4. Limiting systems

We now discuss some limiting cases of the model we intro-
duced in the previous section. For this purpose, we shall first
make the equations dimensionless. In what follows, the primed
symbols denote dimensionless variables.We introduce the follow-
ing non-dimensionalization of space and time.

x = Lx′, X = LX′, t = TDt ′,

TD =
L2

D0
, Dk = D0D′

k,
(4.1)

where L is the characteristic length scale (for example the size of
the domainΩi) and D0 is the characteristic diffusion coefficients of
ions.We thusmeasure timewith respect to the diffusive time scale
of ions. For concentrations and the electrostatic potential, we let:

ck = c0c ′

k, φ =
kBT
q
φ′. (4.2)

For pressure and the membrane elastic force, we let:

p = c0kBTp′, Fmem = c0kBTF′

mem. (4.3)

For the characteristic fluid and membrane velocity, we turn to
relation (2.14). Let ζ be the characteristic hydraulic permeability
of the membrane, which we may take as follows:

ζ =
∂ jw
∂[ψw]


[ψw ]=0

. (4.4)

Then, ζ c0kBT is the characteristic velocity generated by an osmotic
gradient across the membrane. We thus let:

u = ζ c0kBTu′. (4.5)

With the above dimensionless variables, we may rewrite our
system as follows. For simplicity, we shall adopt expression (2.1)
as our definition of the entropic part of the free energy ω, so that:

µ′

k = zkφ′
+ ln c ′

k. (4.6)
InΩi andΩe, we have:

∂c ′

k

∂t ′
+ Pe∇ ′

· (u′c ′

k) = −∇
′
· f′k,

f′k = −D′

k(∇
′c ′

k + zkc ′

k∇
′φ′), (4.7a)

−∇
′
· (β2

∇
′φ′) =

N−
k=1

zkc ′

k, (4.7b)

γ∆′u′
= ∇

′p′
+


N−

k=1

zkc ′

k


∇φ′, ∇

′
· u′

= 0, (4.7c)

where ∇
′,∇ ′

· and ∆′ are the gradient, divergence and Laplace
operators in the x′ coordinate and the dimensionless constants are:

Pe =
ζ c0kBT
D/L

, β =
rd
L
, rd =


ϵkBT
q2c0

, γ =
νζ

L
. (4.7d)

In the above, Pe is the Péclet number which, in this case, measures
the ratio between the fluid velocity induced by osmotic gradients
and the characteristic diffusive velocity. The constant β measures
the ratio between rd, the Debye length and L. The constant γ is the
ratio between the viscosity of water and the hydraulic resistance
of the membrane. The boundary conditions at the membrane
interface Γ become:

c ′

k


Pe u′

−
∂X′

∂t ′


+ f′k


· n


Γi,e

= α(j′k + a′

k), (4.7e)

−

β∇

′φ′
· n

Γi,e

= θC ′

m


φ′

, (4.7f)

u′
−

1
Pe
∂X′

∂t ′
= j′w + a′

wn, (4.7g)
Σ ′

m(u
′, p′)+ β2Σ ′

e(φ
′)

n


= F′

mem + βθF′

cap. (4.7h)

In Eq. (4.7e), α is a dimensionless constant given by the ratio of
the characteristic membrane permeability pm and diffusion in the
bulk:

α =
pm
D/L

, pm =

N−
k=1

kBT
c0

∂ jk
∂ [µk]


[µk]=0

. (4.8)

The currents jk and ak are scaled so that jk = pmc0j′k and ak =

pmc0a′

k. In (4.7f):

Cm = C0
mC

′

m, θ =
C0
mkBT/q
qc0rd

, (4.9)

where C0
m is the characteristic magnitude of the membrane

capacitance per unit area (see (3.5) or (3.6)). The dimensionless
constant θ is the ratio between themembrane charge and the total
amount of charge in a layer of thickness on the order of the Debye
length. In (4.7g), jw = ζ c0kBTj′w and similarly for aw and a′

w . The
variables in (4.7h), are defined by:

Σ ′

m(u
′, p′) = γ (∇ ′u′

+ (∇ ′u′)T )− p′I, (4.10)

Σ ′

e(φ
′) = ∇

′φ′
⊗ ∇φ′

−
1
2

∇ ′φ′
2 I, (4.11)

Fcap = τ ′

capκ
′

Γ n − ∇
′

Γ τ
′

cap, τ ′

cap =
1
2


C ′

m + Q
∂C ′

m

∂Q

 
φ′
2 (4.12)

where κ ′
Γ (=κΓ L) is the sum of the two principal curvatures of Γ

measured in the x′ spatial variable and ∇
′
Γ is the surface gradient

operator with respect to x′. Eqs. (4.7a)–(4.7c) and the boundary
conditions (4.7e)–(4.7h) constitute our dimensionless system. In
the rest of this section we shall drop the ′ in the variables with
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the understanding that all variables, unless otherwise stated, are
dimensionless.

The dimensionless system above possesses five dimensionless
constants α, β, γ , θ and Pe. We consider two limiting cases
of the above system. First of all, consider the case when Pe ≪ 1.
Assuming all primed quantities areO(1)with respect to Pe,we see,
from (4.7g) that

∂X
∂t

= O(Pe). (4.13)

Therefore, the membrane does not move to leading order. If
we collect all leading order terms, we see that Eqs. (4.7a) and
(4.7b) decouple from (4.7c). We thus obtain the following Pois-
son–Nernst–Planck system with interface boundary conditions:

∂ck
∂t

= −∇ · fk inΩi,e (4.14a)

−∇ · (β2
∇φ) =

N−
k=1

zkck inΩi,e (4.14b)

(fk · n)|Γi,e = α(jk + ak), (4.14c)

− (β∇φ · n)|Γi,e = θCm [φ] , (4.14d)

where themembraneΓ is fixed in time. Thismodelwas introduced
in [49] (see also [50,51] for related models).

For single cell systems, the Péclet number is about Pe ≈ 10−1

to 10−4. The above may thus be a good approximation to the full
system in the TD time scale. In the context of multicellular systems,
however, L may be large and Pe can reach unity, as can be seen
from expression (4.7d) of Pe. It should be pointed out that there are
situations in which the representative fluid velocity is not dictated
by the osmotic pressure, inwhich case one should adopt a different
definition for the Péclet number. For example, if we are interested
in blood cells in a flow environment, the ambient hemodynamic
flow velocity should be taken as the representative velocity.

We note that (4.14) also satisfies a free energy equality.

Proposition 4.1. Suppose ck and φ are smooth functions that
satisfy (4.14). Then, the following equality holds:

d
dt
(GS + Eelec) = −Fc − Ja. (4.15)

In the above, GS, Eelec, Fc and Ja are dimensionless versions of the
corresponding quantities in (2.17), (2.32) and (3.12).

Proof. This follows from a simple calculation. �

In this sense, system (4.14) may be seen as the system associated
with the energy law (4.15) where the mechanical energy and
dissipation in (3.12) are discarded.

