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Particle-based simulation represents a powerful approach to modeling physical systems in electronics,
molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles
requires an accurate and efficient solution of Poisson’s equation. For a system of discrete charges with
inhomogeneous dielectrics, i.e., a system with discontinuities in the permittivity, the boundary element method
(BEM) is frequently adopted. It provides the solution of Poisson’s equation, accounting for polarization effects
due to the discontinuity in the permittivity by computing the induced charges at the dielectric boundaries. In
this framework, the total electrostatic potential is then found by superimposing the elemental contributions
from both source and induced charges. In this paper, we present a comparison between two BEMs to solve a
boundary-integral formulation of Poisson’s equation, with emphasis on the BEMs’ suitability for particle-based
simulations in terms of solution accuracy and computation speed. The two approaches are the collocation and
qualocation methods. Collocation is implemented following the induced-charge computation method of D. Boda
et al. [J. Chem. Phys. 125, 034901 (2006)]. The qualocation method is described by J. Tausch et al. [IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 1398 (2001)]. These approaches
are studied using both flat and curved surface elements to discretize the dielectric boundary, using two challenging
test cases: a dielectric sphere embedded in a different dielectric medium and a toy model of an ion channel. Earlier
comparisons of the two BEM approaches did not address curved surface elements or semiatomistic models of
ion channels. Our results support the earlier findings that for flat-element calculations, qualocation is always
significantly more accurate than collocation. On the other hand, when the dielectric boundary is discretized with
curved surface elements, the two methods are essentially equivalent; i.e., they have comparable accuracies for
the same number of elements. We find that ions in water—charges embedded in a high-dielectric medium—are
harder to compute accurately than charges in a low-dielectric medium.

DOI: 10.1103/PhysRevE.86.011912 PACS number(s): 87.15.kr, 41.20.Cv, 87.14.ep

I. INTRODUCTION

Numerical simulation represents a useful technique to
investigate physical systems at the nanoscale level. Although
the computational capability of modern supercomputers allows
one to perform fully atomistic simulations of larger and larger
systems, simpler models are still widely used. Such models, if
well formulated and applied, are able to provide great insights
with fewer parameters and much less computational effort
than their fully atomistic counterparts. One of the most popular
coarse-grained techniques treats a reduced number of particles
of interest explicitly and uses a potential of mean force (PMF)
to account for the effect of all other particles [1–9].

For example, when dealing with a system of charged
particles, the primitive or implicit-solvent models describe
the effect of water molecules collectively as a dielectric
background that mediates electrostatic interactions by dielec-
tric polarization. The inhomogeneous simulation domain is
divided into a number of homogeneous regions, each with
constant permittivity. This approach is particularly convenient
for simulations of ions in electrolytes, because the number of
ions is orders of magnitude smaller than the number of solvent
molecules, enabling faster computation [3,6,10–17].

This kind of simulation preserves the discrete nature of
the ions themselves and, therefore, allows realistic analysis of
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their behavior at the atomic level. For example, one can study
permeation of ions through membrane pores by dividing the
simulation domain into two regions (the membrane and water)
and assigning each region its own permittivity. One can then
model the motion of the ions in the water regions, neglecting
the dynamics of water molecules or membrane atoms except
for their electrostatic effects on the ions’ motion. This kind of
coarse-graining approach is standard practice for simulations
of electronic devices [18–24] and has been widely used to
investigate solvation of macromolecules [25,26], interacting
proteins [27,28], and ion-channel permeation [29–40].

However, this approach requires the evaluation of elec-
trostatic forces in a simulation domain with inhomogeneous
dielectrics, which poses serious practical challenges for
computation, particularly if one insists on using periodic
boundary conditions [41–43]. In particular, to compute the
forces on the ions, one must account for the inhomogeneity
of the permittivity ε(r) (here, discontinuities occurring at
the boundaries between different materials or phases) by
solving Poisson’s equation, which relates the source charge
distribution ρ(r) to the electrostatic potential �(r) in the
simulation domain,

ε0∇ · [ε(r)∇�(r)] = −ρ(r), (1)

where ε0 is the permittivity of free space. Solving Pois-
son’s equation is a computationally slow task, especially in
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comparison to problems in which the permittivity is constant
everywhere, and it is further challenged for periodic systems.

Different approaches have been proposed to solve Poisson’s
equation in systems with inhomogeneous dielectric permittiv-
ity, depending on the specific characteristics of the simulation
domain; the most popular are volume-based techniques such
as the finite-difference method [44–49], the finite-element
method [50–53], and boundary-integral equation methods
solved via the boundary element method (BEM) [54–62].

All of these methods lead ultimately to a system of algebraic
equations for numerical solution, and the intrinsic properties
of the system being studied help to determine the most
efficient technique. For example, finite-difference and finite-
element methods are well suited for the numerical simulations
of electronic devices such as P-N junctions [63,64] and
MOSFETs [65,66], where one deals with thousands of charges
so they can be described by a position-dependent volume (or
surface) density, but one loses the discrete nature of particles.
However, finite-difference and finite-element approaches can
lead to significant accuracy challenges for simulations of
nanometer-scale structures, where the number of charges is
typically relatively small or where the charge-charge distances
can be comparable to the distance between grid points.

