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Abstract. A hydrodynamic model of open vesicles in solution is presented to study the en-
largement and shrinkage of a pore in biological lipid membrane. The vesicle is modeled by diffusive
interfaces. Transport equations permitting consistent treatment of the pore and pore rim are intro-
duced. Dynamic simulations implemented by the finite difference method show the evolution of a
pore in stretched vesicles. Simulation results include direct visualization of the membrane shape,
water motion, and dissipation of energy. Comparison is made with data obtained from microscopy
experiments.
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1. Introduction. Biological membranes are composed of lipid molecules. Due
to their hydrophobic and hydrophilic structure, the lipid molecules form two layers
called the lipid bilayer. The bilayer separates regions of water and allows the mem-
brane to act as a barrier. A vesicle is a small, fluid compartment formed by the bilayer.
In biological processes such as exocytosis, the membrane of two vesicles merge to form
a single bilayer. Pore formation is a similar topological change occurring in a single
vesicle. The continuous vesicle is stretched so far that a pore forms in the membrane.
The inner and outer water regions become connected. The vesicle becomes open.

The opening and closing of a pore plays an important role in biological systems
because the pore allows movement between otherwise isolated compartments. In
the past two decades, experimentalists have learned to create and measure pores by
light microscopy. A well established mathematical model of this phenomenon was
developed in [1]. The theory in [1] is widely used ([11, 13, 18]) to understand the
evolution of a pore. For example, it has been adapted by [19] to the measure edge
tension as a function of lipid composition. The theory of [1] imposes a geometry. The
vesicle is spherical and the pore is round. A rate equation for the pore is coupled
with a continuity equation for the water. Studying the simplified geometry has the
advantage that the change in volume and radius of the pore are explicitly formulated
in terms of rate equations. Parameters for the system of ordinary differential equations
arising from the theory can be found that yield fits to the data.

In our model, we start with a pore and approximate the classical Helfrich energy
([10]) of an open vesicle using a diffusive interface, i.e. phase field, approximation.
The novelty is that the shape of the vesicle is a variable and we calculate the line
and surface forces from variational derivatives of the energy function. As a corollary,
the exchange of energy from the membrane to the fluid, as well as the motion of
the vesicle are self consistent. We emphasize that models which assume a particular
shape can have quite different properties than reality. Imposing a shape is an artificial
constraint and is equivalent to injecting energy into an otherwise isolated system.
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2 Open Vesicles in Fluids

In [26], Wang and Du developed a phase field model for multicomponent lipid
membranes. Building on earlier work with Chun Liu [3], they studied the equilibrium
shapes of vesicles with spatially varying membrane properties. Their numerical ex-
periments are in strong qualitative agreement with known multicomponent membrane
shapes. Their approximation is justified by asymptotic expansions. We have adapted
the phase field functionals they used [26] to model a single pore in a vesicle.

The hydrodynamics of open vesicles present significant modeling challenges. Be-
cause an open vesicle exerts both line and surface forces, the model must capture
hydrodynamic forces supported on one and two dimensional subsets. Because the
pore is an opening in the membrane, the model must track a mathematical surface
with boundary in a kinematically consistent way.

The diffusive interface method treats the membrane region as a thin, bulk ma-
terial. The membrane, along with the aqueous solution, are viewed as a single fluid
with a smoothly varying material property. Transporting the diffusive interface by
the fluid changes the membrane’s energy. In return, the diffusive interface imparts a
force on the ambient fluid. The equations are discretized on a fixed computational
domain. The boundary is usually the fluid far from the membrane. Since the diffusive
interface is defined by a bulk field, one avoids tracking the membrane explicitly and
simple boundary conditions may be employed.

