1300 ± 309 versus 225 ± 84/µm²). Three characteristics of these particles are similar to the tetrameric CaV1.1 channels of skeletal muscle: 1) diameter, only slightly smaller than that of CaV1.1; 2) unusual height indicated by the platinum free “shadow”; 3) square, slightly scalloped outline of the same shadow in some images. It is reasonable to postulate that the “large and tall” particles represent tetrameric Orai1 channels clustered in correspondence with cortical Stim-bearing ER junctions. These observations introduce a new approach to visualize individual unlabeled Stim and Orai molecules in situ. Funded by NIH ROI 1HL-48093 (CFA) and NS-14690 (MDC).

528-Pos Board B297
Electronic Viscosity Affects Diffusion through Membrane Electric Fields Near Channel Pores
James P. Barger, Patrick F. Dillon.
Michigan State University, East Lansing, MI, USA.
A polar water molecule will interact more frequently with the charge distributed over kosmotropic (Na⁺, Ca++) ionic surfaces compared to the dipole of adjacent waters. Ionic charge is spread over the combined surface area of the ion-water complex. Additional water molecules will continue to join this complex and bind tightly until the surface charge density of the ion-water complex is equal in strength to the molecular dipole charge density of water. Electronically, the hydrated ion looks like water at its surface. When an electric field is applied a force (F) to ions in solution. Stoke’s Equation states that ions will migrate through a medium of viscosity (η) with velocity (v) proportional to radius (r): F = 6πrvη. Driving calcium ions at low electric fields (<300 V/cm), ion velocity was measured using capillary electrophoresis. Assuming the viscosity of water, the effective radius of hydrated calcium is 0.334 nm, yielding a volume that corresponds to 5.09 water molecules. At high electric fields (>500 V/cm), the calcium hydration shell is stripped away and its radius is 0.1 nm. The resulting 3-fold drop in radius should correspond to a 3-fold increase in migration velocity if the viscosity is unchanged, but hydration stripping produces only a 33% increase in velocity. Therefore, the viscosity must increase by 2.56 times that of water. Unlike the comparable charge densities of hydrated ions and water, the stripped ion carries its exposed charge through a sea of molecular dipoles. We attribute the observed submaximal rise in migration velocity to this “electronic viscosity”. As the membrane electric field at kosmotropic ion channel pore entrances is sufficiently strong to strip an ion, it is our position that permeation models should start from a dehydrated ion, albeit one whose diffusion is limited by electronic viscosity.

529-Pos Board B298
Thermodynamic Comparison of Dysferlin C2A Wild Type, and C2A V-1529-Pos Board B298
Ryan W. Mahling,1* Mike E. Fealy,1 Jacob W. Gauer,2 R. Bryan Sutton3, Anne Hinderliter1.
1University of Minnesota Duluth, Duluth, MN, USA, 2Texas Tech University, Lubbock, TX, USA.
A polar water molecule will interact more frequently with the charge distributed over kosmotropic (Na⁺, Ca++) ionic surfaces compared to the dipole of adjacent waters. Ionic charge is spread over the combined surface area of the ion-water complex. Additional water molecules will continue to join this complex and bind tightly until the surface charge density of the ion-water complex is equal in strength to the molecular dipole charge density of water. Electronically, the hydrated ion looks like water at its surface. When an electric field is applied a force (F) to ions in solution. Stoke’s Equation states that ions will migrate through a medium of viscosity (η) with velocity (v) proportional to radius (r): F = 6πrvη. Driving calcium ions at low electric fields (<300 V/cm), ion velocity was measured using capillary electrophoresis. Assuming the viscosity of water, the effective radius of hydrated calcium is 0.334 nm, yielding a volume that corresponds to 5.09 water molecules. At high electric fields (>500 V/cm), the calcium hydration shell is stripped away and its radius is 0.1 nm. The resulting 3-fold drop in radius should correspond to a 3-fold increase in migration velocity if the viscosity is unchanged, but hydration stripping produces only a 33% increase in velocity. Therefore, the viscosity must increase by 2.56 times that of water. Unlike the comparable charge densities of hydrated ions and water, the stripped ion carries its exposed charge through a sea of molecular dipoles. We attribute the observed submaximal rise in migration velocity to this “electronic viscosity”. As the membrane electric field at kosmotropic ion channel pore entrances is sufficiently strong to strip an ion, it is our position that permeation models should start from a dehydrated ion, albeit one whose diffusion is limited by electronic viscosity.