We next consider the limit when β ≪ 1. This limit is motivated
by the fact that the Debye length rd is approximately 1nm in typical
physiological systems, far smaller than the typical length scale of
interest. By formally letting β → 0 in (4.7) we obtain the following
system of equations:

∂ck
∂t

+ Pe u · ∇ck = −∇ · fk inΩi,e (4.16a)

N−
k=1

zkck = 0 inΩi,e, (4.16b)

γ1u − ∇p = 0, ∇ · u = 0 inΩi,e, (4.16c)

α(jk + ak) =


ck


Pe u −

∂X
∂t


+ fk


· n


Γi,e

, (4.16d)

u −
1
Pe
∂X
∂t

= (jw + aw)n, [Σm(u, p)n] = Fmem on Γ .(4.16e)
We have discarded all terms in (4.7) that involve β and have
eliminated the boundary condition (4.7f). The most important
feature of the above system is that we have, in place of the Poisson
equation (4.7b), the electroneutrality condition (4.16b). The
electrostatic potential φ thus evolves so that the electroneutrality
constraint (4.16b) is satisfied at each time instant. Although φ
is thus determined only implicitly through the electroneutrality
condition, it is possible to obtain a PDE satisfied by φ by taking the
derivative of (4.16b) with respect to t and using (4.16a):

0 = ∇ · (a∇φ + b)

a =

N−
k=1

z2kDkck, b =

N−
k=1

zkDk∇ck. (4.17)

We point out that the electroneutrality condition does not imply
that1φ = 0 as may be erroneously inferred from (4.7b). In fact, as
β → 0,1φ may remain order 1 with respect to β while the right
hand side of (4.7b) will go to 0 like β2. This is a common fallacy
in applications of the electroneutral limit. The boundary condition
for this elliptic equation can be obtained by taking the sum in k in
boundary condition (4.16d):

−


a∇φ + b̃


· n

Γi,e

=

N−
k=1

αzk(jk + ak). (4.18)

Suppose

∂

∂ [φ]

N−
k=1

zkjk > 0. (4.19)

The above inequality states that current flowing out of the
cell should increase if [φ] increases, and is thus satisfied by
biophysically reasonable expressions for jk. This inequality is
clearly satisfied if jk are of the form (3.13) or (3.14) (see also (2.35)).
Condition (4.19) is necessary for the boundary value problem
(4.17) and (4.18) to be uniquely solvable (up to an arbitrary
constant), assuming ak is a given function of x (and t).

In connection to (4.17) and (4.18), we perform the following
calculation to illuminate the nature of system (4.16) as it relates
to (4.7). Suppose φ satisfies (4.7). By taking the time derivative of
(4.7b) with respect to t , we obtain:

∇ · 0 =


β2

∇
∂φ

∂t
+ a∇φ +b ,

a =

N−
k=1

z2kDkck, b =

N−
k=1

(−Pezkcku + zkDk∇ck) ,
(4.20)

We used (4.7a) in deriving the above. At the boundary, wemay use
(4.7f) and (4.7e) to find that:

−


β2

∇
∂φ

∂t
+ a∇φ +b · n


Γi,e

= βθ
∂

∂t
(Cm [φ])+

N−
k=1


zkck

∂X
∂t

· n + αzk(jk + ak)

. (4.21)

If we formally let β → 0 in (4.20) and (4.21), we obtain (4.17)
and (4.18) respectively. For the above limit to be justified, wemust
require that ∂φ

∂t and ∂[φ]

∂t remain order 1with respect toβ asβ → 0.
It is thus only when the evolution of φ and [φ] is sufficiently slow
thatwe can reliably use system (4.16) as an approximation to (4.7).

We see from (4.20) and (4.21) that there are two other time
scales in the system besides the diffusive time scale TD. The first
is the Debye time scale, β2TD. This is the relaxation time scale
of deviations from electroneutrality. This Debye time scale is too
small to be of physiological interest, and we may safely ignore
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the β2 ∂φ
∂t terms except for the very short initial layer that may

exist depending on initial conditions. The other time scale, βθTD,
which we shall call the cable time scale, is the time scale over
which the membrane potential [φ] can change. In excitable tissue,
the ionic currents jk can change on a time scale comparable to
βθTD. The interaction of rapid changes in jk and the capacitive
current βθ ∂

∂t (Cm[φ]) term lead to cable effects, including the
propagation of action potentials,which are essential in describing a
wide range of electrophysiological behavior. Such phenomena are
usually described by the cablemodel, inwhich the intracellular and
extracellular media are treated as ohmic resistive media [48,14].

Setting βθ ∂
∂t (Cm[φ]) term to 0 could thus be problematic for

certain applications. It is thus of interest to develop a model in
which the term β2 ∂φ

∂t is ignored but βθ ∂
∂t (Cm[φ]) is not, while

retaining electrodiffusive and osmotic effects contained in the full
model. Such a model (without osmotic effects) is proposed in [52]
andwas applied in [53] to a problem in cardiology. A key ingredient
in the derivation of such a model is an analysis of a boundary layer
that forms at the membrane interface Γ . This boundary layer, in
physical terms, correspond to charge accumulation on both sides
of themembrane.We refer the reader to [54,55] for this model and
its relationship to conventional cable models.

An important feature of system (4.16) is that it satisfies the
following energy equality.

Proposition 4.2. Suppose ck, φ,u and p are smooth functions that
satisfy system (4.16). Then, the following equality holds:

d
dt
(GS + Emem) = −Ip − Jp − Ja. (4.22)

In the above, GS, Emem, Ip, Jp and Ja are dimensionless versions of
corresponding quantities in (2.17) and (3.12).

Proof. The proof follows from a calculation similar to the proof of
Theorem 2.1. �

Thus, system (4.16) may be seen as the system associated with the
energy principle (4.22) in which the electrostatic energy in (3.12)
is discarded.

5. Numerical simulation of animal cell volume control

In this section, we take the problem of cell volume control to
illustrate some aspects of the model we introduced above. Cells
contain a large number of organic molecules that do not leak out
through membrane. This results in excess intracellular osmotic
pressure, which may cause the cell to burst. Cells have developed
countermeasures to prevent this from happening.

We shall use the electroneutral system (4.16) to study cell
volume control. We continue to work with the dimensionless
equations. To simplifymatters, we suppose that the cellmembrane
Γ and the outer boundary Γout = ∂Ω are concentric spheres for
all time and that the velocity field u only has a radial component.
Assuming the boundary condition u = 0 on Γout we immediately
see that u = 0 throughout Ωi ∪ Ωe. We can thus drop equation
(4.16c) and set u = 0 wherever u appears in system (4.16).
Assuming further that ck and φ are functions only of the
(dimensionless) radial coordinate r , we have:

∂ck
∂t

= −
1
r2
∂

∂r


r2fk


, fk = −


Dk
∂ck
∂r

+ zkck
∂φ

∂r


, (5.1a)

N−
k=1

zkck = 0, (5.1b)
for 0 < r < R and R < r < Rout where R(t) is the radius of the
membrane sphere Γ and Rout = const. is the radius of the outer
boundary sphere Γout. The boundary conditions are:

fk =


0 at r = 0,

ck
∂R
∂t

+ α(jk + ak) at r = R±,
(5.1c)

−
1
Pe
∂R
∂t

= jw + aw, [p] = Fmem at r = R, (5.1d)

where r = R± denote limiting values as r approaches R fromabove
or below. Boundary conditions at R = Rout, will be specified later.
The elastic force Fmem can now be viewed as a scalar quantity since
the force is only in the radial direction.