We represent an open vesicle using two labeling functions. We define a function
φ(x,t) by labeling the interior aqueous region, a diffuse interface containing the mem-
brane, and outer aqueous region −1,0, and 1. Continuing, we define φ̄(x,t) by labeling
the part of the diffuse interface corresponding to water and the part corresponding
to lipid by −1 and 1 respectively. φ(x,t)=0 and φ̄(x,t)=1 implies x is a lipid and
otherwise x is a water. The role of the labeling functions is illustrated in Figure 3.1.

The convergence of phase field models of bending energy was proved in [5] using
asymptotic expansions. For the time dependent problem, [4] showed that a related
hydrodynamic phase field model of a vesicle with bending energy was well posed.
The theoretical justification for the convergence of phase field models to the classical
continuum mechanical models of vesicle membranes has a long history beginning with
the phase transition theory [2, 8, 15] leading up to today’s higher order theories [16,
20]. There are also several other successful methods for modeling vesicle membranes in
solution. In [14, 21, 23], immersed boundary and boundary integral methods capable
of following large deformations of complex membranes over long time scales were
proposed. To our knowledge, there are no three dimensional continuum simulations
which describe open vesicles in solution.

The details of the diffusive interface energy are given in Section 2. The equations
of motion are defined in Section 3. We used modified transport equations for φ(x,t)
and φ̄(x,t) that properly reflect the kinematics of the membrane and pore. These
important details, as well as the derivation of the force, are discussed in Section 3. In
Section 3.1, we use the scaling relationships of the energy to derive the nondimensional
coefficients. Section 4 gives the simulation results visualizing the membrane shape,
water motion, and dissipation of energy, as well as comparison with experimental
results. Details of the discretization method are also found there.

Finally, we remark that biological membranes and vesicles are complicated ma-
terials involving several components and multiscale interactions. The problem we
are considering here is highly simplified membrane model system. However, even the
simplistic diffusive interface representation is able to capture the realistic dynamics.
In order to be consistent with prior use of the terminology, we will refer to the fluid



Ryham, Cohen, and Eisenberg 3

compartment formed by the simple bilayer structure as a vesicle.

2. Diffusive Interface Functional. In this section, we introduce functionals
used to approximate the classical continuum lipid membrane energy. Define the cutoff
functions

α(p)=
1

2
(tanh(ξp)+1), ᾱ(p)= sech2(ξp), ξ> 0.

The role of these cut-off functions will be explained below. Define the functionals
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Here D is the three dimensional computational domain. The function F (p)= 1

4
(p2−

1)2 is a double welled potential and ε is a small, positive parameter related to the
thickness of the diffuse interface. The functional W approximates the mean curvature
squared energy of the membrane surface, L approximates the circumference of the
pore, and A approximates the membrane surface area. Define

Ep= bW +jL+s
(A−Ar)2

2Ar

+wA. (2.4)

Ep approximates the Helfrich energy of the vesicle. The first term in (2.4) is the
bending energy of the vesicle. It is the energetic contribution coming from the splay of
the lipid molecules [10]. The second term is the edge energy1. When a pore is formed,
lipid molecules reorient so that the hydrophilic head groups shield the membrane
interior from water. The edge energy is proportional to pore circumference. The third
term is a Hookean relationship accounting for the mechanical energy stored in excess
area. It can also be used in a penalty formulation to enforce the constraint A=Ar.
Here, Ar is the area of the unstretched membrane. The membrane is inextensible
when mechanical modulus s is large. The last term is surface energy. The coefficients
b,j and w are the bending modulus, edge tension, and surface tension respectively.

In (2.1) and (2.2), the integrands are multiplied by α(φ̄) so that only the compo-
nent of the interface corresponding to membrane contributes to the total energy. In
(2.3), the factors in the integrand approximate the area density of the two interfacial
regions defined by φ and φ̄. The rim of the pore is located along the intersection of
these regions. The product of the respective area densities in (2.3) yields a satisfactory
approximation of the circumference of the pore.

