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We present a nonequilibrium reaction rate model of the ionic transition through an28

open ion channel, taking account of the interaction between an ion at the entrance of29

the channel and an ion at the binding site in a self-consistent way. The electrostatic30

potential is calculated by solution of the Poisson equation for a channel modeled as a31

cylindrical tube. The transition rate, and the binding site occupancy as a function of32

the left bulk concentration are compared to 1D Brownian dynamics simulations. The33

analysis is performed for a single binding site of high-affinity, with the exit rate influenced34

by barrier fluctuations at the channel exit. The results are compared with experimental35

data for the permeation of the Na+ ion through the Gramicidin A channel, with which36

they are shown to be in good agreement.37
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1. Introduction1

Ion channels are pathways down the centres of proteins embedded into the mem-2

branes of biological cells [1, 2], facilitating the diffusion of ions across the mem-3

branes. They are complicated devices [3], built of thousands of atoms, flexible, and4

filled with ions and water dipoles that coordinate their movements to allow ions5

to pass one by one across the membrane. To support life, channels have to be pre-6

cise often selecting between similar ions with an accuracy of 1:1000 [4], yet able to7

deliver millions of ions per second, i.e., almost at the rate of free diffusion. In recent8

years impressive progress has been achieved both in understanding the structure9

of ion channels [3] and in modeling their properties [5]. Yet the mechanism that10

enables channels to be highly selective while still passing millions of ions per second11

remains a tantalizing paradox.12

Channels displaying counter-intuitive behavior of this kind often have one singly13

occupied selectivity site [6] with a high affinity for a specific type of ion. The fact14

that a satisfactory explanation of the paradox has yet to be found, even in the15

most clearly characterized cases [7] of channel conduction, suggests that some basic16

physical phenomenon has been overlooked. The difficulties in modeling the system17

stem from the presence of the long-range Coulomb interaction and regions with18

low- and high-dielectric constants. The stochastic dynamics of ionic motion needs19

to be solved simultaneously with the Poisson equation for all the charges, which20

often results in strongly nonequilibrium stochastic dynamics. Therefore, only an21

approximate semi-analytic treatment of the problem is possible.22

The simplifying assumptions that are frequently made to overcome these diffi-23

culties are sometimes not entirely self-consistent. First note that, in traditional [7–9]24

reaction rate theory (RRT), transitions of an ion from state i to state j associated25

with a potential barrier Eji are assumed to proceed at thermal equilibrium with26

constant rate kji27

kji = κ0 exp
(
− Eji

kBT

)
, (1)28

equal to the product of the frequency factor κ0 and the Arrhenius factor29

exp
(− Eji

kBT

)
, where kB is the Boltzman constant and T is the temperature. At30

the same time to account for the Born self-energy it is often postulated [10] that31

an ion can only enter an empty channel: the effect of inter-ion interactions on the32

escape probabilities is ignored. Second, we note that the description of the current33

of ions through an open ion channel is often described by equilibrium Poisson–34

Nernst–Planck (PNP) theory, which also neglects the ion–ion interaction. The dis-35

crepancy between the PNP results and the results of Brownian dynamics (BD)36

simulations has been the subject of vigorous discussion [11, 12]. Yet to explain37

large ion fluxes through the channels with single high-affinity binding sites, the38

assumption of multiple-occupancy of the channel is sometimes made [13], ignor-39

ing the Born dielectric self-energy altogether. Although the assumptions mentioned40

may be valid in specific limits of physiological parameters, and helpful in explaining41
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some of the observed experimental data, they are not mutually self-consistent. Being1

just postulated, rather than related to the channel parameters, they may even be2

misleading where a different range of physiological parameters is to be considered.3

In standard RRT, ion channels are modeled as a sequence of energy barriers over4

which the ion must jump. The physical basis of the standard three-well model of an5

ion channel is based on Eyring’s transition state theory. The binding sites model6

postulates that ions pass through channels by binding with one or more particular7

sites in the channel pore [10]. Läuger went a step further than the Eyring analysis8

by allowing for the phenomenon of saturation to be observed in his rate theory9

analysis of the transport [14]. In the binding site model, the net unidirectional flux10

can be calculated, taking into account the probability that the binding site well is11

occupied. An ion can enter the well only if it is not already occupied by another12

ion, and an ion can only leave a well if it is there already, i.e., if the well is occupied.13