Wenowdevelop a numerical algorithm to simulate system (5.1)
and apply this to animal cell volume control as a demonstrative
example.

We first discuss the numerical algorithm used to simulate
system (5.1). Consider (5.1) in the region a < r < b. First, suppose
b < R or a > R. Then, we have:

d
dt

∫ b

a
r2ckdr = a2fk(a)− b2fk(b). (5.2)

If we let b = R(t) in the above, we must account for the fact that
R(t) is changing in time. Using (5.1a) and (5.1c), we have:

d
dt

∫ R(t)

a
r2ckdr = a2fk(a)− R2(t)α(jk + ak). (5.3)

A similar expression is truewhen a = R(t). The above conservation
relations will be the basis for our discretization.

Let 1t be the time step, and let Rn be the position of the
membrane at t = n1t . We divide 0 < r < Rn and Rn < r < Rout
into Nv equal segments. Let

rnl =


kRn

Nv
, if 0 ≤ l ≤ Nv

Rn
+

Rout − Rn

Nv
, if Nv + 1 ≤ l ≤ 2Nv.

(5.4)

The l-th segment is given by rl−1 < r < rl. Of the 2Nv segments,
segments 1 ≤ l ≤ Nv are in the interior of the cell, whereas the
rest are in the exterior of the cell. In each segment, we have the
concentrations cnk,l and the electrostatic potential φn

l .
Suppose we are to advance from time (n−1)1t to n1t . We use

a splitting scheme. Each time step is divided into two substeps. In
the first substep, we advance membrane position:

Rn
= Rn−1

− Pe(jn−1
w + an−1

w )1t. (5.5)

In evaluating jw , we need the osmotic pressure aswell as the elastic
force Fmem, both ofwhich are evaluated using at time (n−1)1t . For
concentrations of ions at the intracellular and extracellular sides of
the membrane, we use cn−1

k,Nv and cn−1
k,Nv+1 respectively.

In the second substep, we update the concentrations and
compute the electrostatic potential.We use one step of a backward
Euler discretization. We first describe our discretization for the
intracellular region. Define:

cnk,i(r) =


cnk,l if rnl−1 ≤ r < rnl ,
0 if r ≥ rnNv = Rn.

(5.6)

Suppose first that Rn
≤ Rn−1. For 1 ≤ l ≤ Nv − 1, we discretize

(5.2) to obtain an equation for cnk,l:

4π
3
((rnl )

3
− (rnl−1)

3)cnk,l =

∫ rnl

rnl−1

4πr2cn−1
k,i (r)dr

+ 4π

(rnl−1)

2f nk,l−1 − (rnl )
2f nk,l


1t (5.7)
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where f nk,l is set to 0 for l = 0 and

f nk,l = −Dk


cnk,l − cnk,l−1

1xi
+

cnk,l + cnk,l
2

φn
k,l − φn

k,l−1

1xi


,

for 1 ≤ l ≤ Nv − 1, (5.8)

where1xi = Rn/Nv . Note that the integral in (5.7) can be evaluated
exactly given expression (5.6). As for segment l = Nv , we view the
endpoint rnNv = Rn as having evolved from Rn−1, and thus discretize
(5.3). We have:

4π
3
((rnNv−1)

3
− (Rn)3)cnk,Nv

=

∫ Rn−1

rnNv−1

4πr2cn−1
k,i (r)dr

+ 4π

(rnNv−1)

2f nk,Nv−1 − (Rn)2α(ank + jnk)

1t. (5.9)

The important point here is that the upper end point of the above
integral is Rn−1 and not Rn. The total membrane fluxes (Rn)2ank
and (Rn)2jnk are evaluated at time n1t , and are thus functions of
cnk,Nv , c

n
k,Nv+1 and [φ]

n
= φn

Nv − φn
Nv+1.

If Rn > Rn−1, the discretized equations are the same as (5.7)
and (5.9) except that in (5.9) the upper endpoint of the integral
is Rn instead of Rn−1. The fact that the endpoint of the integral is
time-dependent in (5.3) is taken into account by the 0 extension of
cn−1
k,i (r)when r ≥ Rn−1 (see (5.6)).
The final equation we impose is that electroneutrality be

satisfied in each segment:

N−
k=1

zkcnk,l = 0 for all l. (5.10)

For the extracellular segmentsNv+1 ≤ l ≤ 2Nv , we essentially
use the same discretization as in the intracellular segments. The
only difference is in treating boundary conditions at the l =

2Nv segment. We impose either no-flux or Dirichlet boundary
conditions. For no-flux boundary conditions, we simply let f nk,Nv =

0 in (5.7) for l = 2Nv . Suppose the Dirichlet boundary conditions
are given by:

ck(Rout, t) = ck,e. (5.11)

In this case, we set:

cnk,e = ck,e, cnk,e =
3
2
cnk,2Nv −

1
2
cnk,2Nv−1. (5.12)

For either boundary condition, the electrostatic potential is
determined only up to an additive constant, and we thus set φn

e =

3φn
2Nv/2 − φn

2Nv−1/2 = 0.
For the second substep, we thus have Eqs. (5.7), (5.9) and

(5.10) with suitable boundary conditions at rn2Nv = Rout, which
we must solve for cnk,l and φ

n
l . This system of nonlinear algebraic

equations is solved using a Newton iteration where the Jacobian
matrix is computed analytically. In all simulations reported here,
we obtained convergence to within a relative tolerance of 10−12

within less than 4 iterations. In particular, the electroneutrality
condition at each time step was satisfied at each point to within
6 × 10−14 mmol/ℓ for all simulation results shown below.

Note that the discretization is conservative. For example, we
have:

2Nv−
l=1

4π
3
((rnl )

3
− (rnl−1)

3)cnk,l = const (5.13)

so long as we impose the no-flux boundary condition at r =

Rout. We have checked this property numerically, we achieve
conservation of ions to 14–15 digits. This property is very
important in studying long time behavior.