BEM can provide an accurate treatment of electrostatics in
nanoscale simulation domains while preserving the discrete
nature of the ions. For example, simulations of ions near and
within nanometer molecular structures such as ion channels
have been performed with a high accuracy with this approach
[10,61,67,68].

In this paper we address methods that compute the
polarization charges induced on the dielectric interfaces;
other BEM approaches calculate the potential or electric
field at the interface [69–71]. The induced surface charges
are determined as a weighted sum of simple basis functions
defined on a grid of surface (boundary) elements that discretize
the whole dielectric boundary. This approach does not re-
quire discretization of the entire three-dimensional simulation
domain; only the two-dimensional boundary surfaces. The
weights for the basis functions (i.e., the polarization charge
densities) are determined by enforcing the continuity of the
electric displacement through the dielectric boundaries. Once
the induced charges have been computed, they contribute to
the distribution of electrostatic potential in the same way
as source charges; thus, the total electrostatic potential (i.e.,
the solution to Poisson’s equation) is explicitly calculated
as the Coulomb potential due to the two distributions of
charges, the source charges and the induced boundary charges.
Thus, BEM is particularly well suited for coarse-grained
simulations of primitive-model electrolyte solutions near and
within proteins such as ion channels and has been adapted to
treat protein/solvent interfaces [67,68,72].

Performing BEM simulations requires careful choice of
discretization techniques. It matters how the analytically exact
boundary-integral equation is converted into an approximate,
finite-dimensional system of algebraic equations. As with
other numerical methods, there is a trade-off between speed
and accuracy: one obtains better approximations by using more
unknowns, but not all discretization methods exhibit the same
trade-off. In this paper we compare two approaches to BEM:
the induced-charge computation (ICC) centroid collocation

method [61] and the qualocation (QUAL) method [71,73,74].
These two approaches start from the same boundary-integral
equation formulation of the Poisson problem [54,57,59], but
use different numerical approximations to compute the needed
integrals that lead to the BEM matrix equation Ah = b.

Some earlier studies have addressed either simplistic model
problems [74] or broader technical questions of discretizing
integral equation models [71], but using only flat boundary el-
ements. Curved boundary elements offer much better accuracy
for a given number of unknowns [75–77], which makes them of
great value for Brownian dynamics (BD) or Monte Carlo (MC)
simulations [67,78,79], when speed is especially important
due to the large number of matrix operations. Mathematical
analysis of the QUAL method suggested that its advantages
might not be as large for curved boundary elements. In this
paper, we test this hypothesis and found it to be true. We first
validate our implementation by confirming the earlier QUAL
results showing QUAL’s accuracy advantage for flat boundary
elements. For curved boundary elements, however, the QUAL
and collocation methods exhibit essentially the same accuracy.
Finally, our results show the difference between collocation
and QUAL is most pronounced when source charges lie in a
high dielectric medium, which is consistent with the results of
Bardhan et al. [74] and Greengard and Lee [80].

II. THEORY AND METHODS

A. Boundary element methods

In this section we specify the continuum electrostatic
model used to treat discrete charges in an inhomogeneous
dielectric domain, and the two BEMs we use to solve the
model numerically. We assume a system made of different
regions with different permittivities (ε1 inside and ε2 outside),
separated by a sharp rigid boundary B. For any point s on B,
with outward pointing normal n(s), we define

�ε = ε2 − ε1 (2)

ε = ε1 + ε2

2
(3)

as the change and the mean of dielectric constant as one crosses
the boundary. The electric charges of interest (e.g., ions in a
solution) are modeled as a set of point charges acting as the
sources of the electric field. There are no continuous charge
densities and the only source of electric field is a set of point
charges. We denote with qk and rk the charge and the position
of the kth point charge. This electrostatic problem can be
solved using the ICC integral equation [54,61]:

h(s) + �ε

4πε
n(s) ·

∫
B

s − s′

|s − s′|3 h(s′)ds′

= − �ε

4πε
n(s) ·

∑
k

qk

ε(rk)

s − rk

|s − rk|3 (4)

where h(s) is the induced charge at the dielectric boundary and
ε(rk) denotes the permittivity at the location of the kth fixed
charge; for example, if the kth charge is inside the boundary, we
have ε(rk) = ε1. After solving the boundary-integral equation
for the distribution of induced charge h(s) on the boundary,
one can easily evaluate the total electrostatic potential �(r) at
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any point r via:

�(r) = 1

4πε0

∑
k

qk

ε(rk)|r − rk| + 1

4πε0

∫
B

h(s′)
|r − s′|ds′. (5)

The first and the second terms on the right-hand side of Eq. (5)
are the contributions to the electric potential due to the source
charges and the charge induced on the dielectric boundary,
respectively; the second term is the reaction potential because
it describes the potential due to the induced surface charge.