To stabilize the method, we use the energy

E=Ep+
m1

2
P 2+m2W̄ , (2.5)

where
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3

4
√
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D

(∇φ ·∇φ̄)2dx (2.6)

1we distinguish between the terms line energy and edge energy. The former refers to the energy
of the boundary of a domain within a multicomponent membrane.
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are auxiliary functionals. Here m1 is a penalty parameter for the constraint P =0.
This constraint leads to orthogonal interfaces. The prefactor m2 is a small, stabilizing
parameter. In the sequel, Eφ and Eφ̄ denote the Euler-Lagrange derivative ([7]) of E
with respect to φ and φ̄, respectively.

The following identities will be used to derive b,j,s, and w from known, physical
constants. Let D=R3 and for λ> 0, define φλ and φ̄λ by a dilation of space and
define ελ=λε. Making the change of variables yields

Aλ=λ
2A, Lλ=λL, Wλ=W. (2.7)

Here, the subscript λ is used to denote the functionals’ dependence on φλ, φ̄λ, and
ελ.

3. Equations of Motion. To study the time course of the pore, we must eval-
uate the velocity of the membrane and aqueous solution. The velocity is determined
by the equations of motion:

ut+u ·∇u+∇p−η∆u= f, (3.1)

divu=0, (3.2)

φt+α(φ̄)u ·∇φ=−γEφ, (3.3)

φ̄t+ ᾱ(φ)u ·∇φ̄=−γ̄Eφ̄, x∈D, t> 0. (3.4)

Here, u is the velocity of a water molecule in the water region and the velocity of
a lipid molecule in the membrane. p is the pressure. The force exerted by diffusive
interface is given by the equation

f =α(φ̄)Eφ∇φ+ ᾱ(φ)Eφ̄∇φ̄. (3.5)

By equation (3.2), we are assuming that lipid and water are incompressible. We are
assuming the vesicle and surrounding water have constant density. We are also as-
suming that the internal friction of the fluid, whether water, lipid, or at the water
lipid interface, is Newtonian with a constant viscosity η. The viscosity of lipid mem-
brane is typically greater than that of the solution. However, the membrane is very
thin (a few nanometers) when compared to the overall geometry of the vesicle. Thus,
the viscous dissipation in the membrane is much smaller than in the bulk aqueous
medium. As the densities of water and lipid are comparable, we assume a constant
density. Equations 3.3 and 3.4 are stabilized transport equations. The numbers γ and
γ̄ are small, positive stabilizing constants.

Equations 3.1 and 3.2 are complemented by the initial conditions u(x,0)=u0(x),
divu0=0, φ(x,0)=φ0(x), and φ̄(x,0)= φ̄0(x). On the boundary, we assume a no-slip
condition for the velocity and natural boundary conditions for the labeling functions:

u(x,t)=0, φ(x,t)= φ̄(x,t)=1,
∂φ

∂n
(x,t)=

∂φ̄

∂n
(x,t)=0, x∈∂D,t> 0, (3.6)

where ∂
∂n

is the outward normal derivative on ∂D.
Cut-off functions are used to modulate the convective term in the transport equa-

tions. In equation 3.3, the convective term is multiplied by the cut-off function α(φ̄).
As a result, φ is convected only where φ̄ takes positive values. In particular, the
region of the diffusive interface inside the pore is not affected by the efflux of water.
In equation 3.4, the label φ̄ is convected where φ takes values close to zero, that is,
along the rim of the pore.
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Fig. 3.1. Left: cross sections of a vesicle with a hole as a function of time. Right: illustration
of the pore defined by a pair of labeling functions (φ(x), φ̄(x)). The diffusive interface {φ≈0} is
drawn by a solid line and the diffusive interface {φ̄≈0} is drawn by a dashed line.

Equation 3.5 is derived using the principle of virtual work. The derivation is
a modification of techniques developed in [6]. The modification deals mainly with
defining a suitable variation of the domain based on the kinematic conditions described
in the previous paragraph.