Knowing the probability for the occupied and unoccupied wells is therefore enough14

to characterize the current.15

In this paper we introduce a modified RRT that takes into account the depen-16

dence of the escape probabilities on the ion–ion interaction. The theory also illu-17

minates the relation between the PNP and BD results. The electrostatic potential18

is calculated using the solution of the Poisson equation for a channel modeled as19

a cylindrical tube. The transition rate and the binding site occupancy as a func-20

tion of the left bulk concentration are compared to 1D BD simulations, taking into21

account particle injection. The analysis is performed for a single binding site of22

high-affinity, with the exit rate governed by barrier fluctuations. We will compare23

the model results with experimental measurements of the permeation of Na+ ions24

through the Gramicidin A channel, with which we will show that they are in good25

agreement.26

2. Rate Model Description27

We consider an archetypal model [1, 10] of an ion channel with a single high-affinity28

binding site, as shown in Fig. 1. It is considered as a 30 Å long cylinder of radius29

2 Å with a negatively charged ring at its center. Assuming cylindrical symmetry30

of the channel, the potential energies for a Na+ ion moving along the channel axis31

for the two state configurations are calculated by solution of Poisson’s equation.32

The transition of an ion e.g., from the left to the right can be described within this33

model via the following steps (cf. [10]). To be able to enter the channel, an ion must34

arrive at the channel mouth. It does so with an arrival rate jl
ar that is a function of35

the bulk concentration on the left Cl, and can be expressed as the average number36

of arrivals per unit time.37

The probability of the ion being in the potential well must be connected to the38

probability of gaining entrance to the channel when it is empty. This is found by39

connecting the ion’s arrival at the channel mouth to the probability of penetrating40

the empty channel. An estimate of the arrival time at the channel mouth, assuming41
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Fig. 1. Top panel: Geometry of the model system under consideration. It is comprised of a cylindri-
cal channel with hemispheres at its left- and right-hand mouths. There is a fixed ring of negative
charged (not shown) at its middle. This was the geometry used to solve Poisson’s equation. Bot-
tom: Potential energy along the channel axis, for 200mV applied voltage. The full black line is
the potential of a single Na+ ion moving along the channel axis. This corresponds to State-1. The
dashed line is the potential acting on a Na+ ion moving along the channel axis when there is one
Na+ ion at the mouth of the channel, corresponding to State-2. The rate of jumping from state-1
to state-2 is ω21 = J l

ar, and the rate of jumping from state-2 to state-1 is ω12 = kr
dif .

charge neutrality and no applied field, can be obtained by considering pure diffusion1

of ions through an imaginary hemisphere at the mouth of the channel of radius equal2

to that of the channel. This problem is thus reduced to the determination of the ionic3

flux through a hemispherical sink at the channel entrance where all ions arriving4

at the boundary immediately vanish such that the ion concentration there goes to5

zero. A first approximation of the rate of arrival at the channel mouth is given by6

the Smoluchowski rate 1/τarrival = 2πCDR, where C is the bulk concentration far7

away from the channel mouth, D is the ion diffusion coefficient and R is the radius8

of the channel.9
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The bulk concentration is introduced into the model using the injection rate. The
fluctuations in the potential energy barrier are the result of ion–ion interactions.
We are specifically interested in mechanisms of strong modulation of the potential
energy barrier that do not require conformational changes. The rate of barrier
modulation is directly related to the rate of ion arrival at the channel mouth. From
the left mouth the ion can either diffuse away at diffusion rate kl

dif , or bind to the
binding site with the rate k1. Finally, the ion at the binding site can either return
to the left compartment with the rate k−1, or exit to the right compartment with
the rate k2. Similarly, the ion transition from the right to the left is characterized
by the set of rates {jr

ar, k
r
dif , k2, k−2, k−1} and concentration Cr. The formulation

is completed by providing a model for the transition rates and writing a set of
kinetic equations, which can readily be solved under conditions of steady current.
Therefore, the kinetic equations for the current are given by:

dPl

dt
= J l

ar − kl
refPl − k1Pl(1 − P0) + k−1P0, (2)

dP0

dt
= k1Pl(1 − P0) − (k−1 + k2)P0 + k−2Pr(1 − P0), (3)

dPr

dt
= Jr

ar − kr
difPr + k2P0 − k−2Pr(1 − P0), (4)

where J l,r
ar are the constant arrival rates at which ions are injected respectively1

into the left and right volumes located at the mouths of the channel. Pl,r are2

respectively the occupation probabilities of these volumes. P0 is the probability of3

occupation of the charged binding site in the middle of the channel. kl
ref and kr

dif4

are respectively the diffusive reflection rates on the left and right of the channel.5