B. Numerical Solution Methods

Linear boundary-integral equations such as Eq. (4) must
be solved numerically. Here, approximate solutions for the
induced surface charge h(s) are obtained by introducing a finite
number of boundary elements (also called tiles) that partition
the boundary B, or an approximation to it. Introducing a set of
piecewise constant basis functions on these boundary elements
and using Galerkin projection [81], Eq. (4) is converted into a
matrix equation Ah = b. The vector b is the right-hand side of
Eq. (4). Each entry reflects the normal electric displacement
field induced by the fixed charges over the corresponding
tile. The matrix A accounts for interactions between charge
distributions on the individual tiles. The vector h consists
of the weights for the basis functions on each tile, and thus
defines the unknown induced polarization charges. Note that
A depends only on the conformation and the discretization of
the dielectric boundary, and that the vector b depends only on
the position of the source charges with respect to the boundary
elements. After solving for h, the induced charge densities over
the boundary are known and the electrostatic potential can be
found through Eq. (5) by adding the Coulombic contributions
from all the charges in the system (source and induced).

According to Bardhan et al. [74], the standard Galerkin
projection framework [81] for BEM defines the entries of A
by

Aij =
∫
Bi

(
δij +

∫
Bj

(
�ε(s)

4πε(s)

n(s) · (s − s′)
|s − s′|3

)
ds′

)
ds (6)

and the elements of b as

bi = −
∫
Bi

(
�ε(s)

4πε(s)

∑
k

qk

ε(rk)

n(s) · (s − rk)

|s − rk|3
)

ds, (7)

where Bi denotes the ith boundary element and δij is the
Kronecker delta function. The double integrals in Eq. (6) are
slow to compute, however, and the focus of this paper is to
provide a deeper understanding of two fast approximations to
Eqs. (6) and (7).

The collocation discretization is by far the more popular,
as its derivation is extremely intuitive (e.g., [61,82]). As
described by Boda et al. [61], the collocation approach to BEM
approximates Eqs. (6) and (7) using one-point quadrature for
the integrals over each Bi . The resulting matrix equation can
be simplified to obtain a linear system in which each element
of A takes the form:

Aij = δij + �ε(si)

4πε(si)

∫
Bj

(si − s′) · n(si)

|si − s′|3 ds′, (8)

and each element of vector b is:

bi = − �ε(si)

4πε(si)

∑
k

qk

ε(rk)

si − rk

|si − rk|3 · n(si) (9)

where si is the centroid of the ith boundary element.
An alternative to collocation is the QUAL method proposed

by Tausch [73] and later applied by Bardhan and Altman
et al. [71,74,83], which (i) changes the order of the double
integral of Eq. (6) and then (ii) adopts one-point quadrature to
approximate the new outer integral. The elements of A then
take the form

Aij = aiδij + �ε(si)

4πε(si)
aj

∫
βi

(s − sj ) · n(s)

|s − sj |3 ds, (10)

where ai denotes the area of tile i, i.e.,

ai =
∫
Bi

ds. (11)

Each element of vector b becomes

bi = − �ε(si)

4πε(si)

∫
βi

(∑
k

qk

ε(rk)

s′ − rk

|s′ − rk|3 · n(s′)

)
ds′. (12)

Here, we always use a one-point quadrature for the integral
in Eq. (12), which has been shown to be sufficiently accurate
[74]. The success of one-point quadrature for computing
the right-hand side vector b contrasts sharply with the
complications needed to approximate the matrix A. The reason
for its success is that the integrands for the entries of b are
extremely smooth, because charges never get within 1 Å of the
tile. In contrast, computing entries of A involves computing
singular and near-singular integrals:

bi = − �ε(si)

4πε(si)
ai

∑
k

qk

ε(rk)

si − rk

|si − rk|3 · n(si). (13)

Regardless of the numerical approach employed, however,
one must compute integrals over the boundary elements in
Eqs. (8), (9), and (12). For elements that are far away from
one another, these integrations can be done with simple
quadrature rules; however, the task is more challenging for
the “self-term,” i.e., the diagonal matrix entries, as well as the
“near-term” interactions where the boundary elements i and
j are close in proximity. The diagonal matrix entries involve
computing the integral of a singular function, and those for
nearby elements require integration of near-singular functions.
Although these integrals are well defined analytically, their
numerical approximation by standard quadrature methods can
be computationally expensive (requiring many integration
points and thus evaluations of the Green’s function 1/r).
For simple flat elements, these integrals have simple and fast
analytical representations [84,85], but integration over curved
surfaces requires more complicated and specialized treatment
[75,76,86,87]. In this work, for consistency we use the same
simple but effective scheme for both flat and curved elements;
we divide each boundary element, or tile, into subelements
(subtiles) and use numerical quadrature over the subtiles. Our
results include an exploration of how accuracy changes as one
increases the number of subtiles used in integration, providing
a verification of these approaches.
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There are four steps to solving a BEM matrix equation using
LU factorization. First, one must calculate the dense matrix A,
which takes time proportional to N2, where N is the number of
boundary elements. Second, one must calculate the right-hand
side b, which takes time proportional to NM , where M is
the number of fixed charges. The third step is the slowest:
computing triangular matrices L and U such that A = LU
requires N3 time. The final step is to apply the inverses of L
and U to obtain h = U−1L−1h, which requires N2 time due to
their triangular nature.