3.1. Nondimensional coefficients. We place a vesicle within a cylindrical
aqueous medium of radius λµm. We observe the vesicle over a characteristic time τs.
The constants b,s,j and w are defined by

b=106
b0τ2

ρ0λ5
, j=109

j0τ2

ρ0λ4
, s=1012

s0τ2

ρ0λ3
, w=1012

w0τ2

ρ0λ3
. (3.7)

Here b0pNnm is the experimentally measured bending modulus, s0pNnm−1 the
stretching modulus, j0pN the edge tension, w0pNnm−1 the surface tension, and
ρ0gcm−3 the density of the solution. A realistic bending modulus is 80pNnm and
realistic surface tension is 1pNnm−1. As an illustration, a giant vesicle in experiment
can typically be tens of microns in diameter and changes can appreciated over a time
course seconds long. This scale yields a b on the order of 0.1 and w on the order of 107.
The difference in magnitude of these constants suggests that bending, compared to
surface tension, is irrelevant for the dynamics of large vesicles. To contrast, biological
vesicles have diameters in the tens to hundreds of nanometers. Only in this regime
and smaller are the constants b and w then comparable.

Let 〈u,p,φ,φ̄〉 be a smooth solution of equations (3.1-3.6). Form the dot product
equation (3.1) with u and integrate over D. Multiply (3.3) by Eφ and (3.4) by Eφ̄ and
integrate over D. Integrating by parts using (3.2) and (3.6) then gives the energy law

d

dt

(
∫

D

1

2
|u|2dx+E

)

+

∫

D

η|∇u|2+γ|Eφ|2+ γ̄|Eφ̄|2dx=0. (3.8)

The details of a related calculation may be found in [4, 5]. Using (2.7), make the
change of variables t̂= τts, x̂=λxµm, and ε̂=λεµm. Matching the coefficients in (3.8)
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with the dimensional coefficients b0,s0,j0 and w0 then yields (3.7). Readily apparent
from this calculation is η=109η0τ(ρ0λ2)−1 where η0cP is the dynamic viscosity of the
solution.

4. Simulation Results.

4.1. Discretization. To simulate the vesicle through equations (3.1-3.6), a
spatial discretization by the finite difference method was developed. We simplified
the problem to two dimensions by assuming a cylindrical geometry. Stretched vesicles
with pores, as can be seen in the experimental images of [11], are axially symmetric.
We assumed the vesicle was located in the rectangle [0,1]× [0,L]. A fully implicit,
backward Euler scheme was used in the time integration. For simplicity, the convective
term was dropped from the Navier-Stokes equation. This assumption was justified by
the fact the Reynolds number of flow in these biological systems is on the order of
10−2.

A Picard iteration between the Stokes system and the parabolic sub-systems
was used to solve for the velocity-pressure pair and the diffusive interface transport
equations simultaneously. The Stokes system was solved using the preconditioned
conjugate gradient routine found in [9], Algorithm 22.7.3. A mixed Picard-Newton’s
method was used to deal with the gradients of the discrete functional and the con-
vective term. The linear systems were solved by SSOR preconditioned conjugate gra-
dients. The stabilizing coefficients εγ and εγ̄ were small when compared to (∆tk)−1.
The condition number of the Jacobian resulting from the discretization of stabilized
transport equations was consequently not large. The algorithm was implemented in
C.

For the spatial discretization, a uniform 128 by 256 grid was used. The diffuse
interface thickness ε was chosen to be three times the mesh spacing ∆x. This ensured
that the interface was nicely resolved but remained thin when compared to the overall
geometry of the vesicle. For the time integration, a uniform time step ∆tk =10−4

was used. The stability of the time integration, large fluid viscosity, stabilization
parameters, and small step size ensured the monotonicity of energy. At each time the
total energy was seen to be nonincreasing (Figure 4.1). The radius of the pore was
calculated by averaging the r-coordinate of the overlap of the two diffusive interfaces.
In the numerical experiments, the constraint and stability constants were γ= γ̄=10−1,
m1=103, and m2=0.1 respectively.
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Fig. 4.1. Energy as a function of time. Left: in the rapid opening stage, mechanical energy
(blue) is converted into kinetic energy (green) and edge energy (red). Bending energy (black) is
relatively constant. The kinetic energy increases briefly in rapid closing stage. Right: total energy
is nonincreasing.

