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Abstract 
 Particle-based simulation represents a powerful approach to modeling physical 

systems in electronics, molecular biology and chemical physics. In order to account for the 
interactions occurring among charged particles, it requires an accurate and efficient solution of 
Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.e. 
systems with discontinuities in the permittivity, the Boundary Element Method (BEM) is 
frequently adopted. It provides the solution of Poisson's equation, accounting for polarization 
effects due to the discontinuity in the permittivity by computing the induced charges at the 
dielectric boundaries. In this framework, the total electrostatic potential is then found by 
superimposing the elemental contributions from both source and induced charges. In this 
paper, we present a comparison between two different BEMs to solve a boundary-integral 
formulation of Poisson's equation, with emphasis on the BEMs' suitability for particle-based 
simulations in terms of solution accuracy and computation speed. The two approaches are the 
collocation and qualocation methods. Collocation is implemented following the induced-charge 
computation (ICC) method of Boda et al. (Journal of Chemical Physics, 125(034901), 2006.) The 
qualocation method is described in Tausch, Wang, and White (IEEE. Trans. Comput.-Aided Des., 
20:1398, 2001). These approaches are studied using both flat and curved surface elements to 
discretize the dielectric boundary, using two challenging test cases: a dielectric sphere 
embedded in a different dielectric medium and a toy model of an ion channel. Earlier 
comparisons of the two BEM approaches had not addressed curved surface elements or 
semi-atomistic models of ion channels. Our results support the earlier findings that for 
flat-element calculations, qualocation is always significantly more accurate than collocation. On 
the other hand, when the dielectric boundary is discretized with curved surface elements, the 
two methods are essentially equivalent, i.e. they give comparable accuracy for the same 
number of elements. We find that ions in water---charges embedded in a high dielectric 
medium---are harder to compute accurately than charges in a low dielectric. 

 
 Particle-based simulation, Poisson's equation, Boundary Element Method, Induced 

Charge Computation, Collocation, Qualocation 
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1  Introduction 
 
 Numerical simulation represents a useful technique to investigate physical systems at 

the nanoscale level. Although the computational capability of modern supercomputers allows 
one to perform fully atomistic simulations of larger and larger systems, simpler models are still 
widely used. Such models, if well formulated and applied, are able to provide great insights 
with fewer parameters and much less computational effort than their fully atomistic 
counterparts. One of the most popular coarse-grained techniques treats a reduced number of 
particles of interest explicitly, and uses a potential of mean force (PMF) to account for the 
effect of all other particles [?].  

 
The implicit solvent model has a long and important history in pchem. We should briefly 

mention that and include classical and textbook references so no one can think the ideas are 
new or that Benoit is their author. 

Here is a fairly complete list. Clearly one does not have to quote all of them, but surely 
the Fawcett and Laidler textbooks should be included so everyone understands this is 
elementary stuff and also Dezo’s paper which shows what a simple model can and cannot do. 

 
Vincze J, Valisko M, Boda D (2010) The nonmonotonic concentration dependence of 

the mean activity coefficient of electrolytes is a result of a balance between 
solvation and ion-ion correlations. The Journal of chemical physics 133 
(15):154507. doi:10.1063/1.3489418 
 
 

Barker J, Henderson D (1976) What is "liquid"? Understanding the states of matter. 
Reviews of Modern Physics 48:587-671 

Barlow CA, Jr., Macdonald JR (1967) Theory of Discreteness of Charge Effects in the 
Electrolyte Compact Double Layer. In: Delahay P (ed) Advances in 
Electrochemistry and Electrochemical Engineering, Volume 6, vol VI. vol 6. 
Interscience Publishers, New York, pp 1-199 

Barratt J-L, Hansen J-P (2003) Basic concepts for simple and complex liquids. 
Cambridge University Press, Mar 1, 2003 - Science - 296 pages. Cambridge 
University Press,  

Barthel J, Krienke H, Kunz W (1998) Physical Chemistry of Electrolyte Solutions: 
Modern Aspects. Springer, New York 

Bazant MZ, Thornton K, Ajdari A (2004) Diffuse-charge dynamics in electrochemical 
systems. Physical Review E 70:021506 

Ben-Naim A (2006) Molecular Theory of Solutions, vol  vol Oxford, New York. 
doi:10.1021/jp0625356 

Coalson RD, Kurnikova MG (2005) Poisson-Nernst-Planck theory approach to the 
calculation of current through biological ion channels. IEEE transactions on 
nanobioscience 4 (1):81-93 
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Eisenberg B (2011) Crowded Charges in Ion Channels. In:  Advances in Chemical 
Physics. John Wiley & Sons, Inc., pp 77-223 also available at http:\\arix.org as 
arXiv 1009.1786v1001 doi:10.1002/9781118158715.ch2 

Fawcett WR (2004) Liquids, Solutions, and Interfaces: From Classical Macroscopic 
Descriptions to Modern Microscopic Details. Oxford University Press, New York 

Fraenkel D (2010) Simplified electrostatic model for the thermodynamic excess 
potentials of binary strong electrolyte solutions with size-dissimilar ions. 
Molecular Physics 108 (11):1435 - 1466 

Gillespie D, Nonner W, Eisenberg RS (2002) Coupling Poisson-Nernst-Planck and 
Density Functional Theory to Calculate Ion Flux. Journal of Physics (Condensed 
Matter) 14:12129-12145 

Hansen J-P, McDonald IR (2006) Theory of Simple Liquids. Third Edition edn. 
Academic Press, New York 

Hünenberger PH, Reif M (2011) Single-Ion Solvation. RSC Publishing, Cambridge UK 
Justice J-C (1983) Conductance of Electrolyte Solutions. In: Conway BE, Bockris JOM, 

Yaeger E (eds) Comprehensive Treatise of Electrochemistry Volume 5 
Thermondynbamic and Transport Properties of Aqueous and Molten Electrolytes. 
Plenum, New York, pp 223-338 

Kontogeorgis GM, Folas GK (2009) Thermodynamic Models for Industrial Applications: 
From Classical and Advanced Mixing Rules to Association Theories. John Wiley 
& Sons, Ltd. doi:10.1002/9780470747537.ch15 

Kornyshev AA (2007) Double-Layer in Ionic Liquids: Paradigm Change? J Phys Chem 
B 111 (20):5545-5557 

Kraus CA (1938) The present status of the theory of electrolytes. Bull Amer Math Soc 
44:361-383 

Kunz W (2009) Specific Ion Effects. World Scientific Singapore 
Laidler KJ, Meiser JH, Sanctuary BC (2003) Physical Chemistry. Fourth edn. 