We would also like to comment on our use of the backward
Euler scheme and the Newton iteration in the second substep of
each time step. Rather than use a backward Euler step,wemay split
the second substep further into two substeps. In the first substep,
one compute the updates of φ given values of ck at time (n− 1)1t
and in the second substep, we update ck using the updated φ. A
variant of this scheme is to use the above as one step of a fixed
point iteration to solve the backward Euler problem. An advantage
of these schemes is that the associated matrix problem is much
simpler and smaller than that of a full Newton iteration we use
in this paper. This was indeed the first algorithm we used in our
attempt to simulate the system. This algorithm, however, turned
out to have serious stability and convergence issues and led to
large pile-up of charges close to the membrane. This difficulty
was clearly caused by the moving membrane. Indeed, a similar
algorithm was successfully used in [56] to simulate a similar
but higher dimensional system, in which the membrane was
stationary. We also found that if 1t or the membrane velocity is
very small, the fixed-point algorithm does produce computational
results in agreementwith those obtained using a Newton iteration.
We do point out that even the backward Euler, Newton scheme,
that we use here was not unconditionally stable, though the time
step restriction was never serious. Amore stable algorithmmay be
possible by developing a scheme in which the membrane position
and concentrations (and electrostatic potential) are computed
simultaneously.

We now describe the model example we simulate. The cell
membrane of animal cells is not mechanically strong enough to
resist osmotic pressure due to the presence of organic solutes in
the cell. Cell volume control is achieved by actively maintaining
a concentration gradient of ions across the cell membrane. Many
modeling studies have been performed to study cell volume con-
trol in animal cells. To the best of our knowledge, all such studies
use ODE systems in which the cellular and extracellular concen-
trations are assumed to have no spatial variation [14,15,57–59].
The novelty here is that we use the PDE system (5.1), a field theory,
to study cell volume control.

We consider a generic spherical animal cell whose sodium
and potassium concentration differences across the membrane is
maintained by the presence of the Na–K ATPase. Henceforth, we
shall use variables with their original dimensions, since we will
be dealing with a concrete biophysical setup. We consider four
species of ion, Na+,K+, Cl− and the organic anions, which we
index as k = 1, . . . , 4 in this order. The diffusion coefficients of the
four species are given in the Table 2. We make the simplification
that the organic anions are a homogeneous species with a single
diffusion coefficient. The diffusion coefficient for the organic anion
is somewhat arbitrary, one order of magnitude smaller than the
small inorganic ions.

We take the initial radius of the spherical cell to be R0. We let
the outer edge of the simulation domain Rout = 2R0. We assume
that themembrane does not generate anymechanical force, so that
Fmem = 0. Passive water flow across themembrane is proportional
to the water chemical potential. Given that Fmem = 0, water flow
across the cell membrane is driven osmotic pressure difference
across the membrane:

jw = ζNAkBT
4−

k=1

[ck] (5.14)

where NA is the Avogadro constant (so that NAkB is the ideal gas
constant), T is the absolute temperature, ck is measured inmmol/ℓ
and ζ is measured in velocity per pressure. We take the active
water flux aw to be equal to 0.
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Table 1
Constants used in the numerical simulation. [φ]init is the initial membrane voltage.
Symbols labeled with ‘−’ are determined so that the initial condition is a stationary
state (see main text). The ion related constants are listed in Table 2.

T (K) 273.15 + 37 Kk(mmol/ℓ) 0.75 [61]
ζ (cm/s/mPa) 5.2507 × 10−13 [60] KNa(mmol/ℓ) 3.5 [61]
R0 (mm) 0.5 Ap (cm/s) –
Rout (mm) 1 [φ]init (mV) −70

Table 2
Parameters related to ionic concentrations. O.A. stands for organic anions. The
initial intracellular and extracellular concentrations are given by c initk,int and c initk,ext
respectively (listed here in mmol/ℓ). Symbols labeled with ‘−’ are determined so
that the initial condition is a stationary state (see main text). Other parameters are
listed in Table 1.

zk Dk(cm2/s) Pk (cm/s) c initk,int c initk,ext

Na+
+1 1.33 × 10−5 [62] 1.0 × 10−7 [63] 10 145

K+
+1 1.96 × 10−5 [62] – 140 5

Cl− −1 2.03 × 10−5 [62] 1.0 × 10−7 [63] – 150
O.A. – 1.0 × 10−6 0 – 0

For the passive membrane flux jk, we take expression (3.14):

jk =
R2
0

R(t)2
Pkzkφ′


ck|R− exp(zkφ′)− ck|R+

exp(zkφ′)− 1


,

φ′
=

q [φ]
kBT

(5.15)

where the subscript R− and R+ denote evaluation at the inner
and outer faces of the membrane. This choice is standard for cell
volume studies [60,61]. The number Pk is measured in cm/s and
is the permeability of a unit area of membrane for ionic species k
when the radius of the cell is R0. Assuming that this permeability is
determined by the presence of ionic channels and that the number
of ionic channels remains constant, jk must be made inversely
proportional to the membrane area. For sodium, potassium and
chloride, Pk is positive but we set the permeability for organic
solutes to 0.

We follow [61] to use the following expression for the Na–K
ATPase flux:

a1 = Ap


c1|R−

c1|R− + KNa

3  c2|R+
c2|R+ + KK

2

,

a2 = −
2
3
a1. (5.16)

Recall here that a1, c1 are the active Na+ flux and concentration
respectively and a2, c2 are the active K+ flux and concentration
respectively. The exponents of 3, 2 and the factor of −2/3 reflect
the 3 : 2 stoichiometry of the Na–K ATPase in pumping Na+ out
and K+ into the cell. The constants KNa and Kk are given in Table 1.

All constants and initial conditions are given in Tables 1 and
2. Initial concentrations are assumed to be spatially uniform. The
constants that are not listed in the tables are computed so that the
initial state is a stationary state under no-flux boundary conditions
at R = Rout. This is similar to what is done in [61]. This procedure
determines the initial intracellular Cl− concentration, Na–KATPase
maximal pump rate Ap, K+ permeability p2, initial intracellular
organic solute concentration, and the organic solute valence z4. We
point out that [φ]init, the initial value of the membrane potential
is only needed to compute the initial conditions. Once all the
concentrations are known, the concentrations serve as the initial
conditions and there is no need to know [φ] at the initial time to
evolve the system forward.

In the simulations to follow, we took Nv = 100 and the time
step1t = 500 ms.
We perform the following numerical experiments. Starting
with the initial conditions specified above with no-flux boundary
conditions, we set the following Dirichlet boundary conditions for
t ≥ 10s:

c1,e = 100, c2,e = 50, c3,e = 150, (5.17)

where the units are in mmol/ℓ. The boundary concentrations are
thus isotonic with the initial concentrations, but the extracellular
K+ concentration is now increased 10-fold. Such a stimulus should
lead to immediate depolarization together with the expansion of
the cell.

The computational results are given in Fig. 2.What is interesting
here is that there is a transient drop in the cell radius, followed
by an expected gradual increase. This transient drop is due to the
following. After a sudden change in the boundary condition, Na+

ions diffuse out whereas K+ ions should diffuse in from R = Rout.
Since K+ diffuses faster than Na+, there is a transient increase in
total ionic concentration near the membrane, leading to excess
osmotic pressure immediately outside the cell compared to the
inside. This gives rise to a transient drop in the cell radius. However,
as the ionic concentration becomes spatially uniform within the
extracellular and intracellular domains, the cell starts to expand.