530-Pos Board B299
Low Resolution Structure of Mitochondrial Rho Protein via SAXS
Anthony Banks1, Eric Landahl1, Rita Graceffa1, Julian Klosowiak3, Sarah Rice3.
1DePaul University, Chicago, IL, USA, 2Illinois Institute of Technology, Chicago, IL, USA, 3Northwestern University, Chicago, IL, USA.
1300 ± 309 versus 225 ± 84/µm²). Three characteristics of these particles are similar to the tetrameric CaV1.1 channels of skeletal muscle: 1) diameter, only slightly smaller than that of CaV1.1; 2) unusual height indicated by the platinum free “shadow”; 3) square, slightly scalloped outline of the same shadow in some images. It is reasonable to postulate that the “large and tall” particles represent tetrameric Orai1 channels clustered in correspondence with cortical Stim-bearing ER junctions. These observations introduce a new approach to visualize individual unlabeled Stim and Orai molecules in situ. Funded by NIH ROI 1HL-48093 (CFA) and NS-14690 (MDC).

531-Pos Board B300
Spectroscopic Study Ca²⁺ Induced Changes in the Structure, Dynamics and Stability of Dynamin Protein and its Mechanism of DNA Interaction
Khoa N. Pham, Jaroslava Miksovska.
Florida International University, Miami, FL, USA.
Downstream Regulatory Element Antagonist Modulator (DREAM)/Calsenilin/ KChIP3 is a multifunctional calcium binding protein that belongs to the EF-hand branch of Neuronal Calcium Sensor family. DREAM associates to Downstream Regulatory Element (DRE) of prodynorphin and c-fos genes and blocks their transcription in a calcium-regulated manner. Other molecular functions of DREAM involve proteolytic processing of preprodynorphin, modulation of A-type current of potassium channels, and regulation of neuronal apoptosis. Previously, we have studied Mg²⁺ and Ca²⁺ induced changes in structure and dynamics of DREAM and its C-terminal domain. Recently, we have investigated the contribution of individual EF hands (EF-2, EF-3, and EF-4) to Ca²⁺ triggered conformational transition in DREAM by characterizing fluorescence properties of D150N, E186Q, and E234Q mutants. The trypothan 169 emission and lifetime properties are strongly influenced by Ca²⁺ association to EF-3 whereas the ligand association to EF-2 and/or EF-4 has a minor impact on Trp fluorescence suggesting that Ca²⁺ association to EF-3 is crucial to induced structural changes within the hydrophobic pocket between EF-2 and EF-3. In addition, the effect of 25-mer oligonucleotide of prodynorphin gene to DREAM was characterized using ITC. DNA association to DREAM is temperature dependent. ApoDREAM strongly binds to DynDRE at 35°C (Kd=206 nM) but does not affect the site interactions. Together, these results indicate that the in vivo and electrophysiological effects observed due to NN5806 may be the results of this drug binding to KChIP3 and affecting its sensitivity to Ca²⁺ as well as V43.3 interactions.

532-Pos Board B301
Modulation of the KV4.3-KChIP3 Interactions by Ca²⁺ and NN5806
Walter Gonzalez, Jaroslava Miksovska.
Florida International University, Miami, FL, USA.
Here we report how the interactions between KV4.3 T1 domain and KChIP3 are modulated by Ca²⁺ binding to KChIP3 as well as by the ITO activator NN5806. The affinity of KChIP3 for Site 1 of KV4.3 T1 domain was measured to be KdCa²⁺ = 9 µM, whereas binding to Site 2 shows a large Ca²⁺ dependence with Kdapo= 126 µM and KdCa²⁺ = 22 µM. Moreover, NN5806 binds to KChIP3 with Kd = 5 µM in a Ca²⁺ independent manner, and lowers the Ca²⁺ affinity of both EF-hand in KChIP3 from 1.1 µM and 3.7 µM to 3.6 µM and 7.7 µM. NN5806 lowers the affinity between KChIP3 and Site 1 to 18 µM but does not affect the Site 2 interactions. Together, these results indicate that the in vivo and electrophysiological effects observed due to NN5806 may be the results of this drug binding to KChIP3 and affecting its sensitivity to Ca²⁺ as well as V43.3 interactions.

