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Interacting Ions in Biophysics: Real is not Ideal
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ABSTRACT Ions in water are important throughout biology, from molecules to organs. Classically, ions in water were treated
as ideal noninteracting particles in a perfect gas. Excess free energy of each ion was zero. Mathematics was not available to deal
consistently with flows, or interactions with other ions or boundaries. Nonclassical approaches are needed because ions in bio-
logical conditions flow and interact. The concentration gradient of one ion can drive the flow of another, even in a bulk solution. A
variational multiscale approach is needed to deal with interactions and flow. The recently developed energetic variational
approach to dissipative systems allows mathematically consistent treatment of the bio-ions Naþ, Kþ, Ca2þ, and Cl� as they
interact and flow. Interactions produce large excess free energy that dominate the properties of the high concentration of
ions in and near protein active sites, ion channels, and nucleic acids: the number density of ions is often >10 M. Ions in such
crowded quarters interact strongly with each other as well as with the surrounding protein. Nonideal behavior found in many ex-
periments has classically been ascribed to allosteric interactions mediated by the protein and its conformation changes. The ion-
ion interactions present in crowded solutions—independent of conformation changes of the protein—are likely to change the
interpretation of many allosteric phenomena. Computation of all atoms is a popular alternative to the multiscale approach.
Such computations involve formidable challenges. Biological systems exist on very different scales from atomic motion. Biolog-
ical systems exist in ionic mixtures (like extracellular and intracellular solutions), and usually involve flow and trace concentra-
tions of messenger ions (e.g., 10�7 M Ca2þ). Energetic variational methods can deal with these characteristic properties of
biological systems as we await the maturation and calibration of all-atom simulations of ionic mixtures and divalents.
INTRODUCTION
Life occurs in ionic solutions. Pure water is lethal to most
cells and biomolecules. The properties of most proteins
depend on the details of the mixtures of ionic solutions
found outside and inside cells. Trace concentrations
(<10�6 M) of Ca2þ and other signaling molecules actually
provide physiological control of many biological pathways
and proteins inside cells.

Understanding the properties of living systems depends
on the understanding of properties of ionic solutions:
indeed, the early history of physical chemistry and physi-
ology overlap remarkably probably for that reason. (Volta,
Galvani, and Fick were physiologists as much as physical
chemists.) Biologists have, however, not kept up with
advances in the understanding of ionic solutions, particu-
larly ionic mixtures, understandably enough in my view,
given how hard they have worked to provide the magnificent
insights of structural and molecular biology.

Biophysicists are taught ideal equilibrium physical chem-
istry in which ions are points and flows are zero. Biophysi-
cists have been taught this idealization for good reason: until
recently the mathematics of interacting ions (of finite size)
in flowing systems was not available. The mathematics of
closely related (1) charge transport in semiconductors
(2–6) could not be used—in its original form, despite initial
enthusiasm (7,8)—because the charges that flow in semi-
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conductors are points, with no diameter. Points cannot
be crowded as bio-ions Naþ, Kþ, Ca2þ, and Cl� often
are in channels and active sites of enzymes (9). This situa-
tion has changed because of a recent development in
mathematics.

Variational mathematics is now available to deal with
ions of different diameters, interacting in solutions, as
they flow. Historically, variational mathematics dealt with
multiple types of forces in conservative systems (with Ham-
iltonians) that are difficult or impossible to describe with
other methods. A generalization of this variational approach
can now be used to describe systems that involve dissipative
as well as conservative forces.

The purpose of this work is to bring this energy varia-
tional approach to the attention of biophysicists, and to
discuss the consequences for our classical understanding.
Along the way, I point out the challenges that all-atom sim-
ulations face as they try to deal with the realities of biolog-
ical function.
WHY DO WE NEED THIS MATHEMATICS?

My biological colleagues at this stage often wonder why
they need this new mathematics. Why can’t they use the
classical approach they learned in school? Many physical
colleagues wonder what is different about this variational
mathematics, why the big fuss.