Many large-scale BEM calculations employ iterative meth-
ods to solve for h approximately, for instance, using the
GMRES algorithm [88]. Unlike direct methods, iterative
approaches do not need all N2 entries of A but only the
ability to multiply an arbitrary vector x by A; this product can
be computed very quickly (time and memory requirements
proportional to N only or to N log N ) using techniques
such as fast multipole methods [89–91], precorrected FFT
[92], or FFTSVD [77,93]. These algorithms are said to be
asymptotically faster because they will outperform the direct
methods for sufficiently large N ; however, for BD or MC
simulations with simple reduced models of ion channels, direct
methods can be faster because N is usually not large.

C. Gauss’s Law as a consistency check

One way to assess the collocation and qualocation methods’
performance on a given boundary discretization is to check a
sum rule (consistency check) based on Gauss’s Law. The sum
rule is derived by integrating both sides of Eq. (4) over any
closed surface B′:

∫
B′

h(s)ds + 1

4π

�ε

ε

∫
B

h(s′)
∫
B′

n(s) · (s − s′)
|s − s′|3 dsds′

= − 1

4π

�ε

ε

∑
k

qk

εk

∫
B′

n(s) · (s − rk)

|s − rk|3 ds, (14)

where we assume for simplicity that there is only one dielectric
interface so that �ε and ε are independent of s. By Gauss’s
Law, the integral on the left-hand side is the Heaviside step

function:

1

4π

∫
B′

n(s) · (s − s′)
|s − s′|3 ds =

⎧⎪⎨
⎪⎩

1 if s′ is inside B′,
1
2 if s′ is on B′,
0 if s′ is outside B′.

(15)

Therefore, h must satisfy(
1 + 1

2

�ε

ε

)∫
B′

h(s)ds = −�ε

ε

∑
k∈B′

qk

εk

, (16)

where the sum on the right-hand side is over the charges inside
B′.

To gauge the electrostatic self-consistency of our calcula-
tions, we define

htot = −εq

(
1

2
+ ε

�ε

) ∫
B′

h(s)ds, (17)

where we have assumed that all the source charges are in one
dielectric εq . Then a measure of how well the sum rule, Eq. (16)
is satisfied is how close htot is to

∑
k qk .

III. RESULTS

Throughout this section we use the notations ICC and
QUAL and remind the reader that these are not different
underlying models, merely different numerical approaches to
solving the same model. We employ two challenging test cases
to compare the ICC and QUAL methods: first, a single point
charge in a spherical dielectric [Fig. 1(a)] and, second, a simple
model of a protein ion channel [Figs. 1(b) and 1(c)]. The first
case, thanks to the availability of an exact analytical solution,
provides general and rigorous insights about the accuracy of
the two methods; we studied the complementary problems
of a high-dielectric sphere in a low-dielectric medium and
of a low-dielectric sphere in a high-dielectric medium. The
ion-channel test case offers a more meaningful measure of the
methods’ ability to describe electrostatics in a real application,
e.g., BD or MC simulations. Thus, to compare the accuracy of
ICC and QUAL, we computed the reaction potential induced
by a cation along three trajectories through the channel.

For all test cases, we compared ICC and QUAL using
both flat and curved surface elements, and also, the number
of surface elements (tiles) and the number of subdivisions

FIG. 1. (Color online) (a) Sphere test case (a). A dielectric sphere of radius 5 Å is embedded in a different dielectric medium. An elementary
point charge is set 4 Å off sphere center. (b, c) Ion-channel test case. The model is obtained by rotating (b) by 180◦ around the axis. The water
and the membrane feature different dielectric constants (εW = 80 and εM = 2, respectively). The trajectories used for comparison tests are
noted in (b) with the labels T1 (along the channel axis), T2 (3 Å off the channel axis), and T3 (radial direction from the channel axis at the
center of the channel). (c) 3D model of the channel. The filled (blue) circle at the right represents the ion moving on the channel axis (red line).
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FIG. 2. (Color online) Sphere test cases with flat tiles. Reaction potential and its relative error along the sphere diameter that passes through
the source charge (a, b) for the high-dielectric sphere and (c, d) for the low-dielectric sphere. The sphere goes from z = −5 Å to z = 5 Å. The
source charge is located at z = 4 Å. In this the subsequent figures, for each data curve, legends give the kind of tiles (flat or curved), the BEM
implementation (ICC or QUAL), and the number of tiles and subtiles per tile used to discretize the dielectric boundary (e.g., 364 × 100 stands
for 364 tiles, 100 subtiles for each tile).

of each element (subtiles) were changed to investigate how
these parameters affect the accuracy of both methods. In the
following figures, each set of data is identified in the captions
by the kind of tiles (flat or curved), the BEM implementation
(ICC or QUAL), and the number of tiles and subtiles per
tile used to discretize the dielectric boundary (e.g., 364 × 100
means that we used 364 tiles, subdivided into 100 subtiles each
for integration).