BrooksCole, Belmont CA,  
Lee LL (1988) Molecular Thermodynamics of Nonideal Fluids Butterworth-Heinemann, 

New York 
Lee LL (2008) Molecular Thermodynamics of Electrolyte Solutions. World Scientific 

Singapore 
Lipparini F, Scalmani G, Mennucci B, Cances E, Caricato M, Frisch MJ (2010) A 

variational formulation of the polarizable continuum model. The Journal of 
chemical physics 133 (1):014106-014111. doi:10.1063/1.3454683 

Luo Y, Roux Bt (2009) Simulation of Osmotic Pressure in Concentrated Aqueous Salt 
Solutions. The Journal of Physical Chemistry Letters 1 (1):183-189. 
doi:10.1021/jz900079w 

Pitzer KS (1995) Thermodynamics. 3rd edn. McGraw Hill, New York 
Rice SA, Gray P (1965) Statistical Mechanics of Simple Fluids. Interscience (Wiley), 

New York 
Tazi S, Molina JJ, Rotenberg B, Turq P, Vuilleumier R, Salanne M (2012) A transferable 

ab initio based force field for aqueous ions. The Journal of chemical physics 136 
(11):114507-114512 
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Zemaitis JF, Jr., Clark DM, Rafal M, Scrivner NC (1986) Handbook of Aqueous 
Electrolyte Thermodynamics. Design Institute for Physical Property Data, 
American Institute of Chemical Engineers, New York 

Zhang C, Raugei S, Eisenberg B, Carloni P (2010) Molecular Dynamics in Physiological 
Solutions: Force Fields, Alkali Metal Ions, and Ionic Strength. Journal of 
Chemical Theory and Computation 6 (7):2167-2175. doi:10.1021/ct9006579 
 
 
 
 
 
For example, when dealing with a system of charged particles, the primitive or 

implicit-solvent models describe the effect of water molecules collectively as a dielectric 
background that mediates electrostatic interactions by dielectric polarization. The 
inhomogeneous simulation domain is divided into a number of homogeneous regions, each 
with constant permittivity. This approach is particularly convenient for simulations of ions in 
electrolytes, because the number of ions is orders of magnitude smaller than the number of 
solvent molecules, enabling faster computation [?, ?, ?, ?, ?, ?, ?].  

 
 

Vincze J, Valisko M, Boda D (2010) The nonmonotonic concentration dependence of 
the mean activity coefficient of electrolytes is a result of a balance between 
solvation and ion-ion correlations. The Journal of chemical physics 133 
(15):154507. doi:10.1063/1.3489418 
 

Hyon Y, Fonseca JE, Eisenberg B, Liu C (2012) Energy variational approach to study 
charge inversion (layering) near charged walls. Discrete and Continuous 
Dynamical Systems - Series B (DCDS-B)  in the press ( ) 
 

Valisko M, Boda D, Gillespie D (2007) Selective Adsorption of Ions with Different 
Diameter and Valence at Highly Charged Interfaces. Journal of Physical 
Chemistry C 111:15575-15585 
 
 
 
 
This kind of simulation preserves the discrete nature of the ions themselves, and 

therefore allows realistic analysis of their behavior at the atomic level. 
For example, one can study permeation of ions through membrane pores by dividing 

the simulation domain into two regions (the membrane and water) and assigning each region 
its own permittivity. One can then model the motion of the ions in the water regions, 
neglecting the dynamics of water molecules or membrane atoms except for their electrostatic 
effects on the ions' motion. This kind of coarse-graining approach is standard practice for 
simulations of electronic devices [?, ?, ?, ?], 
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It is essential to include the following I believe 
 

Lundstrom M (2000) Fundamentals of Carrier Transport. Second Edition edn. 
Addison-Wesley, NY 

Markowich PA, Ringhofer CA, Schmeiser C (1990) Semiconductor Equations. 
Springer-Verlag, New York 

Eisenberg B (2012) Ions in Fluctuating Channels: Transistors Alive. . Fluctuations and 
Noise Letters 11 (2):76-96  Earlier version 'Living Transistors: a Physicist’s View 
of Ion Channels' available on http://arxiv.org/  as q-bio/0506016v0506012. 
doi:DOI: 10.1142/S021947751200076X 
 
 
 and has been widely used to investigate solvation of macromolecules [?, ?], interacting 

proteins [?, ?], and ion channel permeation [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?].  
 

Coalson RD, Kurnikova MG (2005) Poisson-Nernst-Planck theory approach to the 
calculation of current through biological ion channels. IEEE transactions on 
nanobioscience 4 (1):81-93 
 
 
However, this approach requires the evaluation of electrostatic forces in a simulation 

domain with inhomogeneous dielectrics, which poses serious practical challenges for 
computation, particularly if one insists on using periodic boundary conditions. 

 
 

Stenhammar J, Trulsson M, Linse P (2011) Some comments and corrections regarding 
the calculation of electrostatic potential derivatives using the Ewald summation 
technique. The Journal of chemical physics 134 (22):224104-224105. 
doi:10.1063/1.3599045 

Wang H, Dommert F, Holm C (2010) Optimizing working parameters of the smooth 
particle mesh Ewald algorithm in terms of accuracy and efficiency. The Journal of 
chemical physics 133 (3):034117-034112. doi:10.1063/1.3446812 

Zhou R, Harder E, Xu H, Berne BJ (2001) Efficient multiple time step mehtod for use 
with Ewald and particle mesh Ewald for large biomolecular systems. Journal of 
Chemical Physics 115 (5):2348-2358 
 
 
 In particular, to compute the forces on the ions, one must account for the 

inhomogeneity of the permittivity ( )ε r  (here, discontinuities occurring at the boundaries 
between different materials or phases) by solving Poisson's equation, which relates the source 
charge distribution ( )ρ r  to the electrostatic potential ( )Φ r  in the simulation domain:  

 [ ]0 ( ) ( ) = ( )ε ε ρ∇ ⋅ ∇Φ −r r r  (1) 
 where 0ε  is the permittivity of free space. Solving Poisson's equation is a computationally 
slow task, especially in comparison to problems in which the permittivity is constant 
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everywhere, and it is further challenged for periodic systems. 
Different approaches have been proposed to solve Poisson's equation in systems with 

inhomogeneous dielectric permittivity, depending on the specific characteristics of the 
simulation domain; the most popular are volume-based techniques such as the finite-difference 
method [?, ?, ?, ?, ?, ?], the finite-element method [?, ?, ?, ?], and boundary-integral equation 
methods solved via the boundary-element method (BEM) [?, ?, ?, ?, ?, ?, ?, ?].  