The reason different mathematics is needed is that biolog-
ical systems use the special properties of crowded spherical
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ions as they interact and flow in a tiny system say twice as
wide as the ions themselves. Ions obviously interact
electrically and by steric exclusion in such a system.
Classical chemical approaches assume no interactions and
no flow (i.e., equilibrium). There is no excess free energy
from either nonideal property. Classical mathematics of
nonequilibrium electrical systems (like semiconductors)
does not deal easily with crowded spheres of different
diameter. The biology itself shows that the classical
approaches of chemistry and semiconductors need to be
extended.
EXCESS FREE ENERGY OF THE CROWDED IONS
CANNOT BE IGNORED

Biology uses that excess free energy to perform its essential
function of selectivity and perhaps other things as well. Evo-
lution uses the properties of crowded ions to produce the
selective properties that it needs in enzymes and channels.
The ions are so crowded in and near enzymes (9) and chan-
nels (and nucleic acids) that their behavior is highly corre-
lated. The classical references describing the properties of
ions in nonideal situations are (10,11) and excellent textbook
treatments are (12–31). Enzymes and channels are compared
in (32). Other samples of the enormous literature are (33–47).

The new variational mathematics allows consistent
treatment (with minimal adjustable parameters) of interact-
ing spheres as they conduct and diffuse (48–55). It can
easily be extended to deal with convection or heat flow
in a mathematically consistent way, as it has in closely
related problems (51,56) and problems of greater apparent
complexity (57,58).

To summarize, the new variational mathematics are
important in biology and biophysics because ions are
crowded into a tiny space in and near protein (enzyme)
active sites, ion channels, and nucleic acids. One can hardly
imagine systems of greater biological importance. The
crowding is dramatic, producing number densities often
larger than 10 M (using classical chemical units of concen-
tration, in which the number density of NaCl is ~37 M and
liquid water is ~55 M).
CROWDED IONS AS A BIOLOGICAL ADAPTATION

These crowded conditions of ions are so special and so un-
usual that a sensible biologist would guess they are an
adaptation.

Evolution often uses unusual conditions or structures to
perform life’s functions. When a biologist finds an unusual
condition or structure, it is usually productive to study how
that condition allows the structure to perform biological
functions. Study of such adaptations is useful, whether the
study is of the panda’s thumb or the flamingo’s smile
(59,60), the capillary of the squid that turned out to be a gi-
ant nerve fiber (61–63), or the twisted fabulously long sticky
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viscous polymer called DNA, eventually found to be the
genetic code.

Unusual things in biology often turn out to be unusual for
a reason. It is best to investigate and not ignore them.
ENORMOUS NUMBER DENSITIES OF CROWDED
CHARGES

Enormous number densities of crowded charges in and near
ion channels and active sites are unusual, and as far as I
know found in only a few other places. Enormous number
densities are also found in crucial locations in our electro-
chemical technology, suggesting a generalization, as a pro-
ductive working hypothesis, for both electrochemistry and
biophysics: I suggest that where ions are important they
are likely to be highly concentrated (so conductances and
currents are large) or very depleted (so resistances are large
and flows can be controlled). We note that many of the most
important properties of semiconductor devices are produced
by depletion zones (2–4,6,64–67).

Interactions are important in enzymes, ion channels, and
transporters, because they can produce coupling of fluxes
usually attributed to proteins, even in the absence of a pro-
tein. When interactions dominate, ions in bulk solution can
flow uphill against their own gradient of activity (e.g., p. 377
of (68)). The energy for uphill flow of one ion comes from
the downhill gradients of other ions.

Free energies of steric exclusion are significant in ordinary
Ringer’s solutions as well as in and near macromolecules:
Naþ and Kþ differ because they have different diameters.
The different diameters of Naþ and Kþ is why the activity
of these solutions does not equal their number density as
shown by a large literature of physical chemistry previously
cited. Great attention has been paid to ionic interactions in
chemical engineering (13,15,16,21,24,25,28,30,69–74) and
geophysics (75–78). To oversimplify, Naþ and Kþ are iden-
tical when they are ideal. They differ because they are
nonideal. The different roles of Naþ and Kþ are essential
for a wide range of biological function. Naþ and Kþ cannot
be treated as ideal ions in the context of biology. Theories
and simulations must compute the (nonideal) properties of
Naþ and Kþ with reasonable accuracy.
INTERACTIONS DEFINE CHANNELS AND
TRANSPORTERS

In classical physiology, the interactions of ionic flux have
central importance. Indeed, Hodgkin used the interactions
of ion fluxes to define channels and separate their properties
from fluxes in bulk solution, on the one hand, and trans-
porters (79,80), on the other, before channels were known
to be proteins, before anyone had glimpsed the structure
of any protein let alone a channel protein. Bass (81–84) pro-
vided a mathematical analysis based on Hodgkin’s approach
to channels. Hodgkin and Bass assumed independent
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behavior in the baths and neglected both steric interactions
and the role of the charge of ions in creating the electric
fields they move in. (A more modern, more realistic analysis
might be helpful.)