The next computational results describe a hypotonic shock. We
set the boundary conditions to the following for t ≥ 10s:

c1,e = 100, c2,e = 5, c3,e = 105, (5.18)

where the concentrations are in mmol/ℓ. A snapshot of the
computational results is given in Fig. 3. The cell expands due to the
hypotonic shock but tends to a new stationary state with time.

6. Conclusion

We introduced a PDE system of electrodiffusion and osmotic
water flow in the presence of deformable capacitance-carrying
membranes. The salient feature of the model is that it satisfies
an energy equality, and thus possesses a natural thermodynamic
structure. We discussed simplifications of the model and applied
the electroneutral limit to the problem of cell volume control.

In the proof of Theorem 2.1, we showed that the van’t Hoff
expression for osmotic pressure arises naturally, simply through an
integration by parts argument. This observation seems to be new.
It is interesting that, in expression (2.17), the mechanical pressure
p and osmotic pressure πw only appear in the combination ψw =

p+πw . This is consistent with experimental results indicating that
the effect of osmotic pressure on transmembrane water flow is
indistinguishable from that of mechanical pressure [64].

The models introduced here are sharp interface models in
the sense that the membrane is treated as a surface without
thickness and the physical quantities of interest are allowed to
have discontinuities across Γ . This is in contrast to diffuse interface
models inwhich themembrane has some small but finite thickness
and the physical quantities transition rapidly but smoothly across
the interface. The relationship between diffuse and sharp interface
approaches has been clarified in [65–70]. It should likewise be
possible to obtain at least parts of the model by taking the
thin interface limit of an appropriate diffuse interface (or finite
thickness) model. This may lead to a simpler verification of the
energy identity of Theorem3.1. Establishing such a connectionmay
also help in understanding the physical nature of the capacitive
force (3.10). The calculations in Appendix A may be seen as an
initial step in establishing this relationship.

Biological systems are not purely dissipative, and are main-
tained through external free energy input (in themodels presented
here, this is provided by the active membrane fluxes ak and aw).
Free energy equalities do not necessarily imply a decay in the free
energy of the system. In particular, the free energy does not serve
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Fig. 2. Computational results under a high K+ stimulus (see (5.17)). The first five figures are the snapshots of the ionic concentrations and the electrostatic potential at
t = 50 s. The horizontal axis represents the radius r . The last figure plots the cell radius R(t) as a function of time.
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t = 100 s. The horizontal axis represents the radius r . The last figure plots the cell radius R(t) as a function of time.
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as a Lyapunov function. It is then natural to question the utility of
such free energy equalities.

We believe these equalities are nonetheless important for at
least two reasons. First, any mathematical model of a biophysical
system should, ideally, satisfy a free energy decay inequality if
external free energy input is set to zero. This places important
restrictions on the equations onewrites down. Indeed, thiswas our
guiding principle inwriting down the equations in Sections 2 and3.
The second reason is that the free energy equality may be useful in
obtaining dynamical insight into the solution to the system even
in the presence of external free energy input. Recently the first
author succeeded in showing that homeostatic steady states of a
large class of pump-leakmodels are stable [71]. Pump-leakmodels,
used widely in the study of epithelial systems, may be seen as an
ordinary differential equation reduction of themodels presented in
this paper. The stability proof was accomplished by constructing a
Lyapunov function by suitably modifying the free energy function.
Even in the case of the full PDE system described in this paper,
it is conceivable that some modifications of the energy identities
introduced here may be used to discuss the stability of steady
states [72,73].

In this paper, we wrote down our system of equations by
physical arguments and then showed that the system satisfies an
energy identity. However, it is often possible to start from the
energy equality and take the variation of this to arrive at the
dynamic equations. This variational procedure dates back to [74]
and has been used successfully in deriving dynamic equations
for soft matter systems [75,76]. In [40,77], a model for non-
ideal electrolyte solutions is derived by combining, in the spirit
of Rayleigh (see [78]), the principle of least action with the
above variational principle for dissipative systems. This is a more
systematic way of arriving at physically consistent equations. This
procedure may be particularly useful in deriving equations for
complex physical systems with constraints, as encountered in
biophysical applications. It is easy to overlook various couplings
between the many physical mechanisms that may be present in a
system.With a variational treatment, such issues are automatically
handled. A difficulty in applying this procedure to the model
presented in this paperwas thatwehave a discontinuity in the field
variables at the internal membrane. This results in some technical
subtleties in taking the variation, an issue we hope to resolve and
report in a future publication.

We hope that our model has wide-ranging applications in
cellular physiology. In principle, our model is applicable to most
problems of classical physiology [3,2,1]. As we saw in Section 4,
our model admits simplifications when certain dimensionless
parameters are small. In the short time scale when water
movement is not significant, the system is reduced to the Poisson–
Nernst–Planckmodelwith interface boundary conditions. This and
related models have been successfully applied in [49,79,53]. If the
physiological processes of interest are slow and happen over a long
time scale, the electroneutral limit may be taken. This was applied
to the problem of cell volume control in Section 5 of this paper.

Any serious application of our model will require the develop-
ment of an efficient numerical algorithm. The electrodiffusive part
of the problemwith stationarymembranes (without fluid flow) has
been treated successfully in [56,80] in a two-dimensional setting.
In the model presented here, the membrane interface is dynamic.
We must therefore solve an electrodiffusive problem in a domain
with a moving interface across which physical quantities experi-
ence discontinuities. We have presented successful computations
in one-dimension for the electroneutral limit in Section 5, but sim-
ulations are bound to be more challenging in higher dimension.
If a regular mesh is to be used, immersed boundary or immersed
interface schemes could be a major component of the algorithm
[25,81,82].
Many physiological phenomena in which both electrodiffusion
and osmosis play an important role take place over spatial scales
of whole tissues or organs rather than the cellular spatial scale
we focused on in this paper. Such systems include ocular fluid
circulation, electrolyte regulation in the kidney or brain ionic
homeostasis. For such systems, it is important to develop an
appropriate homogenized model. In the context of cable models,
this is known as the bidomainmodel, and has found great utility in
many contexts, especially in cardiac electrophysiology [14,83–86].
We shall report on such a multidomain model in a future
publication.
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Appendix A. Physical interpretation of the capacitive force

Let the membrane be made of an incompressible material. In
this case, we argued that Cm should satisfy (3.6). We shall show
that the incompressibility of the material implies τcap = −Cm[φ]

2,
in agreement with (3.10). To this end, we take a membrane of
finite thickness d and consider the limit as the thickness tends to
0. Let Γ be the midplane of this membrane of finite thickness. The
membrane thus coincides with Γ as d → 0.

Take a point x ∈ Γ and let n be the unit normal and d the
thickness of the membrane at x. The total stress inside the
membrane, which we callΣmem, is given by:

Σmem
= Σmem

e − pmemI (A.1)

whereΣmem
e is the Maxwell stress, pmemI is the isotropic pressure

term that enforces incompressibility of the material. We have
made the simplification that the material can only generate
isotropic stresses.