 
 

Xu Z, Cai W (2011) Fast Analytical Methods for Macroscopic Electrostatic Models in 
Biomolecular Simulations. SIAM Review 53 (4):683-720 
 
 
 
All of these methods lead ultimately to a system of algebraic equations for numerical 

solution, and the intrinsic properties of the system being studied helps to determine the most 
efficient technique. For example, finite-difference and finite-element methods are well-suited 
for the numerical simulations of electronic devices such as P-N junctions [?, ?] or MOSFETs [?, ?] 
where one deals with thousands of charges so they can be described by a position-dependent 
volume (or surface) density, but one loses the discrete nature of particles. However, 
finite-difference and finite-element approaches can lead to significant accuracy challenges for 
simulations of nanometer-scale structures, where the number of charges is typically relatively 
small or where the charge-charge distances can be comparable to the distance between grid 
points. 

BEM can provide an accurate treatment of electrostatics in nanoscale simulation 
domains while preserving the discrete nature of the ions. For example, simulations of ions near 
and within nanometer molecular structures such as ion channels have been performed with 
high accuracy with this approach [?, ?].  

 
Hyon Y, Fonseca JE, Eisenberg B, Liu C (2012) Energy variational approach to study 

charge inversion (layering) near charged walls. Discrete and Continuous 
Dynamical Systems - Series B (DCDS-B)  in the press ( ) 

Boda D, Gillespie D, Nonner W, Henderson D, Eisenberg B (2004) Computing induced 
charges in inhomogeneous dielectric media: application in a Monte Carlo 
simulation of complex ionic systems. Phys Rev E Stat Nonlin Soft Matter Phys 69 
(4 Pt 2):046702 

Boda D, Varga T, Henderson D, Busath D, Nonner W, Gillespie D, Eisenberg B (2004) 
Monte Carlo simulation study of a system with a dielectric boundary: application 
to calcium channel selectivity. Molecular Simulation 30:89-96 
 
In this paper we will address methods that compute the polarization charges induced on 

the dielectric interfaces; other BEM approaches calculate the potential or electric field at the 
interface [?, ?, ?]. 

The induced surface charges are determined as a weighted sum of simple basis 
functions defined on a grid of surface (boundary) elements that discretize the whole dielectric 
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boundary. This approach does not require the discretization of the entire three-dimensional 
simulation domain, only the two-dimensional boundary surfaces. The weights for the basis 
functions (i.e., the polarization charge densities) are determined by enforcing the continuity of 
the electric displacement through the dielectric boundaries. Once the induced charges have 
been computed, they contribute to the distribution of electrostatic potential in the same way 
as source charges; thus, the total electrostatic potential (i.e., the solution to Poisson's equation) 
is explicitly calculated as the Coulomb potential due to the two distributions of charges, the 
source charges and the induced boundary charges. Thus, BEM is particularly well suited for 
coarse-grained simulations of primitive-model electrolyte solutions near and within proteins 
such as ion channels, and has been adapted to treat protein/solvent interfaces [?, ?, ?]. 

Performing BEM simulations requires careful choice of discretization techniques. It 
matters how the analytically exact boundary-integral equation is converted into an 
approximate, finite-dimensional system of algebraic equations. As with other numerical 
methods, there is a trade-off between speed and accuracy: one obtains better approximations 
by using more unknowns, but not all discretization methods exhibit the same trade-off. In this 
paper we compare two different approaches to BEM: the induced-charge computation (ICC) 
centroid collocation method [?] and the qualocation method (QUAL) [?, ?, ?]. These two 
approaches start from the same boundary-integral equation formulation of the Poisson 
problem [?, ?, ?], but use different numerical approximations to compute the needed integrals 
that lead to the BEM matrix equation =Ah b . 

Some earlier studies have addressed either simplistic model problems [?] or broader 
technical questions of discretizing integral equation models [?], but only using flat boundary 
elements. Curved boundary elements offer much better accuracy for a given number of 
unknowns [?, ?, ?], which makes them of great value for Brownian Dynamics or Monte Carlo 
simulations [?, ?, ?], when speed is especially important due to the large number of matrix 
operations. Mathematical analysis of the qualocation method suggested that its advantages 
might not be as large for curved boundary elements. In this paper, we tested this hypothesis 
and found it to be true. We first validate our implementation by confirming the earlier 
qualocation results showing qualocation's accuracy advantage for flat boundary elements. For 
curved boundary elements, however, the qualocation and collocation methods exhibit 
essentially the same accuracy. Finally, our results show the difference between collocation and 
qualocation is most pronounced when source charges lie in a high dielectric medium, which is 
consistent with the results of Bardhan et al. [?] and Greengard and Lee [?]. 