In classical physiology, interactions in channels were
treated by rate models of single file systems (85,86). These
sadly did not compute electrostatics and do not deal with
friction or thermal Brownian motion. Thus, it is hard to
know what to make of the results, because electrostatic
and frictional forces (87,88) dominate such small highly
charged systems that move ceaselessly in thermal motion
(88–90). Difficulties with biophysical rate theories have
been extensively discussed in the biological (7,91–99) and
physical (100–105) literature. Models of single filing that
deal with electrostatics and friction consistently are just
now emerging (106), as far as I know. The anomalous
mole fraction effect was once thought to be a sure sign of
single filing (85,86). We now know otherwise (107–110).

In transporters, enzymes and binding proteins, interac-
tions were assumed to arise in the molecular mechanism of
the protein(s) that make up the system. When a flux of Kþ

was sensitive to Naþ, we thought of allosteric interactions
as in enzymes. See the comparison of enzymes and channels
in (32). The possibility of ions interacting themselves, elec-
trically and from steric exclusion, was not considered, prob-
ably because the ions were treated classically, without excess
free energy being included in the relevant equations.

Allostery plays a large role in classical and contemporary
biochemistry and biophysics, as reviewed recently (111,112).
Theories of allostery assume ideal properties of substrates
and rarely include background ions at all. Theories rarely
if ever include excess free energy terms of the substrate.

If substrate and ions are crowded together in binding or
active sites, it is hard to see how they could avoid interac-
tions. It is hard to believe that all the interactions ascribed
to allosteric properties of the protein are independent of the
substrate-substrate, ion-ion, and ion-substrate interactions.
INTERPRETATIONS OF ALLOSTERIC
PHENOMENA WILL NEED TO BE RECONSIDERED

Interpretations of allosteric phenomena, in my opinion, will
need to be reconsidered with theories that allow all compo-
nents to interact. It will be necessary to make an explicit
model of each binding interaction, and conformation
change, computing the free energy change of all compo-
nents using a model that allows them all to interact. This
daunting task has barely begun. One can expect general
principles and simplifications to emerge only from analysis
of many specific cases (as in much of biology (59,60)).
INTERACTIONS IN ION CHANNELS

In one area of biology, studying the interactions of ions has
been surprisingly successful. The selectivity of the calcium
channel CaV, the sodium channel NaV, and the ryanodine
receptor (RyR) have been understood quite well using a
primitive model of the channel structure and an implicit
model of solvation, in the spirit of the implicit solvent prim-
itive model of ionic solutions.

The primitive model of ionic solutions accounts for the
fundamental property of ionic solutions—activity or
chemical potential—over a wide range of conditions in a
variety of solutions, as well reviewed by (17,18,28,47).
The free energy per mole, or the excess free energy per
mole, or the activity, or the activity coefficient of solutions
are accounted for better than in many high-resolution
calculations of the properties of ionic solutions
(20,21,30,47,54,113–118), although a great deal of work
is going on to improve these higher resolution models
(48,50,52–54,119–126). (I am purposely imprecise with
the complex nomenclature and units of physical chemistry.
Textbooks define these precisely (17,18) and a most useful
set of standard symbols and definitions is available in the
green book (127)).