A. Dielectric sphere with flat tiles

Our comparison starts with the problem studied by Boda
et al. [67] and Bardhan et al. [71] [Fig. 1(a)]. A spherical
dielectric region (ε1) of 5-Å radius is embedded in a different
dielectric medium (ε2) and contains an elementary point charge
4 Å away from the center. For the flat-element calculations,
the spherical boundary is approximated as a number of flat
triangular tiles using spherical coordinates, and then each tile is
subdivided into a number of subtiles (16, 36, 64, 100, 144, and
196 in our comparison). Figure 2 shows the reaction potential
profiles along the sphere diameter passing through the source

charge, as well as the relative error compared to the analytic
solution; we used analytic results computed from [61], but the
solution itself is derived in multiple places, e.g., Refs. [94] and
[95]. Results for different numbers of tiles used to discretize
the dielectric boundary are shown; the plotted results employed
100 subtiles per tile, and results for other numbers of subtiles
were not meaningfully different (data not shown).

For the high-dielectric sphere (ε1 = 80) embedded in a
low-dielectric medium (ε2 = 2) [Figs. 2(a) and 2(b)], QUAL
is noticeably more accurate than ICC for any given number
of tiles; in fact, QUAL provides results that are essentially
indistinguishable from the analytical result. Figure 2(a) shows
that for a high-dielectric sphere with flat tiles, ICC is unable
to give satisfactory results even for a large number of tiles.
The relative error in reaction potential [Fig. 2(b)] is more
than 40% for 1456 tiles and approximately 60% for 384
tiles. For QUAL, however, the relative error in the reaction
potential is approximately 3% for the small number of tiles
and well under 1% for the large number of tiles. The relative
error for QUAL shows a maximum at 5 Å, i.e., at the
dielectric boundary, where the accurate evaluation of the
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(a) (b)

FIG. 3. (Color online) Sphere test cases, flat tiles. Gauss’s Law consistency check (a) for the high-dielectric sphere and (b) for the
low-dielectric sphere. Graphs show the total induced charge on the boundary, expressed in elementary charge units (htot/|e|), as a function of
the number of tiles used to discretize the dielectric boundary. The number of subtiles per tile is varied.

potential becomes computationally more difficult. Even with
the increase in relative error there, however, QUAL is still
much more accurate than ICC. Our results correspond very
closely to those obtained by Bardhan et al. [71], which helps
to validate the present implementation. For the low-dielectric
sphere (ε1 = 2) in a high-dielectric medium (ε2 = 80), the
difference between the two methods is much smaller [Figs. 2(c)
and 2(d)]. QUAL still works slightly better almost everywhere,
except for the error peak at 5 Å, but both methods provide
accuracy to a fraction of kBT even for a small number of tiles.

These results agree with other publications demonstrating
that a charge in a high-dielectric region is more challenging
to compute accurately than a charge in a low-dielectric one
[74,80]. Greengard and Lee presented a detailed analysis
and discussion, showing that discretization errors have an
increasingly large effect on accuracy as the dielectric constant
for the charge-containing region increases [80]. Intuitively, it
is impossible to have a charge residing in the interior of a
conductor rather than on its surface; increasing the dielectric
constant in this region makes the problem “closer” to the
unphysical limit and is, thus, harder to solve accurately. More
precisely, the ICC equation is singular for a conductor [74,80],
and Bardhan et al. showed that both ICC and QUAL matrices
are increasingly ill conditioned as the dielectric constant
increases [74].

From Gauss’s identity and sum rule, we must have htot/e =
1 (e is the fundamental charge), the total charge inside the
sphere. Figure 3 shows the total induced charge computed
with the two methods as a function of the number of flat
triangular tiles N used to discretize the sphere surface for the
high-dielectric sphere [Fig. 3(a)] and the low-dielectric sphere
[Fig. 3(b)]. Each curve represents a different configuration
in terms of number of subtiles (16, 100, and 196) used to
integrate over each tile. The total charge computed numerically
tends to approach the analytical solution as the number of tiles
increases. In both cases QUAL features a high consistency
even for a low number of tiles. ICC is unable to satisfy
Gauss’s Law accurately for the high-dielectric sphere since
the total induced charge on the boundary is limited to ∼70%

of the analytic value. This problem is reduced significantly
for the low-dielectric sphere. It is worth noting that, for a
given number of tiles, only QUAL is sensitive to the number
of subtiles. For QUAL, the dominant error is in the actual
panel integration (over the destination panel) rather than the
one-point quadrature; in contrast, the dominant error in ICC is
the one-point quadrature [71].