Let us now consider the limiting behavior of this stress when d
is very small. To leading order in d, theMaxwell stress tensor inside
the membrane is given by:

Σmem
e = ϵm

[φ]
2

d2


n ⊗ n −

1
2
I


= Cm
[φ]

2

d


n ⊗ n −

1
2
I


(A.2)

where ϵm is the dielectric constant of the membrane. We assumed
that the electric field inside the membrane is given by [φ]n/d,
given that the membrane is very thin. We used ϵm/d = Cm in the
second equality.

Now, let us consider stress balance at x +
d
2n, the point where

the membrane touches Ωe. Here, we have the following stress
balance condition:

Σmemn = ΣΩen (A.3)

where ΣΩe is the stress in Ωe. Using (A.1) and (A.2) Σmemn, to
leading order in d, can be written as:

Σmemn =


Cm

[φ]
2

2d
− pmem


n. (A.4)

As d → 0,ΣΩenmust remain finite if there is a finite distinguished
limit. Therefore, Σmemn must remain order 1 with respect to d. In
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(A.4), the term Cm
[φ]

2

2d grows like 1/d as d → 0. The elastic stress
stays order 1 with respect to d. Therefore, pmemn, must satisfy:

pmem
= Cm

[φ]
2

2d
(A.5)

to leading order in d.
Take any unit vector t tangent to Γ at x. We have:

Σmemt = −
1
d
Cm[φ]

2t, (A.6)

to leading order in d. Multiplying the above by the thickness d
of the membrane, and taking the limit as d → 0, we conclude
that a ‘‘surface tension’’ of magnitude −Cm[φ]

2 is generated at the
membrane.

The above derivation suggests the following physical interpre-
tation of expression (3.10). The term 1

2Cm[φ]
2 comes directly from

theMaxwell stress. More simply put, this tension comes from large
Coulomb forces squeezing the thin membrane. This force must be
counter balanced tomaintain themechanical integrity of themem-
brane, which is given by an isotropic pressure in the case of incom-
pressible materials. This contributes the term 1

2Q
∂Cm
∂Q [φ]

2 to the
capacitive force.

Appendix B. Proof of Theorem 3.1

We first collect some calculus results. Let us introduce some
notation. Take a point x = x0 ∈ Γ at t = t0. Let Xn(t; x0, t0) be the
space–time curve that goes through x = x0 at time t = t0 and is
orthogonal to Γ at each time instant. Equivalently, Xn(t; x0, t0) is
the solution to the following ordinary differential equation:

d
dt

Xn(t; x0, t0) = vΓ (Xn, t)n(Xn, t), Xn(t0; , x0, t0) = x0. (B.1)

Here, n(x, t) is the unit normal at the point x at time t pointing
from Ωi into Ωe, and vΓ (x, t)n(x, t) is the normal velocity of Γ
at that point. Consider a quantity w(x, t) defined on the evolving
surface Γ . Define:

(Dn
t w)(x0, t0) =

d
dt
w(Xn(t; x0, t0), t)


x=x0,t=t0

. (B.2)

The above expression is an analogue of the convective derivative
on the surface Γ . We shall make use of the following well-known
identity:

d
dt

∫
Γ

wdmΓ =

∫
Γ


Dn
t w + κΓwvΓ


dmΓ (B.3)

where κΓ is the sum of the principal curvatures of Γ . We now
state two calculus identities that we shall find useful in the proof
of Theorem 3.1.

Lemma B.1. Let w(x, t) be a smooth function on Γt . We have:∫
Γ


wQ−1 ∂Q

∂t


dmΓ =

∫
Γ

(κΓwn − (∇Γw)) ·
∂X
∂t

dmΓ (B.4)

where Q is the Jacobian determinant of Γt with respect to the
reference configuration Γref.

Proof. Note that

∂w

∂t
= Dn

t w + (∇Γw) ·
∂X
∂t

(B.5)

where the partial derivatives in t are along material trajectories
(constant θ). The validity of the above identity should be clear
by considering the geometric relation between the orthogonal
trajectory Xn and the material trajectory X. We also have the
following relation for the time derivative of the integral of w over
Γ .

d
dt

∫
Γ

wdmΓ =
d
dt

∫
Γref

wQdmΓref

=

∫
Γref


∂w

∂t
Q + w

∂Q
∂t


dmΓref

=

∫
Γ


∂w

∂t
+ wQ−1 ∂Q

∂t


dmΓ . (B.6)

Comparing this with (B.3)

with vΓ =

∂X
∂t · n


and using the

identity (B.5), we obtain the desired result. �

Lemma B.2. Suppose w(x, t), x ∈ (Ωi ∪ Γ ) is a smooth function
defined inΩi whose derivatives are continuous up to the boundary Γ .
Then, we have the following identity:∫
Γi


w
∂

∂n


∂w

∂t


+ (w1w)vΓ


dmΓ

=

∫
Γi


wDn

t


∂w

∂n


+


κΓw

∂w

∂n
− |∇Γw|

2

vΓ


dmΓ (B.7)

where

Γi
denotes integration over theΩi face of Γ . A similar identity

holds for functions defined inΩe ∪ Γ .

As we shall see, we only need w to be defined in the vicinity of Γ
for the above to be true.

Proof. We only treat the Γi case. The proof for Γe is exactly the
same. We decompose the integrand in the left hand side of (B.7)
into tangential and normal contributions. It is well-known that the
Laplacian can be written as:

1w =
∂2w

∂n2
+ κΓ

∂w

∂n
+∆Γw (B.8)

where∆Γ is the Laplace–Beltrami operator of the surface Γ .
We now rewrite ∂

∂t


∂w
∂n


in (B.7) in an analogous fashion. For

this, we first introduce the signed distance function ψ(x, t) in a
neighborhood of Γ :

ψ(x, t) =

dist(x,Γt) if x ∈ Ωe,
0 if x ∈ Γt ,
−dist(x,Γt) if x ∈ Ωi,

(B.9)

where dist(x,Γt) is the distance between x and Γt . Clearly, ∇ψ
evaluated at any point on Γ gives the outward unit normal vector
n. Introduce the following vector field v defined in a neighborhood
of Γ where ψ is smooth:

v = vΓ n on Γ , (∇v)∇ψ = 0. (B.10)

The second condition above just says that v is constant along lines
perpendicular to the level sets. It is well known that the signed
distance function satisfies the following transport equation in a
neighborhood of Γ :

Dvψ ≡
∂ψ

∂t
+ v · ∇ψ = 0. (B.11)

Note that the above convective derivative evaluated on Γ is equal
to Dn

t defined in (B.2).
For any point on Γ :

∂

∂n


∂w

∂t


= ∇ψ · ∇wt (B.12)
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where the subscript t indicates the partial derivative with respect
to t . We now rewrite this expression as follows:

∇ψ · ∇wt = Dv(∇ψ · ∇w)− ∇ψt · ∇w − v · ∇(∇ψ · ∇w)