Nonner and Eisenberg introduced (128–132) primitive
models of channels in which the protein is described by
a few of its amino acid side chains confined to a tiny
selectivity region (filter) in the channel. An early review is
(133). Solvation by water and by the channel protein
is described by dielectric coefficients, as in the implicit
solvent model of ionic solutions (24,134–139). These
models were then studied with the Monte Carlo methods
developed—and extensively tested—for physical systems
by Boda and Henderson (140–143) in a series of more
than 30 papers, reviewed in (98); see (125,144) for more
recent references. The key papers describing the CaV
channel are (145,146). The key paper describing the NaV
channel is (147), extended by (144). The RyR is described
in a series of papers led mostly by Dirk Gillespie
(107,109,125,148–163) with key results in (158) and its sup-
plementary material.
SURPRISING SUCCESS OF SIMPLE MODELS

Nonner and Eisenberg were greatly surprised at the success
of such simple representations. (Some details of the success
are discussed below.) After all, these simple models omit
most atomic and molecular details, but the utility, even ne-
cessity, of reduced models is now widely recognized,
judging by their increasing use (164–172), even in simula-
tions involving quantum and molecular mechanics.

The reduced models of the calcium channel account
for most of the selectivity properties known in a wide
variety of solutions of variable composition. These
properties arise from strong interactions between ions and
side chains. Rate constants and free energies computed
from this model vary enormously (rate constants by more
than a factor of 1000) as conditions are changed
(125,129,132,133,144,158,161,162,173–175).
Biophysical Journal 104(9) 1849–1866
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SUCCESS DEPENDS ON COMPUTING
INTERACTIONS

Indeed, the model is successful because it computes the
changes in interactions successfully. Simulations or theories
that use a single value of rate constants or binding free en-
ergies do not allow changes in interactions with conditions.
They do not even allow Debye-Hückel shielding (7,97,176),
which is a general and unavoidable property of physical sys-
tems with mobile charge (177).

Ions and side chains of the protein are described in the
successful reduced models by spheres with their crystal
radii. Radii are never changed as solutions are changed.
Few parameters are needed to compute the binding curves
of the channel over six orders of magnitude of concentra-
tion, just the effective diameter and dielectric coefficient
of the protein and surrounding baths.
CHANNELS HAVE BEEN BUILT USING THE
PRIMITIVE MODEL

Calcium selective channels can be constructed as suggested
by the theory. OmpF porin, a hardly selective beta barrel bac-
terial channel that has no similarity to the calcium channels of
eukaryotes becomes calcium selective when glutamates are
introduced by mutation (178) in a suitably narrowed space
(178–180). Interactions produce the selectivity. Narrowing
the space increases the interactions and the selectivity.
ONE THEORY AND ONE SET OF PARAMETERS
DESCRIBES VERY DIFFERENT CHANNELS

If the side chains of the model are changed, the selectivity of
the channel changes from that of an EEEE or EEEA calcium
channel to that of a DEKA sodium channel, as found in ex-
periments (181,182) discussed in detail in (98,147,175,183).

It is thus possible to account for the main selectivity prop-
erties of two of the most important voltage sensitive chan-
nels with a single model without changing parameters,
just by changing side chains, as in experiments. It is impor-
tant to note that the properties of DEKA and EEEA channels
are very different and occur on different scales of concentra-
tion. I am unaware of any other models of selectivity in
channels that can account for such dramatic changes in
experimental properties without changing parameters.
DIFFERENT PARAMETERS CHANGE DIFFERENT
PROPERTIES

Reduced models of this type use effective parameters, much
as molecular dynamics (MD) uses effective force fields, that
use macroscopic properties to estimate (and to represent)
atomic scale forces. These parameters usually are compos-
ites and for that reason one expects changing a (composite
effective) parameter like dielectric coefficient to change
Biophysical Journal 104(9) 1849–1866
everything that is observed and not to have a simple effect.
One does not expect simple relations between selectivity
and a single composite or effective parameter. And that is
what usually happens. There is no (known) simple relation
between parameters of the calcium channel models and
selectivity. There is no simple relation between parameters
of the sodium channel and selectivity between (for example)
Ca2þ and Naþ.

Simple relations are not found even in the most thorough
analysis of selectivity in calcium or ryanodine channels.
Boda’s analysis (174) used Monte Carlo methods combined
with Widom’s insertion method. Gillespie’s analysis (158)
used Rosenfeld’s density functional theory to determine
components of free energy of binding. Both methods are
state of the art and did not produce a simple explanation
of the selectivities examined. Neither method has yet been
generally applied to other selectivity problems, probably
because of the difficulty of implementing them properly.