 
2  Theory and Methods 
 
 
2.1  Boundary Element Methods 
 
 In this section we specify the continuum electrostatic model used to treat discrete 

charges in an inhomogeneous dielectric domain, and the two boundary-element methods we 
use to solve the model numerically. We assume a system made of different regions with 
different permittivities ( 1ε  inside and 2ε  outside), separated by a sharp rigid boundary  . 
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For any point s  on  , with outward pointing normal ( )n s , we define  
 2 1=ε ε ε∆ −  (2) 

 

 1 2=
2

ε εε +  (3) 

 as the change and the mean of dielectric constant as one crosses the boundary. The electric 
charges of interest (e.g., ions in a solution) are modeled as a set of point charges acting as the 
sources of the electric field. There are no continuous charge densities and the only source of 
electric field is a set of point charges. We denote with kq  and kr  the charge and the position 
of the k th point charge. This electrostatic problem can be solved using the ICC integral 
equation [?, ?]:  

 3 3( ) ( ) ( ) = ( )
| | ( ) | |4 4

'
' ' k k

'
k k k

qh h dε ε
επε πε

∆ − ∆ −
+ ⋅ − ⋅

− −∑∫
s s s rs n s s s n s
s s r s r

 (4) 

 where ( )h s  is the induced charge at the dielectric boundary and ( )kε r  denotes the 
permittivity at the location of the k th fixed charge; for example, if the k th charge is inside 
the boundary, we have 1( ) =kε εr . After solving the boundary-integral equation for the 
distribution of induced charge ( )h s  on the boundary, one can easily evaluate the total 
electrostatic potential ( )Φ r  at any point r  via:  

 
0 0

1 1 ( )( ) = .
4 ( ) | | 4 | |

'
'k

'
k k k

q h d
πε ε πε

Φ +
− −∑ ∫

sr s
r r r r s

 (5) 

 The first and the second terms on the right-hand side of Eq. 5 are the contributions to the 
electric potential due to the source charges and the charge induced on the dielectric boundary, 
respectively; the second term is the reaction potential because it describes the potential due to 
the induced surface charge. 

 
2.2  Numerical Solution Methods 
 
 Linear boundary-integral equations such as Eq. 4 must be solved numerically. Here, 

approximate solutions for the induced surface charge ( )h s  are obtained by introducing a 
finite number of boundary elements (also called tiles) that partition the boundary  , or an 
approximation to it. Introducing a set of piecewise constant basis functions on these boundary 
elements and using Galerkin projection [?], Eq. 4 is converted into a matrix equation =Ah b . 
The vector b  is the right-hand side of Eq. 4. Each entry reflects the normal electric 
displacement field induced by the fixed charges over the corresponding tile. The matrix A  
accounts for interactions between charge distributions on the individual tiles. The vector h  
consists of the weights for the basis functions on each tile, and thus defines the unknown 
induced polarization charges. Note that A  depends only on the conformation and the 
discretization of the dielectric boundary, and that the vector b  depends only on the position 
of the source charges with respect to the boundary elements. After solving for h , the induced 
charge densities over the boundary are known and the electrostatic potential can be found 
through Eq. 5 by adding the Coulombic contributions from all the charges in the system (source 
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and induced). 
According to Bardhan et al. [?], the standard Galerkin projection framework [?] for BEM 

defines the entries of A  by  

 3

( ) ( ) ( )=
| |4 ( )

'
'

ij ij '
i j

A d dεδ
πε

  ∆ ⋅ −
+  −  

∫ ∫
s n s s s s s

s ss 
 (6) 

 and the elements of b  as  

 3

( ) ( ) ( )= ,
( ) | |4 ( )

k k
i

i k k k

qb dε
επε

 ∆ ⋅ −
−  − 

∑∫
s n s s r s

r s rs
 (7) 

 where i  denotes the i th boundary element and ijδ  is the Kronecker delta function. The 
double integrals in Eq. 6 are slow to compute, however, and the focus of this paper is to 
provide a deeper understanding of two fast approximations to Eqs. 6 and  7. 

The collocation discretization is by far the more popular, as its derivation is extremely 
intuitive (e.g., [?, ?]). As described by Boda et al. [?], the collocation approach to BEM 
approximates Eqs. 6 and 7 using one-point quadrature for the integrals over each i . The 
resulting matrix equation can be simplified to obtain a linear system in which each element of 
A  takes the form:  

 3

( ) ( ) ( )= ,
| |4 ( )

'
'i i i

ij ij '
j ii

A dεδ
πε
∆ − ⋅

+
−∫

s s s n s s
s ss 

 (8) 

 and each element of vector b  is:  

 3

( )= ( )
( ) | |4 ( )

i k i k
i i

k k i ki

qb ε
επε

∆ −
− ⋅

−∑s s r n s
r s rs

 (9) 

 where is  is the centroid of the i th boundary element. 
An alternative to collocation is the qualocation method proposed by Tausch [?] and later 

applied by Bardhan and Altman et al. [?, ?, ?], which (1) changes the order of the double 
integral of Eq. 6, and then (2) adopts one-point quadrature to approximate the new outer 
integral. The elements of A  then take the form:  

 3

( ) ( )( )=
| |4 ( )

ji
ij i ij j

i ji

A a a d
β

εδ
πε

− ⋅∆
+

−∫
s s n ss s

s ss
 (10) 

 where ia  denotes the area of tile i , i.e.  

 = .i
i

a d∫ s


 (11) 

 Each element of vector b  becomes:  

 3

( )= ( ) .
( ) | |4 ( )

'
' 'i k k

i '
i k k ki

qb d
β

ε
επε

 ∆ −
− ⋅ − 

∑∫
s s r n s s

r s rs
 (12) 

 Here, we will always use a 1-point quadrature for the integral in Eq. 12, which has been shown 
to be sufficiently accurate[?]. The success of 1-point quadrature for computing the right-hand 
side vector b  contrasts sharply with the complications needed to approximate the matrix A . 
The reason for its success is that the integrands for the entries of b  are extremely smooth, 
because charges never get within 1 Å  of the tile. In contrast, computing entries of A  
involves computing singular and near-singular integrals.  
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 3

( )= ( ).
( ) | |4 ( )

i k i k
i i i

k k i ki

qb aε
επε

∆ −
− ⋅

−∑s s r n s
r s rs

 (13) 

 
Regardless of the numerical approach employed, however, one must compute integrals 

over the boundary elements in Eqs. 8, 9, and 12. For elements that are far away from one 
another, these integrations can be done with simple quadrature rules; however, the task is 
more challenging for the " self-term" interactions, i.e. the diagonal matrix entries, as well as the 
" near-term" interactions where the boundary elements i  and j  are close in proximity. The 
diagonal matrix entries involve computing the integral of a singular function, and those for 
nearby elements require integration of near-singular functions. Although these integrals are 
well-defined analytically, their numerical approximation by standard quadrature methods can 
be computationally expensive (requiring many integration points and thus evaluations of the 
Green's function 1 / r ). For simple flat elements, these integrals [?, ?] have simple fast 
analytical representations, but integration over curved surfaces requires more complicated and 
specialized treatment [?, ?, ?, ?]. In this work, for consistency we use the same simple but 
effective scheme for both flat and curved elements; we divide each boundary element, or tile, 
into sub-elements (subtiles), and use numerical quadrature over the subtiles. Our results 
include an exploration of how accuracy changes as one increases the number of subtiles used in 
integration, providing a verification of these approaches. 