B. Dielectric sphere with curved tiles

We now consider boundaries discretized using curved
tiles. For the sphere problems, these tiles were generated by
dividing the spherical angles θ and φ uniformly. An analytic
description of the curvature of the dielectric boundary can
greatly improve the accuracy of the BEM solutions because
tile curvature determines a self-induced contribution that is
crucial for the computation of the induced charges. Figure 4
shows the results for the reaction potential and the relative
error in reaction potential with respect to the analytic solution
along the sphere diameter passing through the source charge
and should be compared with the flat-panel results in Fig. 2.
Results for different numbers of tiles used to discretize the
dielectric boundary are shown. Again, each curved tile is
subdivided into 100 curved subtiles, and similar results are
obtained using different numbers of subtiles. In this case, for
both high-dielectric [Fig. 4(a)] and low-dielectric [Fig. 4(c)]
spheres, the ICC and QUAL methods give essentially the
same results, with a maximum deviation from analytic results
limited to 0.8 kBT . One can observe the same decrease
in relative error as the number of tiles increases. In fact,
ICC and QUAL produce almost the same relative errors for
both high-permittivity [Fig. 4(b)] and low-permittivity spheres
[Fig. 4(d)]. ICC produces marginally smaller errors only for
the high-permittivity sphere and large number of tiles.

Figure 5 plots the Gauss’s Law consistency check for the
high-permittivity [Fig. 5(a)] and low-permittivity [Fig. 5(b)]
sphere cases. The total charge induced on the boundary is
plotted as a function of the number of tiles and the results are
grouped by the number of subtiles used to divide each tile.
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FIG. 4. (Color online) Sphere test cases with curved tiles. Reaction potential and its relative error along the sphere diameter that contains
the source charge (a, b) for the high-dielectric sphere and (c, d) for the low-dielectric sphere. Results for both ICC and QUAL were obtained
using different numbers of tiles. The sphere goes from z = −5 Å to z = 5 Å. The source charge is located at z = 4 Å.

As expected, in both cases, an increase in the number of tiles
produces better estimates of the induced charge. Moreover,

an increase in the number of subtiles per tile helps to satisfy
Gauss’s identity and sum rule. Again, the low-permittivity

FIG. 5. (Color online) Sphere test cases with curved tiles. Gauss’s Law consistency check (a) for the high-dielectric sphere and (b) for the
low-dielectric sphere. Graphs show htot as a function of the number of tiles used to discretize the dielectric boundary. The number of subtiles
per tile is indicated for each curve.
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FIG. 6. (Color online) Ion-channel test case for trajectory T1. Reaction potential and htot as a function of the position of a cation that moves
along the channel axis (T1). (a, b) Flat and (c, d) curved tiles are used. Results for both ICC and QUAL were obtained using different numbers
of tiles and subtiles.

sphere lends itself to improved accuracy, with a minimum
error of ∼2.5 × 10−3 with respect to ∼1 × 10−2 for the
high-permittivity sphere case. It is worth noting the different
behavior of the two graphs: while in the high-dielectric sphere
case the total induced charge underestimates the enclosed
charge, in the low-permittivity sphere case both methods
overestimate the value of the total induced charge.

C. Model of an ion channel

In this section we compare the ICC and QUAL imple-
mentations using a simple ion-channel model in order to
investigate which method is best for studying ion permeation
through membrane pores. The ion-channel model is a solid
obtained by rotating the shape in Fig. 1(b) around its rotational
symmetry axis. The resulting three-dimensional (3D) channel
is depicted in Fig. 1(c). A 20-Å-thick membrane slab (εM = 2)
separates two aqueous baths (εW = 80). A pore with a 4-Å
radius connects the two baths. No charges are inserted in the
membrane or in the baths and no applied external electric fields
are present the system.

We investigate the accuracy of ICC and QUAL as a cation
moves following three different trajectories: (a) along the

channel axis [T1 in Fig. 1(b)]; (b) 3 Å off the channel axis
[T2 in Figs. 1(b)]; and (c) in the radial direction, starting from
the channel axis at the center of the pore [T3 in Fig. 1(b)].
For each trajectory, we studied the reaction potential felt by
the ion and the total induced charge on the dielectric boundary
using both flat and curved tiles. Plots were obtained moving
the ion in steps of 0.5 Å, solving Poisson’s equation with
ICC and QUAL, and evaluating the reaction potential at the
ion position and the total induced charge on the boundary.
The matrix A never changes throughout this process, since
the geometry of the boundary is fixed. Thus, in BD or in
MC simulations, we can compute A and its factorization as
A = LU just once, at the beginning of the computation [67].
For any different charge configuration (i.e., as the ion changes
its position), we only compute a new right-hand-side b and then
solve the linear system for the new h. The ion, embedded in the
high-dielectric water, induces a charge of the same sign on the
water-membrane dielectric boundary. The reaction potential
increases as the ion approaches the boundary. When the ion
crosses the channel along its axis (trajectory T1), the reaction
potential felt by the ion increases, reaching its maximum at
the channel center [31,96,97].
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FIG. 7. (Color online) Ion-channel test case for trajectory T2. Reaction potential and htot as a function of the position of a cation that moves
3 Å off the channel axis (T2). (a, b) Flat and (c, d) curved tiles. Results for both ICC and QUAL were obtained using different numbers of tiles
and subtiles.