The DEKA sodium channel, however, is different when
we consider selectivity of Naþ over Kþ:

(1) The selectivity of the DEKA sodium channel for Naþ

vs. Kþ in fact depends only on a structural param-
eter—the diameter of the channel—and not on a mea-
sure of solvation—the dielectric coefficient. In the
primitive model, solvation appears as a dielectric coef-
ficient. See Fig. 1, redrawn from Fig. 8 of (147).

(2) The contents of the DEKA channel depend only on the
solvation (dielectric coefficient). See Fig. 2, redrawn
from Fig. 9 of (147).

(3) The selectivity of the DEKA channel depends on the
structure—the diameter of the channel. But selectivity
does not depend on solvation (dielectric coefficient) and
contents do not depend on structure (channel diameter).

(4) Solvation and selectivity operate independently (to the
amazement of the authors of (147)).Dielectric coefficient
and diameter have separate effects. One parameter deter-
mines one thing and not the other. They are orthogonal.

The reduced model evidently captures the (free) energies
used by this system to control selectivity and contents.
These energies are controlled by simple reduced variables.
It seems as if the reduced model has captured the adaptation
used by evolution to control selectivity and conductance in
this case.
GILLESPIE’S MODEL OF THE RYR

Gillespie’s model provides another example in which the
reduced model can compute the nonideal interactions that
determine selectivity and (in this case) conduction. Here,
Gillespie has been able to calculate current voltage curves
in more than 100 solutions— (158): many results are in the
supplementary material—predicting subtle mole fraction ef-
fects before they were measured (107,109,125,158,163).
Most strikingly, mutations involving drastic changes in the



FIGURE 1 Control variables. Diameter controls selectivity of the DEKA

Na channel. The selectivity (the ratio of the Naþ and Kþ contents) contents

of the DEKA Na channel depends on the diameter but not on the dielectric

coefficient. The structural parameter (diameter) determines the selectivity.

The solvation energy parameter (dielectric coefficient) determines the con-

tent. Each variable has an effect on one biological characteristic and not on

the other. Thus, there are two independent (orthogonal) control variables in

the model. Loosely speaking, structure (diameter) controls selectivity; sol-

vation (dielectric) controls contents and thus conductance. This figure is re-

drawn from Fig. 8 of (147).

FIGURE 2 Control variables: dielectric coefficient controls contents, i.e.,

conductance of the DEKANa channel. Note the different scales on the ordi-

nate for Naþ blue and Kþ red. The solvation energy parameter (the dielectric

coefficient) determines the contents and thus the conductance. The structural

parameter (the diameter of the channel) determines the selectivity (the ratio

of Naþ to Kþ). Each parameter has an effect on one biological characteristic

and not on the other. Thus, there are two independent (orthogonal) control

parameters that control the biological characteristics of the model, indepen-

dently. Loosely speaking, structure (diameter) controls selectivity; solvation

(dielectric) controls contents and thus conductance. The data shown are

unexpected results of 12 simulations, each taking billions of calculations

and several days. This figure is redrawn from Fig. 9 of (147).

Ions in Solutions Interact 1853
density of permanent charge (from some 17 molar to zero)
are accounted for in several solutions.
INTERACTIONS CAN BE CALCULATED IN
REDUCED MODELS WITH REALISTIC COMPLEX
PROPERTIES

These successes show that computation of interactions is
feasible in some biological situations and lend hope that
similar approaches may be successful in the future in
dealing with other biological systems that have selectivity
and crowded charge, like active sites of enzymes.

Given the success of this work, one may wonder why new
mathematics is needed. The answer is that a general method
of dealing with interactions can be extended to situations not
accessible to the Monte Carlo simulations used for calcium
and sodium channels, and hold significant advantages over
the methods used in dealing with the RyR (details in (97–
99,176)).
A DIFFERENT APPROACH: THE TRANSISTOR
TRADITION

The work described previously arose in the chemical tradi-
tion, emphasizing the thermodynamic properties of systems
at equilibrium, doing statistical mechanics in the thermody-
namic limit, where boundary conditions are not involved.
The theory of simple fluids is a magnificent example
showing what the classical tradition can do when exploiting
the simplifications produced by the thermodynamic limit
(184–187).

