A Continuum Variational Approach to Vesicle Membrane Modeling

Rolf J. Ryham*, Fordham University
Fredric Cohen, Rush University
Robert Eisenberg, Rush University
Chun Liu, Penn State University

March 7 2011, 12:30 p.m.
Membrane Fusion, Biophysical Society 55th Annual Meeting
Ultimate Goal: Modeling Shape Changes in Membranes

- fusion ★ changes in topology ★
- rafts ★ adhesion ★

Derive kinetics explicitly--don’t assume intermediates. Intermediate shapes and states are an output of the model.
Ultimate Goal: Modeling Shape Changes in Membranes

Assume Intermediates

Calculate Intermediates

Kozlovsky, Chernomordik, Koslov, Biophys. J. 2002

Monday, March 7, 2011
Ultimate Goal: Modeling Shape Changes in Membranes

Assume Intermediates

Calculate Intermediates

Kozlovsky, Chernomordik, Koslov, Biophys. J. 2002

kinetics
Intermediate Goal: Verification for a Simpler Problem

★ Growth and Shrinkage of a Lipidic Pore in a Single Bilayer from Osmotic Pressure ★
Intermediate Goal:
Verification for a Simpler Problem

★ Growth and Shrinkage of a Lipidic Pore in a Single Bilayer from Osmotic Pressure ★
Phase Field & Diffuse Interfaces

★ Encodes material property in smoothly varying phase field function ϕ.

★ Translates Helfrich energy of membrane into a Hamiltonian in terms of ϕ.

★ Does not assume a particular shape

★ Treats membrane as a **bulk material** (versus a mathematical interface)

Monday, March 7, 2011
Phase Field Hamiltonian

\[
E = \frac{B}{2} \int \epsilon (\tanh(\phi) + 1) \left(\Delta \phi - \frac{1}{\epsilon^2} F'(\phi) \right) \, dx \\
+ \frac{J}{2} \int \left(\frac{\epsilon}{2} |\nabla \phi|^2 + \frac{1}{\epsilon} F(\phi) \right) \left(\frac{\epsilon}{2} |\nabla \phi|^2 + \frac{1}{\epsilon} F(\phi) \right) \, dx \\
+ \frac{S}{2A_0} \left(\int (\tanh(\phi) + 1) \left(\frac{\epsilon}{2} |\nabla \phi|^2 + \frac{1}{\epsilon} F(\phi) \right) \, dx - A_0 \right)^2
\]

Equations of Motion

Navier Stokes Equations

\[\rho (\mathbf{u}_t + \mathbf{u} \cdot \nabla \mathbf{u}) + \nabla p = \nu \Delta \mathbf{u} + \mathbf{f}, \quad \text{(force balance)} \]

\[\nabla \cdot \mathbf{u} = 0, \quad \text{(incompressibility)} \]

\[\phi_t + \mathbf{u} \cdot \nabla \phi = 0, \quad \text{(membrane moves with fluid)} \]

★ Flexible way to encode classical and new energies

★ Coupling with water is made easy (vesicle and water are one fluid)

★ Forces and time dependence, outputs, are strictly based on first principle physics
Dynamics of a Lipidic Pore
Calculated Pore Radius as a Function of Time

pore radius (µm)

time (s)

pore radius from phase field

Monday, March 7, 2011
Dynamics of a Lipidic Pore
Calculated Pore Radius as a Function of Time

pore radius from phase field
Dynamics of a Lipidic Pore

Calculated Pore Radius as a Function of Time

![Graph showing the dynamics of a lipidic pore radius as a function of time. The graph is divided into four phases: I, II, III, and IV.](image)

I: pore radius from phase field

Monday, March 7, 2011
Dynamics of a Lipidic Pore

Calculated Pore Radius as a Function of Time

- **Pore radius** (µm)
- **Time** (s)

I

II

III

IV

Pore radius from phase field

Monday, March 7, 2011
Dynamics of a Lipidic Pore

Calculated Pore Radius as a Function of Time

pore radius (µm)

0
0.5
1
1.5
2
2.5
3
3.5
4

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6

time (s)

I
II
III
IV

pore radius from phase field

I
II
III
IV

Monday, March 7, 2011
Dynamics of a Lipidic Pore
Calculated Pore Radius as a Function of Time

Monday, March 7, 2011
Dynamics of a Lipidic Pore

Calculated Pore Radius as a Function of Time

Dynamics of a Lipidic Pore
Calculated Surface Areas as a Function of Time

membrane surface area

time (s)

surface area

resting surface area

stretching tension

membrane stretching tension (3.2 nN/µm²)

Monday, March 7, 2011
Dynamics of a Lipidic Pore
Surface Tension and Line Tension as Pointwise Outputs
Rapid Opening Phase (I): Stretching Tension Dominates
Reversal Phase (II): Surface Area Equilibrates
Slower Linear Closing Phase (III): Line Tension Driven Motion
Rapid Closing Phase (IV) : Line Tension Dominates

Monday, March 7, 2011
Dynamics of a Lipidic Pore
Water Velocity as Pointwise Outputs
Rapid Opening Phase (I): pressure drives water near hole
Reversal Phase (II): stretching driven motion is fully developed - vesicle becomes aspherical
Slower Linear Closing Phase (Ill) : motion of water not effected by vesicle
Rapid Closing Phase (IV) : outflow during closure is quite small