= Dv(∇ψ · ∇w)

+ ∇(v · ∇ψ) · ∇w − v · ∇(∇ψ · ∇w) (B.13)

wherewe used (B.11) in the last equality. Now, consider the second
term in the last line:

∇(v · ∇ψ) · ∇w = ∇Γ (v · ∇ψ) · ∇Γw

+ (∇ψ · ∇(v · ∇ψ))(∇ψ · ∇w)

= ∇Γ (v · ∇ψ) · ∇Γw

+ (∇ψ · ((∇v)∇ψ))(∇ψ · ∇w)

+ (v · ((∇2ψ)∇ψ))(∇ψ · ∇w) (B.14)

where ∇Γ is the surface gradient on Γ . Note that ∇
2ψ is not the

Laplacian but the matrix of second derivatives of ψ . The second to
last term in (B.14) is 0 by (B.10). The last term is also 0, since:

(∇2ψ)∇ψ =
1
2
∇(|∇ψ |

2) = 0 (B.15)

where we used |∇ψ |
2

= 1. Thus (B.14) reduces to

∇(v · ∇ψ) · ∇w = ∇Γ (v · ∇ψ) · ∇Γw. (B.16)

Let us look at the final term in (B.13).

v · ∇(∇ψ · ∇w) = (v · ∇ψ)(∇ψ · ∇(∇ψ · ∇w))

= (v · ∇ψ)(∇ψ · ((∇2w)∇ψ)) (B.17)

where we used (B.15) in the last equality. Combining (B.13), (B.16)
and (B.17), we have:

∇ψ · ∇wt = Dv(∇ψ · ∇w)+ ∇Γ (v · ∇ψ) · ∇Γw

− (v · ∇ψ)(∇ψ · ((∇2w)∇ψ)) (B.18)

or equivalently:

∂

∂n


∂w

∂t


= Dn

t


∂w

∂n


+ ∇Γ vΓ · ∇Γw − vΓ


∂2w

∂n2


(B.19)

where we used (B.10), n = ∇ψ on Γ and the equality of Dn
t and Dv

on Γ .
Now, consider the integral:∫

Γi


w
∂

∂n


∂w

∂t


+ (w1w)vΓ


dmΓ

=

∫
Γi


wDn

t


∂w

∂n


+ w∇Γ vΓ · ∇Γw

+w


∆Γw + κΓ

∂w

∂n


vΓ


dmΓ

=

∫
Γi


wDn

t


∂w

∂n


+


κΓw

∂w

∂n
− |∇Γw|

2

vΓ


dmΓ (B.20)

where we used (B.8) and (B.19) in the first equality and integrated
by parts along Γ in the second equality. Note that there are no
boundary terms since Γ is a closed compact surface. This proves
(B.7). �

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. First, multiply (2.3) with µk in (3.1) and
integrate overΩi and sum in k:

N−
k=1

∫
Ωi

µk


∂ck
∂t

+ ∇ · (uck)

dx

=

N−
k=1

∫
Ωi

µk∇ ·


ck

Dk

kBT
∇µk


dx. (B.21)

The summand in the right hand side becomes:∫
Ωi

µk∇ ·


ck

Dk

kBT
∇µk


dx =

∫
Γi


µkck

Dk

kBT
∇µk · n


dmΓ

−

∫
Ωi


ck

Dk

kBT
|∇µk|

2

dx (B.22)

where n is the outward normal on Γ . Consider the left hand side
of (B.21).

N−
k=1

µk
∂ck
∂t

=

N−
k=1


σk
∂ck
∂t

+ qzkφ
∂ck
∂t



=

N−
k=1

∂ω

∂ck

∂ck
∂t

+ φ
∂

∂t


N−

k=1

qzkck



=
∂ω

∂t
− φ

∂

∂t
(∇ · (ϵ∇φ)) . (B.23)

We used (3.1) in the first equality and (3.2) in the last equality.
Integrate final expression in (B.23) overΩi.∫
Ωi


∂ω

∂t
− φ∇ ·


ϵ∇


∂φ

∂t


dx

=

∫
Γi


−φ

∂

∂n


ϵ
∂φ

∂t


dmΓ

+

∫
Ωi

∂

∂t


ω +

ϵ

2
|∇φ|

2

dx. (B.24)

For the second term in the left hand side of (B.21), we have,
similarly to (B.23):

N−
k=1

µku · ∇ck = ∇ · (uω)+ φ · ∇


u

N−
k=1

qzkck


. (B.25)

Integrate the above expression overΩi:∫
Ωi


∇ · (uω)+ φ · ∇


u

N−
k=1

qzkck


dx

=

∫
Γi


ω + φ

N−
k=1

qzkck


u · ndmΓ

−

∫
Ωi


N−

k=1

qzkck


u · ∇φdx. (B.26)

Collecting the above calculations,we have rewritten identity (B.21)
as:∫
Ωi

∂

∂t


ω +

ϵ

2
|∇φ|

2

dx +

∫
Γi


−φ

∂

∂n


ϵ
∂φ

∂t


dmΓ

= −

∫
Γi


ω −

N−
k=1

ckσk


u · n

+

N−
k=1

µk


ck


u −

Dk

kBT
∇µk


· n


dmΓ
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+

∫
Ωi


−

N−
k=1

ck
Dk

kBT
|∇µk|

2
+


N−

k=1

qzkck


u · ∇φ


dx

(B.27)

where we used qzkφ = µk − σk (Eq. (3.1)) in the boundary inte-
gral after the equality. Performing a similar calculation onΩe, and
adding this to the above, we find:

d
dt

∫
Ωi∪Ωe


ω +

ϵ

2
|∇φ|

2

dx −

∫
Γ

[
φ
∂

∂n


ϵ
∂φ

∂t

]
dmΓ

−

∫
Γ


ω +

ϵ

2
|∇φ|

2
 ∂X
∂t

· n

dmΓ

= −

∫
Γ


[πw]u · n +

N−
k=1


[µk]fk + [ckµk]

∂X
∂t

· n


dmΓ

+

∫
Ωi


−

N−
k=1

ck
Dk

kBT
|∇µk|

2
+


N−

k=1

qzkck


u · ∇φ


dx

(B.28)

where we used (2.15) and (2.4) to rewrite the boundary integral
after the equality. Note that the second boundary integral before
the equality comes from the fact that the boundary Γ is moving.
Rearranging terms and using (2.14), we have:

d
dt

∫
Ωi∪Ωe


ω +

ϵ

2
|∇φ|

2

dx

=

∫
Γ


φ
∂

∂n


ϵ
∂φ

∂t


+


ϵ

2
|∇φ|

2

+φ∇ · (ϵ∇φ)


∂X
∂t

· n


dmΓ

−

∫
Γ


[πw]fw +

N−
k=1

[µk]fk


dmΓ +

∫
Ωi∪Ωe

×


−

N−
k=1

ck
Dk

kBT
|∇µk|

2
+


N−

k=1

qzkck


u · ∇φ


dx.