Quite a different tradition is used to analyze systems that
depend on flow and we turn to that tradition now in the
context of semiconductor physics. The new variational
mathematics will be used to unify the two approaches later
on. There, we will view ionic solutions as complex fluids
(48,50,51,54,122), and advocate (97,176,188) the use of
mathematical methods designed to deal with the flows and
interactions of complex fluids.
TRANSISTORS ARE A SYSTEM OF CHARGE
TRANSPORT CLOSELY RELATED TO ION
CHANNELS

Transistors are a system of charge transport closely related
to ion channels (1). Charge transport in transistors allows
most of our modern technology. Integrated circuits and
thus our digital technology depend on the flow of charged
quasiparticles, holes, and electrons. The electrons of
Biophysical Journal 104(9) 1849–1866
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semiconductors are quasiparticles that I like to call semi-
electrons. Quasiparticles have only a faint resemblance to
the isolated electrons of high school physics, despite their
identical name.

Quasiparticles are most useful mathematical construc-
tions that help us understand current flow in semiconductors
because quasiparticles follow laws much like those an ion
would follow if it were a point. But the quasiparticles—holes
and semi-electrons—do not exist outside of semiconductors
like silicon and germanium. Bio-ions exist permanently.

Bio-ions do not recombine, although of course weak acids
(e.g., glutamic acid) and bases (e.g., lysine) do, including
acidic and basic side chains of channel proteins. I have spec-
ulated that such recombination may be important in the
function of transporters (7,8). Protonation of side chains
would change the electric field and thus might create or con-
trol the correlated gates responsible for the ping-pong, alter-
nating access mechanisms of transporters. I hasten to say
this remains an idea, not a worked out model, let alone a fact.

Field effect transistors FETs contain channels in which
the flow of quasiparticles follow the drift diffusion equations
(4,6,64,189–191) with forces calculated from all the charges
present, using Poisson’s equation of the electric field. Quan-
tum mechanics creates the underlying properties of semi-
conductors (and biological solutions, for that matter), but
quantum mechanics enters indirectly in the classical theory
of semiconductors (2–4,6,64,66,67,192). It determines the
band structures and the properties of holes and semi-elec-
trons. Direct computation of quantum effects is not needed.
The drift diffusion equations are enough to deal with most
properties of interest (4–6,193–195).
QUASIPARTICLES AND REAL IONS FLOW UNDER
THE INFLUENCE OF ELECTRICAL FORCES
CREATED BY THEIR OWN CHARGE

Quasiparticles and real ions flow under the influence of elec-
trical forces created by their own charge in large measure.
Poisson or Maxwell’s equations—that relate charge and
electric forces—must therefore be solved along with the
drift diffusion equations. Treatments that solve both equa-
tions together are called consistent. Treatments that do not
are called inconsistent. Classical Langevin equations of
thermal motion are inconsistent for example when applied
to ions in water because they assume a constant electrical
field and do not compute it (196). MD simulations of ther-
mal motion on the other hand are consistent, if the electric
field is computed correctly so charges and electric potentials
are related by Maxwell’s equations.

Drift diffusion equations are a part of a multiscale anal-
ysis. In a multiscale analysis, a different set of (high resolu-
tion) equations is used to describe atomic properties. The
high resolution equations can be used to show the existence
of intermediate scale properties—for example, holes and
semi-electrons—but they rarely allow direct computation
Biophysical Journal 104(9) 1849–1866
of the properties of devices. The equations that describe
practical properties of devices are at an intermediate scale.
The intermediate scale drift diffusion equations are used
very widely to construct (197–199) and describe semicon-
ductor devices (6), although of course higher resolution
models are needed and used (2,3,66,67,192,200,201) in
some situations.
PNP AND DRIFT DIFFUSION

The drift diffusion equations are called PNP in biophysics
to emphasize the importance of computing the variable
spatial distribution of potential from the much less variable
distribution of fixed (permanent) charge, using the Poisson
equation with boundary conditions (for bath con-
centration and potential), as extensively discussed in
(7,8,52,54,95,106,120,123,144,148,202–253).