Numerical tests were performed to check the sensitivity of the simulation with
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respect to the grid size and with respect to the auxiliary parameters. In the first test,
the simulation variables φh, φ̄h, and uh defined a fine, 128 by 256 grid were compared
against the simulation variables φH , φ̄H , and uH defined on a course, 64 by 128 grid.
In both cases the computational domain was (0,1)×(0,2) and all physical parameters
and auxiliary parameters were held constant. In order to keep the diffusive interface
thickness constant, ε was set to 6∆x on the fine grid and to 3∆x on the coarse grid. In
Table 4.1, we see that the fine and course grid solutions differ by roughly 10% in the
L2-norm throughout the range of the simulation. The labeling functions differ in the
L∞-norm by roughly 20%, implying that the position of the diffusive interface differs
by only a few grid points. In particular, the position of the vesicle and velocity are
stable with respect to the grid size. To show that the dynamic is governed primarily
by the diffusive interface energy, we also explored the dependence on the auxiliary
constants. We compared the simulation when γ= γ̄=10−2, m1=103, and m2=0.1,
the values used in the numerical experiments, against the simulation with the altered
values γ= γ̄=2 ·10−2, m1=0.5 ·103, and m2=0.2. We have plotted the pore radius
as a function of time for two sets of values for γ, γ̄, m1, and m2 in Figure 4.2. The
solid line corresponds to the values used in the numerical experiment while the dashed
line corresponds to the altered values. We see that the overall dynamic is not greatly
effected by doubling and halving the auxiliary values.

t 0.75s 1.25s 2.0s 2.75s 3.5s
‖φh−φH‖L2 0.097 0.085 0.081 0.079 0.077
‖φ̄h− φ̄H‖L2 0.012 0.018 0.021 0.021 0.021
‖φh−φH‖L∞ 0.229 0.281 0.280 0.275 0.269
‖φ̄h− φ̄H‖L∞ 0.205 0.244 0.246 0.246 0.246

‖uh−uH‖2/‖uH‖L2 0.126 0.070 0.061 0.070 0.091

Table 4.1. Mesh independence.

The fluid was assumed initially at rest. The vesicle was initially a sphere with
radius half of the domain. A pore was introduced by defining a sphere one twentieth
the radius of the domain, centered at the pole of the vesicle. Our model does not
spontaneously form a pore. The opening and closing of the pore involves the geometry
of the lipid molecules at a length scale a few nanometers in diameter, much smaller
than considered by classical continuum mechanical models. The exact mechanism
governing the opening and closing of a pore is itself an interesting subject and is
beyond the scope of this study. See, for example, [25].

4.2. A Large Vesicle with Infoldings. In the experimental practice of
creating and visually recording a pore, a large vesicle tens of microns in diameter
is placed in solution. These vesicles are not taut, but have small undulations while
maintaining an overall spherical shape. A mechanical tension is introduced by the
photoactivation of fluorescently labeled lipids which in turn leads to an excess of area.
The two dimensional modulus typically associated with this unfolding is s0=0.045.
Furthermore, a solution with viscosity several times that of water is used to slow and
make the experiments easier.