Figure 6 shows results for the reaction potential and sum
rule as a cation moves along T1 computed with ICC and
QUAL with flat and curved tiles. In this and in the following
comparisons, the number of tiles and subtiles have been varied
to investigate how finer discretizations can enhance accuracy.
For each plot we give the results for a “coarse” discretization
(2016 tiles and 100 subtiles per tile) and a “fine” discretization
(11 280 tiles and 256 subtiles per tile).

As expected, using flat tiles, ICC exhibits a stronger
dependency on the number of discretization elements than
does QUAL [Fig. 6(a), including inset]. Unlike the sphere
test cases, it is not possible to obtain an analytical solution
of this problem, even if the shape of the channel is very
simple. Because QUAL exhibited a higher accuracy in the
sphere test cases, and also because a refinement of the
boundary discretization moves the ICC results toward the
QUAL solution, we expect that the “reference solution” of
the problem is very close to the “fine” QUAL results. It is
worth noting that ICC is quite far from the QUAL curves, even
when using a large number of tiles.

For the sum rule, the total charge induced on the boundary
must equal the total charge enclosed by the boundary, which

is 0 for our ion-channel model. Figure 6(b) shows the total
induced charge as a function of the position of the ion.
All implementations feature a high accuracy, limiting the
total induced charge to 5 × 10−3 elementary charges. QUAL
shows a small dependence on the number of discretization
elements. Surprisingly, ICC produces slightly smaller errors in
the consistency check as the ion approaches the channel center,
even though the ICC calculation accuracy is poorer [Fig. 6(a)].
This result is unexpected because the ICC method exhibited
larger sum-rule violations for the sphere examples. More
detailed analysis of this discrepancy is needed, but two recent
studies suggest ways to eliminate this inaccuracy. Greengard
and Lee proposed a modified ICC which improves the accuracy
by explicitly enforcing the sum rule [80]. Steinbach et al.
indicate that eliminating these flat-panel BEM errors requires
alternative integral-equation formulations [98]. In that work,
the authors use the magnetostatic equivalent of the electrostatic
problem studied here and show that flat-tile BEM for the ICC
approach gives inaccurate results on the boundary, even when
one uses a full Galerkin discretization. As discussed in Sec. II,
ICC and QUAL only approximate Galerkin and, thus, cannot
be expected to attain even the limited accuracy for surface
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FIG. 8. (Color online) Ion-channel test case for trajectory T3. Reaction potential and htot as a function of the position of a cation that moves
radially from the channel axis at the center of the channel (T3). (a, b) Flat and (c, d) curved tiles. Results for both ICC and QUAL were obtained
using different numbers of tiles and subtiles.

variables observed there. We intend to test their formulations
in future work.

Nevertheless, Fig. 6(b) does serve as a clear example that
checking discretization error using the Gauss’s Law sum rule is
inadequate as the ultimate check for the accuracy of a Poisson
solver, because an induced charge h that satisfies Gauss’s Law
does not necessarily give the correct solution to Poisson’s
equation for the given fixed charge distribution. A useful
interpretation of the sum rule is that it verifies the “monopole.’.
Clearly, the fact that an induced-charge distribution satisfies
this constraint does not mean that it reproduces all other
multipoles. When curved tiles are used to simulate this problem
[Fig. 6(c)], ICC and QUAL are basically equivalent as found
earlier, producing indistinguishable results for both low and
high mesh quality in terms of both reaction potential [Fig. 6(c)]
and total induced charge [Fig. 6(d)].

When the ion moves along trajectory T2, 3 Å off the channel
axis, it is very close to the dielectric boundary. This means
that the computation of the electrostatic forces becomes more
critical since polarization charges become larger. In this more
demanding test case, using flat tiles [Figs. 7(a) and 7(b)],

a coarse discretization of the boundary leads to a loss of
accuracy for both ICC and QUAL. Again, QUAL features
a smaller dependence on the number of tiles and ICC still
underestimates the reference calculation (i.e., QUAL with a
large number of tiles). In this case, as well as for trajectory
T1, the total induced charge on the boundary is limited to
5 × 10−3 elementary charges for any configuration. The use
of curved tiles [Figs. 7(c) and 7(d)] helps both ICC and QUAL
to preserve the accuracy of the solution. The inset in Fig. 7(c)
shows how the two methods provide the same results for the
same number of tiles. It is important to note that the results for
11 280 flat and curved panels are still different even for QUAL.
Since curved panels include curvature better, this shows that
curved tiles give more accurate results even for QUAL.