The name PNP for Poisson Nernst Planck (254) was
introduced deliberately as a pun in a Biophysical Society
Workshop (255) to emphasize a), the analogy between
ions in channels, and quasiparticles in transistors; and b),
the importance of computing the electric field, as opposed
to assuming that the electric field is constant (256–258) in
space, or as conditions, concentrations, or solutions change.

The electric field of PNP—like the electric field in transis-
tors—is not constant as conditions change. Electric forces
must be computed from all the charges present, including
the ions and quasiparticles, as a consistent mathematical so-
lution of the entire system. Most previous work on Nernst-
Planck equations in biology and chemistry (for example
(91,230,241,259–262)), a), did not mention the analogy
with transistors (however, see (263–265)); b), did not
mention the importance of permanent charge (i.e., doping);
and most importantly, c), did not mention the crucial role of
the variable shape (i.e., conformation) of the electric field
and its large changes when bath concentrations or potential
is changed.

The title of the early paper Computing the Field (7) was
chosen to contrast with earlier approaches that used more
or less constant fields (85,256–258), or unchanging poten-
tials of mean force (266,267), free energy barriers (85,267–
269), and rate constants (85,268,269). Fields describing
forces must change as conditions are changed in consistent
models and so cannot be assumed to be constant in shape,
let alone constant in space. Fields describing forces are out-
puts of a consistent theory or simulation. Fields must be
computed. Electric fields in channels and proteins cannot
be assumed to be constant (7) if the electrical potentials in
the system are to be consistent with the charges in the system.
TRANSISTORS FUNCTION BY CHANGING THE
CONFORMATION OF THE ELECTRIC FIELD

Transistors function by changing the conformation of the
electric field produced by doping and boundary conditions.
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The change in shape of the electric field is crucial for the
function of transistors. Drift diffusion without doping,
Poisson, or variable shapes of electric fields has a limited
range of behaviors. With doping, Poisson, and variable
shapes of fields, PNP can do everything a transistor and
thus everything a computer can do. For example, ele-
mentary texts show how a single FET can be an amplifier,
limiter, switch, multiplier, logarithm, or exponentiator
(6,65,270,271). Arrays of FETs provide all the logic,
memory, and display functions of a computer. Solu-
tions of the PNP equations can do everything a computer
can do!
EVOLUTION NEEDS DEVICES AS MUCH AS
ENGINEERS DO

It seems unlikely that evolution would entirely ignore the
devices that (ionic) PNP equations allow. It seems likely
that evolution uses electric (and steric) fields that change
shape to help with the function of proteins, channels, trans-
porters, and enzymes (8). It seemed (7,8)—and seems
(106)—possible that some functions of proteins customarily
attributed to changes in the conformation of mass might
actually be produced by changes in the conformation of
their electric (and steric) fields. Transistors function by
changing the conformation of their electric field without
changing the conformation of their masses.
PNP EQUATIONS ARE NOT ENOUGH

PNP equations are not enough because the diameter of ions
has important effects. The finite diameter of ions introduces
correlations not found in the PNP equations. The PNP equa-
tions are just early members (i.e., low order terms) of a
hierarchy of equations (272–278) like the BBGKY hierar-
chy (184,186,187) of equilibrium statistical mechanics.
The correlations are important in ionic solutions and biology
as we have discussed at length. Correlations produce
nonideal behavior.
IONIC SOLUTIONS ARE NOT DILUTE GASES

Classical models of ideal ionic solutions taught to
biophysicists need to be because ionic solutions have
interactions not found in uncharged, noninteracting ideal
gases (279).

A poor model of this sort cannot explain interactions seen
in experiments. If interactions are found experimentally,
classical models will attribute them (mysteriously) to a sin-
gle file in a channel protein, to the channel protein itself, to
the transporter, the enzyme, or the nucleic acid. The expla-
nations will be vague because they will not fit measurements
over a range of conditions. Classical models have no other
way to explain interactions. They will necessarily attribute
interactions to the protein or to mysterious chemical effects
and rate constants because classical models do not consis-
tently calculate interactions between ions or between ions
and side chains of proteins.
WHAT MODEL SHOULD WE USE TO DEAL WITH
INTERACTIONS?

It seems clear from the previous presentation that the prim-
itive model does well with some types of ion channels, and
should be used as the initial approximation in similar cases,
in which side chains of the channel protein mix with ions in
the pore of the channel.