There are four steps to solving a BEM matrix equation using LU factorization. First, one 
must calculate the dense matrix A , which takes time proportional to 2N  where N  is the 
number of boundary elements. Second, one must calculate the right-hand side b , which takes 
time proportional to NM , where M  is the number of fixed charges. The third step is the 
slowest: computing triangular matrices L  and U  such that =A LU  requires 3N  time. 
The final step is to apply the inverses of L  and U  to obtain 1 1= − −h U L h , which requires 

2N  time due to their triangular nature. 
Many large-scale BEM calculations employ iterative methods to solve for h  

approximately, for instance using the GMRES algorithm [?]. Unlike direct methods, iterative 
approaches do not need all 2N  entries of A  but only the ability to multiply an arbitrary 
vector x  by A ; this product can be computed very quickly (time and memory requirements 
proportional to N  only, or logN N ) using techniques such as fast multipole methods [?, ?, 
?], precorrected-FFT [?], or FFTSVD [?, ?]. These algorithms are said to be asymptotically faster 
because they will outperform the direct methods for sufficiently large N ; however, for 
Brownian dynamics or Monte Carlo simulations with simple reduced models of ion channels, 
direct methods can be faster because N  is usually not large. 

 
2.3  Gauss's Law as a Consistency Check 
Bob: I do not understand what geometry we are talking about below. This needs 
rewriting and explaining. 
To assess the differently discretized BEM equations (note that the geometry is always 

discretized the same way), we use a sum rule (consistency check), an identity based on Gauss's 
Law. This is derived by integrating both sides of Eq.  over any closed surface ' : 
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( )

3

( )1( ) ( )
4 | |

'
' '

' ' 'h d h d dε
π ε

⋅ −∆
+

−∫ ∫ ∫
n s s s

s s s s s
s s  

 (14) 

 ( )
3

( )1=
4 | |

kk
'

k k k

q dε
π εε

⋅ −∆
−

−∑ ∫
n s s r

s
s r

 

 where we assume for simplicity that there is only one dielectric interface so that ε∆  and ε  
are independent of s . By Gauss's Law, the integral on the left-hand side is the Heaviside step 
function: 

 
( )

3

1 if isinside
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 Therefore, h  must satisfy 
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 where the sum on the right-hand side is over the charges inside ' . 
To gauge the electrostatic self-consistency of our calculations, we define 

 tot
1= ( )
2q 'h h dεε

ε
 

− + ∆ 
∫ s s


 (17) 

 where we have assumed that all the source charges are in one dielectric qε . Then, a measure 

of how well the sum rule Eq.  is satisfied is how close toth  is to kk
q∑ . 

 
3  Results 
 
 Throughout this section we use the notations ICC and QUAL to denote the collocation 

and qualocation methods, and remind the reader that these are not different underlying 
models, merely different numerical approaches to solving the same model. We employ two 
challenging test cases to compare the ICC and QUAL methods: first, a single point charge in a 
spherical dielectric (Fig. 1(a)), and second a simple model of a protein ion channel (Fig. 1(b) and 
1(c)). The first case, thanks to availability of an exact analytical solution, provides general and 
rigorous insights about the accuracy of the two methods; we studied the complementary 
problems of a high-dielectric sphere in a low dielectric medium, and a low-dielectric sphere in a 
high dielectric medium. The ion channel test case offers a more meaningful measure of the 
methods' ability to describe electrostatics in a real application, e.g., Brownian Dynamics (BD) or 
Monte Carlo (MC) simulations. Thus, to compare the accuracy of ICC and QUAL, we computed 
the reaction potential induced by a cation along three trajectories through the channel. 

For all test cases, we compared ICC and QUAL using both flat and curved surface 
elements, and also the number of surface elements (tiles) and the number of subdivisions of 
each element (subtiles) were changed to investigate how these parameters affect the accuracy 
of both methods. In the following figures, each set of data is identified in legends by the kind of 
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tiles (FLAT or CURVED), the BEM implementation (ICC or QUAL) and the number of tiles and 
subtiles per tile used to discretize the dielectric boundary (e.g. 364x100 means that we used 
364 tiles, subdivided into 100 subtiles each for integration). 

 
3.1  Dielectric Sphere with Flat Tiles 
 
 Our comparison starts with the problem studied by Boda et al. [?] and Bardhan et al. 

[?] (Figure 1(a)). A spherical dielectric region ( 1ε ) of 5 Å  radius is embedded in a different 
dielectric medium ( 2ε ) and contains an elementary point charge 4 Å  away from the center. 
For the flat-element calculations, the spherical boundary is approximated as a number of flat 
triangular tiles using spherical coordinates, and then each tile is subdivided into a number of 
subtiles (16, 36, 64, 100, 144 and 196 in our comparison). Figure 2 shows the reaction potential 
profiles along the sphere diameter passing through the source charge, as well as the relative 
error compared to the analytic solution; we used analytic results computed from [?], but the 
solution itself is derived in multiple places, e.g. [?, ?]. Results for different numbers of tiles used 
to discretize the dielectric boundary are shown; the plotted results employed 100 subtiles per 
tile, and results for other numbers of subtiles were not meaningfully different (data not shown). 