From Eqs. (2) and (4), the currents to the right and to the left of the channel are6

given respectively by J = k1Pl(1−P0)− k−1P0 and J = k2P0 − k−2Pr(1−P0). We7

are interested in the steady-state current.8

The ion injection rate on the left is given by: J l
ar = 2πRClD, where Cl is the9

concentration in the left bulk. The diffusive and reflection rates at the left and right10

mouths, kr
dif and kl

ref , are calculated from the stationary solution when the channel11

is closed (J = 0). Therefore, the occupation probability of the left hemisphere at the12

channel mouth is given by Pl = 2πR3Cl/3; corresponding to the number of ions in13

the left hemisphere. Similar expressions can be written for the ion injection rate and14

occupation probability of the right mouth, leading to kl
ref = kr

dif = 3D/R2. P0 is15

calculated by combining elements of the steady-state equations. The corresponding16

equation for P0 is quadratic. We are interested in the case of small k2 parameters17

or, in other words in the case when J � J l
ar. The current can then be calculated18

from:19

J =
k1(1 − P0)J l

ar − kl
refk−1P0

kl
ref + k1(1 − P0)

. (5)20

Considering the case of a unidirectional current, the concentration on the right-21

hand side of the channel is set to Cr = 0. Since there is no backflow from the right22
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bulk to the left bulk, we set k−2 = 0. The occupation probability at the channel1

binding site is given by:2

P0 =
k1J

l
ar

k1J l
ar + (k2 + k−1)kl

ref

. (6)3

The corresponding current is therefore reduced to J = k2P0. For a permeating ion4

of charge ze, the current is given by I = zeJ . The occupation probabilities of the5

left and right mouth of the channel are given respectively by Pl = (J l
ar − J)/kl

ref6

and Pr = J/kr
dif . Next, we calculate the rate k2 of escape from the single binding7

site within the framework of fluctuating barrier theory.8

2.1. The ion–ion interaction9

The PNP approach [15, 16] has shed light on how an ion permeates the channel.10

Nevertheless, being an equilibrium approach, it ignores the ion-ion interaction. To11

take this into account we consider the changes in potential profile for the ion at12

the binding site induced by the presence of a second ion at the channel mouth. In13

this approximation the ion–ion interaction enters the dynamics of the ion inside the14

channel in the form of a Markovian dichotomous noise. The proposed reaction rate15

model introduces the rate k2 calculated for the case when the barrier fluctuates16

between two states due to ion–ion interactions. Once the first ion is trapped at the17

binding site, conduction may occur when a second positive ion arrives at the channel18

mouth and the system switches to State-2. The latter corresponds to the reduced19

barrier needing to be overcome by the trapped ion in order to exit to the right bath.20

Thus, as the second ion arrives at the channel mouth, the first ion initially at21

the binding site will have a higher chance of crossing the small barrier and exiting22

to the right-hand side of the channel, and a much smaller chance of diffusing back23

to the left bath. Hence the net transport to the right is caused directly by the24

random (fluctuational) arrival of ions at the left mouth of the channel. To a good25

approximation, no backflow of ions need be considered and we therefore calculate26

the unidirectional current.27

To describe the two-state potential model, we consider the equation of a pul-28

sating ratchet29

mγ
dx

dt
= −dV (x, ζ(t))

dx
+
√

2mγkBTξ(t). (7)30

We thus consider the overdamped unidirectional motion of a Na+ ion of mass m,
with a friction coefficient γ which is related to its diffusion coefficient through the
fluctuation dissipation relation. The thermal energy of the particle is kBT . The
potential V (x, ζ(t)) in this approximation is obtained by solving Poisson’s equa-
tion. It takes account of the following three contributions: (i) the potential of the
Coulomb interaction with ions in the bulk; (ii) the electrostatic potential induced
by interaction with the protein; (iii) the potential of the Coulomb interaction with
the wall charge at the selectivity site. This mixed (hybrid) process is governed by
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ζ(t); a dichotomous, stationary, Markovian noise and ξ(t); a normalized white noise.
For each state of the noise ζ(t) there corresponds a potential Vi. The system can
be described by the probability distribution Pi(x, t), which is the joint probabil-
ity density for the position x of the particle and the state of the potential i. The
corresponding Chapman–Kolmogorov equation for this distribution is:

∂Pi(x, t)
∂t

=
∂

∂x

([
1

mγ

dVi

dx
+

kBT

mγ

∂

∂x

]
Pi(x, t)

)
+
∑

j

(ωijPj(x, t) − ωjiPi(x, t)), (8)

where ωij are the transition rates between states j and i, given respectively by1

ω21 = J l
ar and ω12 = kl

ref . For the two states 1 and 2, Eq. (8) is reduced to:2

∂

∂t

(
P1(x, t)

P2(x, t)

)
=

(
L̂1 − ω21 ω12

ω21 L̂2 − ω12

)(
P1(x, t)

P2(x, t)