533-Pos Board B302
Brownian Dynamics Study of Current and Selectivity of Calcium Channels
Claudio Berli1,2, Dirk Gillespie1, Dessé Boda1, Bob Eisenberg2, Claudio Fiegna1.
1ARCES - University of Bologna, Bologna, Italy, 2Rush University Medical Center, Chicago, IL, USA, 3University of Pannonia, Veszprém, Hungary.
Brownian Dynamics (BD) simulation is a powerful approach to investigate ion permeation properties through protein ion channels. BD does not require the explicit evaluation of the motion of all the particles in the system. Only ions’ trajectories are computed. This results in a small computational burden that allows micro-second scale simulations, long enough for the reliable estimate of ionic currents. We studied ion permeation properties and estimated ion currents through calcium channels, using a simplified channel model and the results of a small-angle x-ray scattering (SAXS) study of the mitochondrial rhio (mrio) protein are discussed. The radius of gyration in solution is found to be Rg = 38 Å. A classical BD simulation of the mrio ion channel and a detailed Markov state model agree with previous estimations. A DAMMIN reconstruction using 11000 dummy atoms with 3.6Angstrom radius shows a compact conformation featuring several sub-units. This agrees with a sequence analysis suggesting that mrio contains at least two GT-Pase domains and two central EF-hand domains. We also show that within the resolution of our measurements mrio remains structurally unchanged in the presence of 3mM Calcium.
Brownian Dynamics. We modeled the carbohydrate-rich selectivity filter of calcium channels with 8 independent half-charged oxygens confined in the central region of the pore. Simulations of the transmembaneous ions’ trajectories self-consistently evaluated the electrostatic forces acting on the ions at every timestep. Such forces were evaluated solving Poisson’s equation with a Boundary Element Method to deal with dielectric boundaries, called Induced Charge Computation method (ICC). A transmembrane potential was included as a spatially constant component of the electric field, a good approximation to a fully consistent treatment, see Crozier et al. (Biophys. J. 81:3077) and Hollerbach and Eisenberg (Langmuir, 18:3626). Boundary conditions for ionic concentrations in the intracellular and extracellular domains were imposed by a Grand Canonical-Monte Carlo algorithm. We simulated different concentrations of CaCl2 added to NaCl solution only on one side of the membrane. Ion permeation was investigated under physiological conditions, using different sub-millimolar calcium concentrations and different transmembrane potentials. Channel selectivity and conductance were determined by electrostatic forces, steric repulsion due to charge crowding, and gradients of concentration and potential.

534-Pos Board B303
Real-Time Modulation of Zebrafish Cone Phototransduction by Whole-Cell Delivery of zGCAP3 and of its Monoclonal Antibody
Marco Aquila1, Daniele Dell’Oro2, Anna Fassoli3, Mascia Benedusi4, Ramona Fries5, Alexander Scholten6, Elisabeth Krennmer6, Karl W. Koch7, Giorgio Rispoli8
1University of Ferrara, Department of Biology and Evolution, Section of Physiology and Biophysics, Ferrara, Italy, 2University of Verona, Department of Life Sciences and Reproduction, Section of Biological Chemistry, Verona, Italy, 3University of Oldenburg, Institute of Biology and Environmental Sciences, Biochemistry Group, Oldenburg, Germany, 4Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany.

534-Pos Board B303
Real-Time Modulation of Zebrafish Cone Phototransduction by Whole-Cell Delivery of zGCAP3 and of its Monoclonal Antibody
Marco Aquila1, Daniele Dell’Oro2, Anna Fassoli3, Mascia Benedusi4, Ramona Fries5, Alexander Scholten6, Elisabeth Krennmer6, Karl W. Koch7, Giorgio Rispoli8
1University of Ferrara, Department of Biology and Evolution, Section of Physiology and Biophysics, Ferrara, Italy, 2University of Verona, Department of Life Sciences and Reproduction, Section of Biological Chemistry, Verona, Italy, 3University of Oldenburg, Institute of Biology and Environmental Sciences, Biochemistry Group, Oldenburg, Germany, 4Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany.

Regulation of excitation and adaptation in photoreceptors of the vertebrate retina strongly depends on the cytoplasmic Ca2+ concentration and its interplay with Ca2+ sensor proteins like recoverin, calmodulin and the activating proteins (GCAPs) of guanylate cyclase (GC) (Scholten and Koch, 2011). Of the four GCAP isoforms exclusively transcribed in cones (zGCAP3, 4, 5 and 7), we investigated the physiological function of zGCAP3 in green-sensitive cones of zebrafish, by recording the effect on the photoresponse waveform by cytosol injection of exogenous zGCAP3 (to simulate ‘real time’ protein overexpression), and its monoclonal antibody (to simulate protein knock-down).

535-Pos Board B304
Effects of Redox Environment on Calcium Alternans in Isolated Rabbit Cardiomyocytes
Joshua N. Edwards, Lothar A. Blatter.
Rush University Medical Center, Chicago, IL, USA.
Cardiac alternans is a multifactorial phenomenon linked to cardiac arrhythmias. At the cellular level cardiac alternans is defined by beat-to-beat alternations in contraction amplitude (mechanical alternans), action potential duration (electrical or action potential duration alternans) and Ca transient amplitude (Ca alternans) at constant stimulation frequency. The aim of this project was to characterize the effect of changes in the cellular redox environment on Ca alternans in cardiac myocytes. Single myocytes (from New Zealand White rabbits) were isolated enzymatically by retrograde Langendorff perfusion. Ca alternans were induced by incrementally increasing the pacing frequency (electrical field stimulation) until stable Ca alternans occurred. The frequency at which stable Ca alternans were observed varied from cell to cell and ranged from >1 to 2.5 Hz at room temperature. Global cytosolic Ca transients were measured with Indo-1. In some experiments, cytosolic Ca alternans and intra-SR Ca alternans were simultaneously measured with the fluorescent Ca indicators Rhod-2 and Fluo-5N, respectively. Confocal microscopy was used to measure Ca sparks with Fluo-4.