In order to compare the diffusive interface model with the classical experimental
result [1], we chose a solution viscosity 30 times that of distilled water. The spatial
scale λ was chosen so the the initially spherical vesicle had a radius of 20µm and
the surrounding cylindrical fluid region a radius of 40µm and height 80µm. We used
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Fig. 4.2. Experimental and simulated pore radius as a function of time. Left: microscopy data
[1] for a vesicle of radius 20µm in solution with η0 =20cP. Right: the same vesicle simulated with
s0=0.045, w0=0, b0 =20, j0=2.5, τ =0.1, η0=30, and λ=40. Solid line: γ= γ̄=10−2, m1 =103,
and m2 =0.1. Dashed line: γ= γ̄=2 ·10−2, m1 =0.5 ·103, and m2 =0.2.

the realistic values b0=20 and j0=2.5 for the bending modulus and edge tension
respectively. For this experiment, unfolding is more consequential than surface tension
and so we set w0=0.

In experiments with vesicles of this size, the life time of the pore is seconds long.
Letting τ =0.1, the nondimensional coefficients in the equations were numerically
comparable and the simulation results yielded a realistic time course. In Figure 4.2
we see that the pore radius as function of time compares favorably with microscopy
data obtained from [1]. Figure 3.1 shows the cross section of the vesicle as well as the
opening and closing of the pore. The cross sections show that the overall shape of
the vesicle is spherical. At the length scale of large vesicles, the force due to mechan-
ical tension, a spatially constant multiple of the surface normal, is orders magnitude
larger than bending and edge tension. Thus, the increase in energy associated with a
deviation from a spherical shape is much larger than the change in energy associated
with the widening and closing of the pore. Note that in this experiment, the dif-
fusive interface represents the apparent location of the membrane. The undulations
occurring at a much smaller length scale are not resolved.

4.3. Comparison and Discussion. The simulation captures the experimen-
tally well known, three stage form of the pore radius as function of time. Preceding
the first stage, a mechanical tension is introduced by assuming the vesicle has an
excess area of four percent ([11]). A small pore is introduced. The presence of the
pore permits the vesicle to lose area. As seen in Figure 4.3, a rapid widening, stage
one, is induced by diffusive interface force pointing away from the pore. In Figure
4.3, fluid leaks from the interior of the vesicle. In Figures 4.2 and 4.1, one sees that
the maximum radius is reached and most of the energy dissipated in one tenth of the
life-time of the pore.

Stage two, the linear closing, follows. The area of vesicle has assumed the resting
value and length of the rim of the pore is the primary source of energy. As seen in
Figures 4.3, the force pointing inward to the pore generates a contractile motion of
the fluid. The rate of contraction is quite small when compared to stage one.

The pore dynamic concludes with the third, rapid closing stage. As the pore
becomes smaller, the curvature increases which in turn increases the radial force due
to edge tension, accelerating the pore closure. The water in the interior of the vesicle,
no longer affected by Laplace pressure, is almost completely static. The pore seals
due to diffusive effects of the interface. This occurs when the radius of the pore is
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Fig. 4.3. Top: diffusive interface forces. Initially, mechanical tension widens the pore. In the
transition from stage one to stage two, mechanical tension is relaxed. In the the closing stages, edge
tension closes the pore. For clarity, only one third of the arrows are plotted. Bottom: fluid velocity.
Initially the flow is concentrated in the pore but quickly develops around the pore. In the closing
stages, flow is more in plane with the pore.

comparable to the diffuse interface thickness.

4.4. A Small Osmotically Stretched Vesicle. The creation of a pore by
osmotic swelling is a process with considerable interest to biologists. Hemolysis, the
leak out of the contents of a red blood cell, has been studied and observed by clinicians
for centuries. Encouraged by the agreement of the simulation with experimental data
for large vesicles, we proceed to simulate a small, osmotically swollen vesicle.

Due to dimensional scaling, small vesicles can withstand the large pressure associ-
ated with osmotic gradients by increasing their area slightly. The stretching modulus
s0=60 associated with the excess area per lipid is much larger than the one due to
unfolding ([12]). The stretching tension plus the surface tension w0=1 for submicron
vesicles results in a significant Laplace pressure.