For the high-dielectric sphere ( 1 = 80ε ) embedded in a low dielectric medium ( 2 = 2ε ) 
(Figure 2(a) and 2(b)), QUAL is noticeably more accurate than ICC for any given number of tiles; 
in fact, QUAL provides results that are essentially indistinguishable from the analytical result. 
Figure 2(a) shows that for a high-dielectric sphere with flat tiles, ICC is unable to give 
satisfactory results even for a large number of tiles. The relative error in reaction potential (Fig. 
2(b)) is more than 40% for 1456 tiles and approximately 60% for 384 tiles. For qualocation, 
however, the relative error in the reaction potential is approximately 3% for the small number 
of tiles and well under 1% for the large number of tiles. The relative error for qualocation shows 
a maximum at 5 Å , i.e. at the dielectric boundary, where the accurate evaluation of the 
potential becomes computationally more difficult. Even with the increase in relative error 
there, however, QUAL is still much more accurate than ICC. Our results correspond very closely 
to those obtained by Bardhan et al. [?], which helps to validate the present implementation. For 
the low-dielectric sphere ( 1 = 2ε ) in a high-dielectric medium ( 2 = 80ε ), the difference between 
the two methods is much smaller (Fig. 2(c) and(d)). Qualocation still works slightly better 
almost everywhere, except for the error peak at 5 Å , but both methods provide accuracy to a 
fraction of Bk T  even for a small number of tiles. 

These results agree with other publications demonstrating that a charge in a 
high-dielectric region is more challenging to compute accurately than a charge in a low 
dielectric [?, ?]. Greengard and Lee presented a detailed analysis and discussion, showing that 
discretization errors have an increasingly large effect on accuracy as the dielectric constant for 
the charge-containing region increases [?]. Intuitively, it is impossible to have a charge residing 
in the interior of a conductor rather than on its surface; increasing the dielectric constant in this 
region makes the problem ``closer'' to the unphysical limit, and is thus harder to solve 
accurately. More precisely, the ICC equation is singular for a conductor [?, ?], and Bardhan et al. 
showed that both ICC and QUAL matrices are increasingly ill-conditioned as the dielectric 
constant increases [?]. 
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From Gauss's identity and sum rule, we must have tot / = 1h e  ( e  is the fundamental 
charge), the total charge inside the sphere. Figure 3 shows the total induced charge computed 
with the two methods as a function of the number of flat triangular tiles N  used to discretize 
the sphere surface for the high dielectric sphere (Figure 3(a)) and the low dielectric sphere 
(Figure 3(b)). Each curve represents a different configuration in terms of number of subtiles (16, 
100, and 196) used to integrate over each tile. The total charge computed numerically tends to 
approach the analytical solution as the number of tiles increases. In both cases QUAL features 
high consistency even for low number of tiles. ICC is unable to satisfy Gauss's Law accurately for 
the high dielectric sphere since the total induced charge on the boundary is limited to 70% 
of the analytic value. This problem is reduced significantly for the low dielectric sphere. It is 
worth noting that, for a given number of tiles, only QUAL is sensitive to the number of subtiles. 
For QUAL, the dominant error is in the actual panel integration (over the destination panel) 
rather than the one-point quadrature; in contrast, the dominant error in ICC is the one-point 
quadrature [?]. 

 
3.2  Dielectric Sphere with Curved Tiles 
 
 We now consider boundaries discretized using curved tiles. For the sphere problems, 

these tiles were generated by dividing the spherical angles θ  and φ  uniformly. An analytic 
description of the curvature of the dielectric boundary can greatly improve the accuracy of the 
BEM solutions because tile curvature determines a self-induced contribution that is crucial for 
the computation of the induced charges. Figure 4 shows the results for the reaction potential 
and the relative error in reaction potential with respect to the analytic solution along the 
sphere diameter passing through the source charge, and should be compared with the flat 
panel results in Figure 2. Results for different numbers of tiles used to discretize the dielectric 
boundary are shown. Again, each curved tile is subdivided into 100 curved subtiles, and similar 
results are obtained using different numbers of subtiles. In this case, both for high-dielectric 
(Figure 4(a)) and low-dielectric sphere (Figure 4(c)) cases, the ICC and QUAL methods give 
essentially the same results, with a maximum deviation from analytic results limited to 0.8  

Bk T . One can observe the same decrease in relative error as the number of tiles increases. In 
fact, ICC and QUAL produce almost the same relative errors for both the high-permittivity 
(Figure 4(b)) and low-permittivity spheres (Figure 4(d)). ICC produces marginally smaller errors 
only for the high-permittivity sphere and large number of tiles. 

Figure 5 plots the Gauss's Law consistency check for the high-permittivity (Figure 5(a)) 
and low-permittivity (Figure 5(b)) sphere cases. The total charge induced on the boundary is 
plotted as a function of the number of tiles and the results are grouped by the number of 
subtiles used to divide each tile. As expected, in both cases, an increase in the number of tiles 
produces better estimates of the induced charge. Moreover, an increase in the number of 
subtiles per tile helps to satisfy Gauss's identity and sum rule. Again the low-permittivity sphere 
lends itself to improved accuracy, with a minimum error of 32.5 10−⋅  with respect to 

21 10−⋅  for the high-permittivity sphere case. It is worth noting the different behavior of the 
two graphs: while in the high-dielectric sphere case the total induced charge underestimates 
the enclosed charge, in the low-permittivity sphere case both methods overestimate the value 
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of the total induced charge. 
 
3.3  Model of an Ion Channel 
 
 In this section we compare the ICC and QUAL implementations using a simple ion 

channel model in order to investigate which method is best for studying ion permeation 
through membrane pores. The ion channel model is a solid obtained by rotating the shape in 
Figure 1(b) around its rotational symmetry axis. The resulting 3-D channel is depicted in Figure 
1(c). A 20 Å  thick membrane slab ( = 2Mε ) separates two aqueous baths ( = 80Wε ). A pore 
with 4 Å  radius connects the two baths. No charges are inserted in the membrane or in the 
baths and no applied external electric fields are present the system. 