Reducing agents dihydroxyacetone phosphate and reduced glutathione partially abolished Ca alternans and mechanical alternans by restoring diastolic Ca and Ca transient amplitudes. A decreased sarcoplasmic reticulum (SR) Ca release flux but not Ca content, together with a decreased Ca spark frequency, suggest that reducing agents normalized alternans through effects on the SR Ca release channel (ryanodine receptor type-2). Addition of a membrane permeant superoxide dismutase mimetic, Tempol, had little effect on Ca alternans, suggesting the possible role of dihydroxyacetone phosphate directly acting on the ryanodine receptor. These data highlight that the redox state of the cell may be important in the generation of Ca and mechanical alternans during oxidative stress.

536-Pos Board B305
Modeling the Effect of Unitary Calcium Current on Neighboring Ryanodine Receptors during Calcium Induced Calcium Release
Michael J. Younkinas, Michael Fill, Dirk Gilespie.
Rush University Medical Center, Chicago, IL, USA.
In resting cardiac cells, the open probability (Po) of single ryanodine receptors ( RyRs) is very low and consequently little Ca2+ is released from the sarcoplasmic reticulum ( SR). However, a stochastic RyR opening will cause diastolic local Ca release from the SR that can activate neighboring closed RyRs. This inter-RyR Ca2+-induced Ca2+ release (CICR) may generate diastolic Ca sparks. It is known that elevating SR Ca2+ load above normal levels dramatically increases spark frequency and increases the unitary RyR Ca2+ current. It is this current that acts on neighboring RyRs through CICR.

We have developed a simple model based on experimental single-channel RyR Ca2+ sensitivity to understand how unitary RyR Ca2+ current may control CICR within a group of neighboring RyRs (a Ca2+ release unit, CRU). The model predicts how the current carried by an open RyR influences the activity of neighboring RyRs in a CRU. These predictions match published experimental single and clustered RyR channel results obtained in bilayer studies.

537-Pos Board B306
On the Role of Endogenous Calmodulin in Excitation-Contraction Coupling in Skeletal Muscle
Eric O. Hernández-Ochoa, Martin F. Schneider.
University of Maryland, Baltimore, MD, USA.
In skeletal muscle, calmodulin (CaM) regulates excitation-contraction coupling, primarily via modulation of ryanodine receptors. Here we aimed to further our understanding of the role of endogenous CaM in the excitation-contraction coupling. Since systemic ablation of CaM in mice is difficult to achieve due to CaM’s multiple functions, in vivo gene transfer via electroporation mediated transfection method was used to deliver plasmid coding for both cerulean and short-hairpin (sh)RNA targeting CaM (shRNA-CaM) to study the effect of CaM knockdown in adult mouse flexor digitorum brevis skeletal muscle. CaM protein expression levels were significantly reduced in shRNA-CaM fibers, which exhibited no evident morphological changes when compared to the shRNA-control fibers. After confirming the reduction of endogenous CaM expression, we used high-speed confocal microscopy and rhod2-based Ca2+ imaging to assess the consequence of CaM knockdown on action potential (AP)-evoked Ca2+ signals. Isolated single muscle fibers expressing shRNA-CaM exhibited decreased mean peak amplitude and slowed decay time of AP-induced Ca2+ transient with concurrent CaM to the shRNA-controls, indicating compromised Ca2+ release and Ca2+ uptake. We also used a model for myoplasmic Ca2+ binding and transport processes to calculate AP-evoked sarcoplasmic reticulum Ca2+ release flux, which demonstrated decreased Ca2+ release flux and indicated suppressed Ca2+ uptake in shRNA-CaM fibers. Decreased Ca2+ release could reflect decreased coupling between Cav1.1 and ryanodine receptor, a reduction in expression of one or both proteins, or a decreased store content, whereas a slowed decaying phase is consistent with compromised Ca2+ uptake. Our study shows the importance of endogenous CaM in the maintenance of excitation-contraction coupling in adult skeletal muscle and could provide new avenues to further explore the potential role of both CaM-dependent and CaM-independent pathways in skeletal muscle contractility and plasticity. Supported by NIH-NIAMS Grant R37-AR055099.