The final comparison is for trajectory T3, in which the ion
moves in the radial direction from the channel axis at the center
of the channel. Along this path, the ion feels an increasing
reaction potential that repels the ion away from the boundary
[96]. Figures 8(a) and 8(b) show the reaction potential and the
total induced charge on the dielectric boundary as functions
of the position of the ion along T3 when flat tiles are adopted.
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Both ICC and QUAL feature a clear dependence on the
quality of the discretization for distances from the channel
axis larger than 2.75 Å. For a given mesh quality, the trend of
the plots of ICC and QUAL is functionally indistinguishable,
but as in the previous comparisons, ICC never approaches
QUAL results, even using a large number of flat discretization
elements. Again, the discretization error in Gauss’s Law sum
rule is smaller for the ICC method than for QUAL, though
the magnitude is small, approximately 5 × 10−3 elementary
charges.

Finally, we compare using curved tiles to evaluate the
electrostatics along T3 [Figs. 8(c) and 8(d)]. Again, for
curved tiles ICC and QUAL are equivalent, giving indis-
tinguishable results for the same mesh configuration. Note
that the dependence on the number of curved discretization
elements is always negligible, with the exception for distances
from the channel axis larger than 3.25 Å. In other words,
a coarse-grained discretization of the dielectric boundary
can provide highly accurate solutions in the whole channel
except for less than 1 Å from the boundary. BD and MC
simulations often treat ions as hard spheres (their Pauling
radii is typically ∼1 Å [33,67,68,99,100] that cannot cross
the dielectric boundaries, so an ion cannot be within ∼1 Å of
the boundary. This dependence is slightly larger, for amplitude
and distance, for flat tiles. This means that, using curved tiles,
both ICC and QUAL can be adopted to accurately evaluate
electrostatics inside an ion channel, even with a surprisingly
coarse discretization of the boundary.

IV. CONCLUSION

This extensive series of comparisons shows that QUAL is
able to provide accurate results using both flat and curved
tiles. In contrast, the ICC collocation method produces high-
accuracy results only if curved tiles are adopted, in accordance
with the hypothesis advanced in earlier work [73]. In fact,

for curved-tile simulations the ICC and QUAL are essentially
equivalent in terms of accuracy and speed. Thus, when the
dielectric boundary can be described using curved surface
elements, both methods can be adopted for particle-based
applications.

However, if the dielectric boundary’s complexity makes
curved tiles impractical and flat tiles must be used, QUAL is
significantly more accurate than collocation. Our findings are
consistent with earlier results, which indicated that QUAL
is usually an order of magnitude more accurate almost
everywhere [Fig. 2(d)]. We wish to stress this point and
caution the reader that, even though absolute errors appear
small [Fig. 2(c)], flat-tile ICC simulations of proteins or other
large problems containing hundreds or thousands of charges
can have extremely large errors (cf. Fig. 4 of Ref. [83]).
Furthermore, the accuracy of the ICC method improves much
more slowly than does QUAL when one increases the number
of tiles (i.e., ICC converges more slowly). The discretizations
of 364 and 1456 elements correspond to vertex densities
of approximately 1 and 3 vertices per Å, which are 5–10
times lower than the density required to converge a protein
electrostatic free energy. Memory becomes a limiting factor
very quickly for the dense BEM employed here, and thus
accuracy considerations argue for the use of QUAL for all
flat-tile calculations. Even if memory is not a concern, we
note that for a given level of accuracy, flat-tile QUAL will
be faster than flat-tile ICC, because fewer tiles are needed.
Finally, we note that modeling protein-solvent boundaries
using atomistic models leads to complicated dielectric in-
terfaces and curved-tile surface representations are difficult
to obtain, e.g., Refs. [75–77,101]. However, as argued by
Steinbach et al. [98], important properties of the integral
operators depend quite sensitively on the smoothness of the
actual surface representation; thus, when flat panels must be
used, alternative integral equations may be valuable for fast
and accurate simulations.

[1] W. R. Fawcett, Liquids, Solutions, and Interfaces: From Clas-
sical Macroscopic Descriptions to Modern Microscopic Details
(Oxford University Press, New York, 2004).

[2] K. J. Laidler and J. H. Meiser, Physical Chemistry, Vol. 1.
(Houghton Mifflin, Boston, 1999).

[3] J. Vincze, M. Valisko, and D. Boda, J. Chem. Phys. 133, 154507
(2010).

[4] J. Barker and D. Henderson, Rev. Mod. Phys. 48, 587
(1976).

[5] C. A. Barlow Jr. and J. R. Macdonald, Theory of Discreteness
of Charge Effects in the Electrolyte Compact Double Layer
(Interscience, New York, (1967), pp. 1–199.

[6] D. Gillespie, W. Nonner, and R. S. Eisenberg, J. Phys.: Condens.
Matter 14, 12129 (2002).

[7] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, San Diego, CA, 2006).

[8] B. Roux and T. Simonson, Biophys. Chem. 78, 1 (1999).
[9] M. Z. Bazant, K. Thornton, and A. Ajdari, Phys. Rev. E 70,

021506, (2004).
[10] Y. Hyon, J. E. Fonseca, B. Eisenberg, and C. Liu (in press, 2012).
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