We investigate the accuracy of ICC and QUAL as a cation moves following three different 
trajectories: a) along the channel axis (T1 in Figure 1(b)); b) 3 Å  off the channel axis (T2 in 
Figure 1(b)) and c) in the radial direction, starting from the channel axis at the center of the 
pore (T3 in Figure 1(b)). For each trajectory, we studied the reaction potential felt by the ion 
and the total induced charge on the dielectric boundary using both flat and curved tiles. Plots 
were obtained moving the ion in steps of 0.5 Å , solving Poisson's equation with ICC and QUAL, 
and evaluating the reaction potential at the ion position and the total induced charge on the 
boundary. The matrix A  never changes throughout this process, since the geometry of the 
boundary is fixed. Thus, in BD or in MC simulations, we can compute A  and its factorization 
as =A LU  just once, at the beginning of the computation [?]. For any different charge 
configuration (i.e., as the ion changes its position) we only compute a new right-hand side b  
and then solve the linear system for the new h . The ion, embedded in the high dielectric 
water, induces charge of the same sign on the water-membrane dielectric boundary. The 
reaction potential increases as the ion approaches the boundary. When the ion crosses the 
channel along its axis (trajectory T1) the reaction potential felt by the ion increases, reaching its 
maximum at the channel center [?, ?, ?]. 

Figure 6 shows results for the reaction potential and sum rule as a cation moves along 
T1 computed with ICC and QUAL with flat and curved tiles. In this and in the following 
comparisons, the number of tiles and subtiles have been varied to investigate how finer 
discretizations can enhance accuracy. For each plot we give the results for a " coarse" 
discretization (2016 tiles and 100 subtiles per tile) and a " fine" discretization (11280 tiles and 
256 subtiles per tile). 

As expected, using flat tiles, ICC exhibits a stronger dependency on the number of 
discretization elements than does QUAL (Figures 6(a) and inset). Unlike the sphere test cases, it 
is not possible to obtain an analytical solution of this problem, even if the shape of the channel 
is very simple. Because QUAL exhibited higher accuracy in the sphere test cases, and also 
because a refinement of the boundary discretization moves the ICC results towards the QUAL 
solution, we expect that the " reference solution" of the problem is very close to the " fine" 
QUAL results. It is worth noting that ICC is quite far from the QUAL curves, even when using a 
large number of tiles. 

For the sum rule, the total charge induced on the boundary must equal the total charge 
enclosed by the boundary, which is 0 for our ion-channel model. Figure 6(b) shows the total 
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induced charge as a function of the position of the ion. All implementations feature high 
accuracy, limiting the total induced charge to 35 10−⋅  elementary charges. QUAL shows a small 
dependence on the number of discretization elements. Surprisingly, ICC produces slightly 
smaller errors in the consistency check as the ion approaches the channel center, even though 
the ICC calculation accuracy is poorer (Fig. 6(a)). This result is unexpected because the ICC 
method exhibited larger sum-rule violations for the sphere examples. More detailed analysis of 
this discrepancy is needed, but two recent studies suggest ways to eliminate this inaccuracy. 
Greengard and Lee proposed a modified ICC which improves accuracy by explicitly enforcing 
the sum rule [?]. Steinbach et al. indicate that eliminating these flat-panel BEM errors requires 
alternative integral-equation formulations [?]. In that work, the authors use the magnetostatic 
equivalent of the electrostatic problem studied here, and show that flat-tile BEM for the ICC 
approach gives inaccurate results on the boundary, even when one uses a full Galerkin 
discretization. As discussed in Section 2, collocation and qualocation only approximate Galerkin, 
and thus cannot be expected to attain even the limited accuracy for surface variables observed 
there. We intend to test their formulations in future work. 

Nevertheless, Figure 6(b) does serve as a clear example that checking discretization 
error using the Gauss's Law sum rule is inadequate as the ultimate check for the accuracy of a 
Poisson solver, because an induced charge h  that satisfies Gauss's Law does not necessarily 
give the correct solution to Poisson's equation for the given fixed charge distribution. A useful 
interpretation of the sum rule is that it verifies the ``monopole.'' Clearly, the fact that an 
induced-charge distribution satisfies this constraint does not mean that it reproduces all other 
multipoles. When curved tiles are used to simulate this problem (Figure 6(c)) ICC and QUAL are 
basically equivalent as found earlier, producing indistinguishable results both for low and high 
mesh quality in terms of both reaction potential (Figure 6(c)) and total induced charge (Figure 
6(d)). 

When the ion moves along trajectory T2, 3 Å  off the channel axis, it is very close to the 
dielectric boundary. This means that the computation of the electrostatic forces becomes more 
critical since polarization charges become larger. In this more demanding test case, using flat 
tiles (Figures 7(a) and 7(b)), a coarse discretization of the boundary leads to a loss in accuracy 
for both ICC and QUAL. Again, QUAL features a smaller dependence on the number of tiles and 
ICC still underestimates the reference calculation (i.e. the qualocation method with a large 
number of tiles). In this case, as well as for trajectory T1, the total induced charge on the 
boundary is limited to 35 10−⋅  elementary charges for any configuration. The use of curved 
tiles (Figures 7(c) and 7(d)) helps both ICC and QUAL to preserve the accuracy of the solution. 
The inset of Figure 7(c) shows how the two methods provide the same results for the same 
number of tiles. It is important to note that the resuls for 11280 flat and curved panels are still 
different even for QUAL. Since curved panels include curvature better, this shows that curved 
tiles give more accurate results even for QUAL. 

The final comparison is for trajectory T3, in which the ion moves in the radial direction 
from the channel axis at the center of the channel. Along this path, the ion feels an increasing 
reaction potential that repels the ion away from the boundary [?]. Figures 8(a) and 8(b) show 
the reaction potential and the total induced charge on the dielectric boundary as functions of 
the position of the ion along T3 when flat tiles are adopted. Both ICC and QUAL feature a clear 
dependence on the quality of the discretization for distances from the channel axis larger than 
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2.75 Å . For a given mesh quality, the trend of the plots of ICC and QUAL is functionally 
indistinguishable, but as in the previous comparisons, ICC never approaches QUAL results, even 
using a large number of flat discretization elements. Again, the discretization error in Gauss's 
Law sum rule is smaller for the ICC method than for QUAL, though the magnitude is small, 
approximately 35 10−⋅  elementary charges. 