(B.29)

We usedµk −σk = qzkφ and used (3.2) to rewrite the first bound-
ary integral after the equality. Note that:∫
Γ

[
φ
∂

∂n


ϵ
∂φ

∂t


+ φ∇ · (ϵ∇φ)

∂X
∂t

· n
]
dmΓ

=

∫
Γ

[
φDn

t


ϵ
∂φ

∂n


+


κΓ φϵ

∂φ

∂n
− ϵ |∇Γ φ|

2

∂X
∂t

· n
]
dmΓ

(B.30)

wherewe used LemmaB.2withw = φ and vΓ =
∂X
∂t ·n in (B.7). Us-

ing this and the definition of∇Γ , wemay rewrite the first boundary
integral in (B.29) as:∫
Γ

[
φ
∂

∂n


ϵ
∂φ

∂t

]
+

 ϵ
2

|∇φ|
2
+ φ∇ · (ϵ∇φ)

 ∂X
∂t

· n

dmΓ

= −

∫
Γ

[φ]Dn
t (Cm[φ])dmΓ

+

∫
Γ


−κΓ Cm[φ]

2
+


ϵ

2

∂φ∂n
2 − |∇Γ φ|

2


∂X
∂t

· ndmΓ

(B.31)

where we used (3.3).
We now turn to Eq. (3.7). Multiply this by u and integrate over
Ωi:∫
Ωi

u · (ν1u − ∇p)dx −

∫
Ωi


N−

k=1

qzkck


u · ∇φdx

=

∫
Γi

(Σ(u, p)n) · udmΓ −

∫
Ωi

2ν |∇Su|
2 dx

−

∫
Ωi


N−

k=1

qzkck


u · ∇φdx = 0. (B.32)

Performing a similar calculation on Ωe and by summation, we
have:∫
Γ

[(Σ(u, p)n) · u] dmΓ −

∫
Ωi∪Ωe

2ν |∇Su|
2 dx

=

∫
Ωi∪Ωe


N−

k=1

qzkck


u · ∇φdx. (B.33)

Let us first assume (3.9) holds. First writeΣe(φ)n in the follow-
ing form:

Σe(φ)n = ϵ


∂φ

∂n
∇φ −

1
2

|∇φ|
2 n


= ϵ


1
2

∂φ∂n
2 − |∇Γ φ|

2


n +

∂φ

∂n
∇Γ φ


. (B.34)

We may now write (3.9) as:

[Σm(u, p)n] = Fmem + Fcap −


ϵ

2

∂φ∂n
2 − |∇Γ φ|

2


n

+ Cm[φ]∇Γ [φ] (B.35)

where we used (3.3) in the last term.
Using (B.31), (B.33) and (B.35) in (B.29) we have:

d
dt

∫
Ωi∪Ωe


ω +

ϵ

2
|∇φ|

2

dx

=

∫
Γ


−[φ]Dn

t (Cm[φ])+


−κΓ Cm[φ]

2n

+ Cm[φ]∇Γ [φ] + Fcap


·
∂X
∂t


dmΓ

+

∫
Γ

Fmem ·
∂X
∂t

dmΓ −

∫
Γ


[ψw]fw +

N−
k=1

[µk]fk


dmΓ

−

∫
Ωi∪Ωe


N−

k=1

ck
Dk

kBT
|∇µk|

2
+ 2ν |∇Su|

2


dx. (B.36)

Comparing (B.36) and (3.12) and using (2.11), we see that the proof
of (3.12) rests on the evaluation of the first boundary integral after
the equality in (B.36).∫
Γ

[φ]Dn
t (Cm[φ])dmΓ

=

∫
Γ


Dn
t


1
2
Cm[φ]

2


+
1
2
(Dn

t Cm)[φ]
2

dmΓ

=
d
dt

∫
Γ

1
2
Cm[φ]

2dmΓ

−

∫
Γ


1
2
Cm[φ]

2

κΓ
∂X
∂t

· n −
1
2
(Dn

t Cm)[φ]
2

dmΓ (B.37)
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where we used (B.3) with w = [φ], vΓ =
∂X
∂t · n in the second

equality. We also have:∫
Γ

(Cm[φ]∇Γ [φ])dmΓ

=

∫
Γ


∇Γ


1
2
Cm[φ]

2


−
1
2
(∇Γ Cm)[φ]

2

dmΓ . (B.38)

Using (B.37) and (B.38), we have:∫
Γ

−[φ]Dn
t (Cm[φ])+

−κΓ Cm[φ]
2n

+ Cm[φ]∇Γ [φ]

 ·
∂X
∂t

dmΓ

= −
d
dt

∫
Γ

1
2
Cm[φ]

2dmΓ

−

∫
Γ

1
2


Dn
t Cm + (∇Γ Cm) ·

∂X
∂t


[φ]

2dmΓ

+

∫
Γ


−


1
2
Cm[φ]

2

κΓ n + ∇Γ


1
2
Cm[φ]

2


∂X
∂t

dmΓ .

(B.39)

Consider the second boundary integral after the equality.∫
Γ

1
2


Dn
t Cm + (∇Γ Cm) ·

∂X
∂t


[φ]

2dmΓ

=

∫
Γ


1
2
∂Cm

∂t
[φ]

2

dmΓ =

∫
Γ


1
2
∂Cm

∂Q
∂Q
∂t

[φ]
2

dmΓ

=

∫
Γ


1
2
Q
∂Cm

∂Q
[φ]

2κΓ n − ∇Γ


1
2
Q
∂Cm

∂Q
[φ]

2


×
∂X
∂t

dmΓ (B.40)

where we used (B.5) with w = Cm in the first equality, and (B.4)
with w =

1
2Q

∂Cm
∂Q [φ]

2 in the last equality. From (B.40), (B.39) and
(B.36) and expression (3.10) of Fcap, we obtain the desired result.

If Q ≡ 1 and (3.11) holds, we may argue as follows. Eq. (B.36)
remains valid with Fcap replaced by Fp. Verification of (3.12) rests
on the evaluation of the first boundary integral in (B.36). Proceed-
ing as in the above, we have:∫
Γ


−[φ]Dn

t (Cm[φ])+


−κΓ Cm[φ]

2n

+ Cm[φ]∇Γ [φ] + Fp


·
∂X
∂t


dmΓ

= −
d
dt

∫
Γ

1
2
Cm[φ]

2dmΓ −

∫
Γ


1
2
∂Cm

∂Q
∂Q
∂t

[φ]
2

dmΓ

+

∫
Γ


λ−

1
2
Cm[φ]

2

κΓ n − ∇Γ


λ−

1
2
Cm[φ]

2


×
∂X
∂t

dmΓ (B.41)

where we used the (2.13). Since ∂Q
∂t = 0, the second boundary in-

tegral after the equality is 0. Using (B.4) with w = λ −
1
2Cm[φ]

2

and ∂Q
∂t = 0, we see that the last boundary integral is also 0. �
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