We simulated a vesicle with radius 50nm in a solution of distilled water. In order
to resolve the time course, we chose a time scale tenths of microseconds long by setting
τ =10−8. The pore radius as a function of time is plotted in Figure 4.4. Qualitatively,
the functional form of the graph is very similar to that of large vesicles. The pore
reaches a maximum radius that is a significant fraction of the overall vesicle size. The
linear closing stage is not as well defined as for large vesicles due to the nonzero surface
tension w (comparison not shown.) In Figure 4.4, we have also plotted the percent
outflow and sphericity of the vesicle as a function of time. The vesicle becomes slightly
elliptical in stage one and is spherical after the pore closes. The total outflow of fluid
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Fig. 4.4. Simulation results for an osmotically swollen vesicle of radius 50nm in solution η0=1,
with s0=60, w0=1, b0=20, j0=2.5, τ =10−8, and λ=0.1. Left: percent leak out of vesicle volume
(solid line) and sphericity (dashed line). Sphericity is defined as A/As−1, where As is the area of
the spherical zone with the identical volume and pore radius as the vesicle. Right: pore radius as a
function of time.

represents roughly 5% of the vesicle volume. In this case, the bilayer also assumes
a shape very close to a sphere. This shows that although there is a steady efflux of
water from the vesicle interior, the total outflow is small enough to not significantly
alter the shape while the vesicle sheds excess area. Since mechanical tension is large,
the energy dissipation mechanism dictates that the vesicle minimize surface area with
respect to its fluid volume, the change of which is limited by the low Reynolds outflow
though the pore.

5. Sharp Interface Limit Under suitable modeling assumptions, the energy
of the open vesicle E has the sharp interface limit

E0=

∫

Mt

(bH2+w)α0dS+s
(|Mt|α0

−Ar)2

2Ar

+j|Mt∩M̄t|+m2

∫

M̄t

H2dS. (5.1)

Here Mt and M̄t are smooth, open, orthogonal surfaces evolving with t and where
Mt∩M̄t represents the rim of the pore. When ξ is large, the function α0(x,t) is a
positive, step wise function taking values close to 1 in the exterior of M̄t and values
close to 0 in the interior of M̄t. By |Mt|α0

we denote that approximate area of M,
namely the surface integral of α0 over M. By |Mt∩M̄t| we denote the length of the
intersection. Here H is the mean curvature of Mt or M̄t and as before m2 is a small,
stabilizing parameter. Thus the diffusive interface model converges to the classical
Helfrich energy of a lipid bilayer with a hole plus auxiliary terms for the surfaces used
to label the position of the hole.

The modeling assumptions we make are

φ(x,t)=p(d(x,t)/ε)+εg1(x,t)+ε
2g2(x,t)+ . . . ,

φ̄(x,t)= p̄(d̄(x,t)/ε)+εḡ1(x,t)+ε
2ḡ2(x,t)+ . . . ,

where d(x,t) and d̄(x,t) are the signed distance function to smooth, closed, transverse
surfaces Mt and M̄t in D respectively. The surfaces Mt and M̄t are the boundary of
respective set of points were φ and φ̄ are positive in the limit ε=0. The functions p and
p̄ describe the profile of the labeling functions in this limit and g1,g2, ḡ1, and ḡ2 are
smooth functions independent of ε. We are assuming that E is bounded by a constant
independently of ε and the other modeling parameters. This assumption is reasonable
since the energy is known (by the dissipation relation (3.8)) to be nonincreasing and
initial data for the labeling functions may chosen for which this bound holds.
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In [5] and [6], a related problem was analyzed for a single diffusive interface
approximation of the Willmore–mean curvature squared–energy with surface area
and volume constraints. With the above assumptions, Theorems 2.1 and 2.2 of [5]
imply that that p(r)= p̄(r)= tanh(r/