Last, we compare using curved tiles to evaluate the electrostatics along T3 (Figures 8(c) 
and 8(d)). Again, for curved tiles ICC and QUAL are equivalent, giving indistinguishable results 
for the same mesh configuration. Note that the dependence on the number of curved 
discretization elements is always negligible, with the exception for distances from channel axis 
larger than 3.25 Å. In other words, a coarse-grained discretization of the dielectric boundary 
can provide highly accurate solutions in the whole channel except for less than 1 Å   from the 
boundary. BD and MC simulations often treat ions as hard spheres (their Pauling radii is 
typically 1  Å ) [?, ?, ?, ?, ?] that cannot cross the dielectric boundaries, so an ion cannot be 
within 1 Å of the boundary. This dependence is slightly larger, for amplitude and distance, 
for flat tiles. This means that, using curved tiles, both ICC and QUAL can be adopted to 
accurately evaluate electrostatics inside an ion channel, even with a surprisingly coarse 
discretization of the boundary. 

 
4  Conclusion 
  
This extensive series of comparisons shows that qualocation is able to provide accurate 

results using both flat and curved tiles. In contrast, ICC collocation method produces high 
accuracy results only if curved tiles are adopted, in accordance with the hypothesis advanced in 
earlier work [?]. In fact, for curved-tile simulations the ICC and QUAL are essentially equivalent 
in terms of accuracy and speed. Thus, when the dielectric boundary can be described using 
curved surface elements, both methods can be adopted for particle-based applications. 

However, if the dielectric boundary's complexity makes curved tiles impractical and flat 
tiles must be used, qualocation is significantly more accurate than collocation. Our findings are 
consistent with earlier results, which indicated that QUAL is usually an order of magnitude 
more accurate almost everywhere (Fig. 2(d)). We wish to stress this point and caution the 
reader that even though absolute errors appear small (Fig. 2(c)), flat-tile ICC simulations of 
proteins or other large problems containing hundreds or thousands of charges can have 
extremely large errors (cf. Fig. 4 of [?]). Furthermore, the accuracy of the ICC method improves 
much more slowly than does QUAL when one increases the number of tiles (i.e., ICC converges 
more slowly). The discretizations of 364 and 1456 elements correspond to vertex densities of 
approximately 1 and 3 vertices per square Angstrom, which are 5-10 times lower than the 
density required to converge a protein electrostatic free energy. Memory becomes a limiting 
factor very quickly for the dense BEM employed here, and thus accuracy considerations argue 
for the use of QUAL for all flat-tile calculations. Even if memory is not a concern, we note that 
for a given level of accuracy, flat-tile QUAL will be faster than flat-tile ICC, because fewer tiles 
are needed. Finally, we note that modeling protein--solvent boundaries using atomistic models 
lead to complicated dielectric interfaces and curved tiles surface representations are difficult to 
obtain, e.g. [?, ?, ?, ?]. However, as argued by Steinbach et al. [?], important properties of the 

Physical Review E (in the press: June 2012)



integral operators depend quite sensitively on the smoothness of the actual surface 
representation; thus, when flat panels must be used, alternative integral equations may be 
valuable for fast and accurate simulations. 
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Figure  1: (Color online) Sphere test case (a). A dielectric sphere of radius 5 Å  is 
embedded in a different dielectric medium. An elementary point charge is set 4 Å  off sphere 

center. Ion channel test case (b) and (c). The model is obtained rotating (b) by 180   around the 
axis. Water and membrane feature different dielectric constants ( = 80Wε , = 2Mε , 

respectively). The trajectories used for comparison tests are noted in (b) with the labels T1 
(along the channel axis), T2 (3 Å  off the channel axis), and T3 (radial direction from the 

channel axis at the center of the channel). (c) 3-D model of the channel. The blue dot 
represents the ion moving on the channel axis (red line). 
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Figure  2: (Color online) Sphere test cases with flat tiles. Reaction potential and its 
relative error along the sphere diameter that passes through the source charge for the high 

dielectric sphere ((a) and (b)) and for the low dielectric sphere ((c) and (d)) cases. The sphere 
goes from = 5z − Å  to = 5z  Å . The source charge is located at = 4z  Å . In this and in the 
following figures, for each data curve, legends give the kind of tiles (FLAT or CURVED), the BEM 
implementation (ICC or QUAL), and the number of tiles and subtiles per tile used to discretize 

the dielectric boundary (e.g., 364 100×  stands for 364 tiles, 100 subtiles for each tile). 
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Figure  3: (Color online) Sphere test cases, flat tiles. Gauss's Law consistency check for 
the high dielectric sphere (a) and for the low dielectric sphere (b) cases. The graphs shows toth  
as a function of the number of tiles used to discretize the dielectric boundary. The numbers of 

subtiles per tiles are varied. 
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Figure  4: (Color online) Sphere test cases with curved tiles. Reaction potential and its 
relative error along the sphere diameter that contains the source charge for the high dielectric 

sphere ((a) and (b)) and for the low dielectric sphere ((c) and (d)) cases. Results for both ICC and 
QUAL are obtained using different number of tiles. Sphere goes from = 5z −  Å  to = 5z  Å  

. The source charge is located at = 4z  Å . 
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Figure  5: (Color online) Sphere test cases with curved tiles. Gauss's Law consistency 
check for the high dielectric sphere (a) and for the low dielectric sphere (b) cases. The graphs 

shows toth  as a function of the number of tiles used to discretize the dielectric boundary. The 
number of subtiles per tiles is indicated for each curve. 
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Figure  6: (Color online) Ion channel test case for trajectory T1. Reaction potential and 
toth  as a function of the position of a cation that moves along channel axis (T1). Flat ((a) and 

(b)) and curved ((c) and (d)) tiles are used. Results for both ICC and QUAL are obtained using 
different numbers of tiles and subtiles. 
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Figure  7: (Color online) Ion channel test case for trajectory T2. Reaction potential and 
toth  as a function of the position of a cation that moves 3 Å  off the channel axis (T2). Flat ((a) 
and (b)) and curved ((c) and (d)) tiles are used. Results for both ICC and QUAL are obtained 

using different numbers of tiles and subtiles. 
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Figure  8: (Color online) Ion channel test case for trajectory T3. Reaction potential and 
toth  as a function of the position of a cation that moves radially from the channel axis at the 

center of the channel (T3). Flat ((a) and (b)) and curved ((c) and (d)) tiles are used. Results for 
both ICC and QUAL are obtained using different numbers of tiles and subtiles. 
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