)
, (9)3

where the operators L̂i are given by L̂i = 1
mγ ∂x

dVi

dx + kBT
mγ ∂2

x. The particle starts
at the bottom of the potential (corresponding to the channel binding site x = x0),
with probability Pi(x, 0) = δ(x − x0). Reflecting boundary conditions are chosen
at the bottom of the potential (x = x0) and absorbing boundary conditions at
its top (x = x1): ∂Pi

∂x (x = x0, t) = 0; Pi(x = x1, t) = 0. Following the standard
method described in Gardiner [17–19], the system of first-order ordinary differential
equations giving the mean first passage time (MFPT) can be written:

dT1

dx
= S1

kBT

mγ

dS1

dx
=

1
mγ

dV1

dx
S1 + ω21(T1 − T2) − 1

dT2

dx
= S2

kBT

mγ

dS2

dx
=

1
mγ

dV2

dx
S2 + ω12(T2 − T1) − 1,

(10)

with the boundary conditions dTi

dx (x = x0, t) = 0; Ti(x = x1, t) = 0.4

2.2. Solution of the boundary value problem5

The system Eq. (10) obtained from the fluctuating barrier model is solved numer-6

ically as a boundary value problem. The advantages of this method are that it7

does not require linear approximation of the potential energy and it can easily be8

extended to a larger number of states; specifically, one needs five states for two9

types of ions at each side of the channel. Each of the states corresponds to a differ-10

ent potential energy conformation. It is an approach that was not discussed earlier,11

and one that is easily accessible to a broad audience of potential users.12
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Fig. 2. (a) Escape rate as a function of bulk concentration. The circles are obtained using 1D BD
simulation for a Na+ inside the channel with particle injection at the channel’s left mouth. The
lozenges are calculated using fluctuating barrier theory. (b) Channel binding site occupancy as a
function of bulk concentration. The lozenges are calculated using the modified reaction rate (RR)
theory and the circles are obtained from a 1D BD simulation with ion injection at the channel’s
left mouth.

The MFPT for a particle that starts from the bottom at x = x0 is T =1 ∑2
i=1 p(i)Ti(x = x0) [20], where p(i) is the occupation probability of the state (i),2

such that
∑2

i=1 p(i) = 1. The rate of escape from the channel binding site to the3

right bath is given by k2 = 1/T .4

3. Current Concentration Characteristics5

We have calculated the modified rate k2 as a function of the left bulk concentration6

for comparison with the rate obtained from direct BD simulations, taking into7

account particle injection at the mouth of the channel with the same Smoluchowski8

rate. As shown in Fig. 2(a), the two rates follow a similar linear dependence as9

a function of the concentration and are in reasonable agreement (cf. the Kramers10

rate over a nonfluctuating energy barrier which is independent of the concentration).11

The channel occupancy is also calculated and compared to that obtained from BD12

simulations: see Fig. 2(b). We compare the results with Andersen’s experimental13

data [21] for the current of Na+ ions in a gA channel in Fig. 3; we used the rates14

k1 = 3.3 × 1010s−1, k−1 = 1.2 × 107s−1 as fitting parameters and a diffusion15

coefficient of D = 1.17 × 10−9m2s−1 for the Na+ ion.16

4. Summary and Perspectives17

We have introduced a nonequilibrium rate model of the ionic transition through18

an open ion channel within a self-consistent framework. The method takes explicit19

account of the interaction between an ion at the left mouth and an ion at the channel20
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Fig. 3. Current as a function of concentration for a Na+ ion in the gA channel. The circles are
experimental data from Andersen et al. [21]. The lozenges represent the results of calculations
based on the modified rate model. The stars are obtained from a 1D BD simulation for a Na+

inside the channel with particle injection at the channel left mouth.

binding site. These ion–ion interactions result in fluctuations of the potential energy1

barrier of an ion at the binding site calculated from the channel structure by solving2

Poisson’s equation. We calculated the transition rate and binding site occupancy of3

an Na+ ion as a function of the left bulk concentrations, and compared the result4

with 1D BD simulations using ions injection at the channel mouth. The model was5

applied to experimental permeation rate data for Na+ ions in the Gramicidin A6

channel, yielding satisfactory agreement. Note that, in the case of Gramicidin, the7

ion–ion interaction is not particularly important, so that equilibrium PNP theory8

may be sufficient. We expect, however, that the effect will be of crucial importance9

in channels that display both high conductivity and high selectivity, e.g., the K+
10

and Ca2+ channels. These will be analyzed in our future work. Note also that the11

boundary value technique used for solution of the MFPT system of equations can12

readily be extended to encompass a larger number of states. This feature will be13

needed e.g., for the case when there are ions at both channel mouths, which five14

states will require.15
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