√
2) and g1≡ ḡ1≡ 0. Summarizing the argument,

the energy E is expanded in powers of ε. Collecting the lowest order terms, the energy
remains bounded provided p and p̄ are solutions to the ordinary differential equation
p′′−p(p2−1). The boundary conditions (3.6) then imply that p and p̄ are profiles
given by the hyperbolic tangent function. The remaining terms in the expansion of
E involves the square norm of g1 and ḡ1. These terms are bounded independently
of ε provided g1 and ḡ1 are identically zero. By making only slight modifications to
account for the term α appearing in the integrand of W and A, we can apply Theorem
4.1 of [5] to recover the sharp interface limit for the surface integrals appearing in (5.1).

It remains to show that the diffusive interface approximation L converges to the
length of the rim of the pore |Mt∩M̄t|. The constraint functional P was introduced in
[26] to ensure that the diffusive interfaces are effectively orthogonal. We use expansion
and the boundedness of P to conclude that Mt and M̄t are orthogonal. Note that
gradient of the distance functions are a multiple of the unit normals n and n̄ ofMt and
M̄t respectively. Using the continuity of the functions ∇d and ∇d̄ in a neighborhood
of the curve Mt∩M̄t, the first term in the expansion of P in ε is bounded below by

cε−4

∫

Mt∩M̄t

(n · n̄)2dl

for some constant c independent of ε. Since this quantity is bounded independent of ε,
we infer that Mt and M̄t are orthogonal. Using Lemma 2.2 of [5], the remaining terms
in the expansion of P vanish with ε. Thus, the boundedness of P and the asymptotic
assumptions imply that limε→0P =0.

The orthogonality of sharp interface limits is now sufficient to imply that the
approximation L actually converges to the length of the rim of the pore. This is
achieved by first assuming that Mt∩M̄t is piecewise linear and passing to the limit
ε=0. The general case follows by approximation and the standard diagonal argument.
Consider the rectangular cylinder Q= {(x1,x2,x3) : 0<x3<l,−

√
ε<x1,x2<

√
ε}. As-

sume, without loss of generality, that Mt∩M̄t∩Q lies in the x3-axis and n and n̄ are
parallel with the coordinate directions. This assumption is possible since the inter-
faces are orthogonal. As ε approaches 0, the signed distance functions d and d̄ are
uniformly approximated by the coordinate functions x1 and x2. Using the identities

F (p)= (p2−1)2=(p′)2/2 and limε→0

∫

√
ε

−
√
ε
1

ε
q′(s/ε)2ds= 2

√
2

3
, we evaluate the limit

lim
ε→0

∫

Q

(

ε

2
|∇φ|2+

1

ε
F (φ)

)(

ε

2
|∇φ̄|2+

1

ε
F (φ̄)

)

dx=
8

9
l=

8

9
|Mt∩M̄t∩Q|.

To calculate that entire length, we cover Mt∩M̄t by a union of cylinders, noting that
the integrand vanishes exponentially on the exterior of the cover, and the contribution
from the overlap vanishes in the limit ε=0. This show that limε→0L= |Mt∩M̄t|. This
concludes the demonstration of the sharp interface limit (5.1).

6. Conclusion. The diffusive interface model captures the dynamic shape of
an open vesicle where the membrane and water is impelled by surface and line forces.
The numerical method is stable, encompasses a wide range of length and time scales
through scaling parameters, and is capable of producing realistic time courses of vesi-
cles and their flow fields below the experimentally observable limits. The simulation
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results for large vesicles are in good quantitive agreement with classical experiments.
The model converts large amounts of energy stored in mechanical stretching into fluid
motion, edge energy and heat. The simulations indicate that the overall shape of the
vesicle remains sphere-like throughout the time course.

The model was unable to produce a pore spontaneously. An initial, small pore was
assumed and sealing is an artifact of the diffusive interface representation. Future work
will study functionals for which spontaneous pore formation is an energy minimizing
path.
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