What is not so clear is what model should be used for bulk
solutions (or for other biological systems, for example). The
unfortunate reality is that physical chemists today have not
yet found a good model for pure solutions with ionic
strengths greater than 100 mM, like those found in biology,
let alone for solutions of divalents, or for solutions like the
ionic mixtures (of cytoplasm and Ringer’s solutions) in
which almost all life occurs.
UNDERSTANDING OF BULK SOLUTIONS IS
LIMITED TO SPECIAL CASES

A recent summary paper (280) of a definitive book (25)
summarizes present knowledge of nonideal (i.e., specific)
effects in ionic solutions. It says (p.11) ‘‘It is still a fact
that over the last decades, it was easier to fly to the moon
than to describe the free energy of even the simplest salt so-
lutions beyond a concentration of 0.1 M or so.’’

These feelings of contemporary physical chemists are not
very different from those of the 1950s. Then, the standard
textbook (12) of Robinson and Stokes—still widely used
and in print—said, when talking about ionic solutions like
seawater or Ringer solution, ‘‘. many workers adopt a
counsel of despair, confining their interest to concentrations
below ~0.02 M, ... ’’ (p. 302 of (12)). Note that very little
biology occurs in solutions with concentrations below
0.02 M.

These feelings of despair arise out of frustration, in
my view. Nowadays, as in the 1950s, data are available
but understanding is not. Tremendous compilations
of experimental data have been published (10,12–
15,21,24,25,28,281). Two (15,21) are the result of large
governmental projects, yet many workers use huge lookup
tables (21) because of the inadequacy of phenomenological
models and their inability to predict behavior in conditions
different from those used to generate the models. The
models do not produce transferable results in the jargon of
the trade. Results measured in one set of conditions do not
transfer to other conditions, because interactions are
different in the two cases.

The need for understanding is great, the understanding is
little, and so frustration and despair are the predictable
result.
Biophysical Journal 104(9) 1849–1866



1856 Eisenberg
RESPONSE TO DESPAIR: ATOMIC SIMULATIONS

The constructive response to despair in academic as in real
life (often) is to move along and try something—anything—
new and different.

Atomic simulations are something new. Most efforts, for
several decades, have focused on simulating the properties
of ionic solutions by computing the motions of individual
atoms on a timescale of 10�15 s. The fantastic improvement
of semiconductor technology—by a factor of some 400
billion in 68 years—called Moore’s Law (282,283) has
made it possible to compute some 2(2013–1955)/1.5 faster
and better in the year 2013 than in 1955 (284). It is only nat-
ural to hope that direct simulation will do better than the
counsels of despair. (It is interesting that the technological
triumph of transistors was catalyzed by the PNP equations
not atomic scale simulation. PNP allows optimal scaling
of semiconductor properties and device characteristics, as
devices are made smaller (197,198). PNP speeds technolog-
ical development because it often replaces slow, expensive
trial and error experimentation with direct computation.
Atomic scale simulation of semiconductor devices has not
yet been able to do that.)

The problems in reaching the biological scales of function
are much harder, however, than commonly realized (285). In
biology, not only does one face extrapolations of 1010 in
timescale and length scale, but one also faces severe prob-
lems in dealing with the trace concentrations of messenger
molecules (Ca2þ, hormones) so important in biology. These
problems must be solved all at once, in one calculation,
because biology deals with these issues all at once.
PROBLELMS OF CALIBRATING SIMULATIONS

The problems of calibrating simulations of ionic solutions
are just now being faced in a (fortunately if belatedly)
growing literature. Recent contributions include
(22,37,47,118,167,286–295). As far as I know, no one has
attempted to calibrate simulations of seawater or its close
relatives, intracellular and Ringer’s solutions.

Even the issue of calculating the electric field has not
been faced forthrightly in MD simulations of ions or pro-
teins. Few works actually show that the electric field esti-
mated by MD is in fact that which would be produced by
all the charges in the system being simulated, using
Maxwell’s or Poisson’s equation. Arguments abound, con-
crete calibrations are scanty.

Calibrations are frequent and automatic in simulations
of computational electronics. Transistor simulations and
codes are routinely calibrated and checked to be sure the po-
tentials and charges are consistent, in my experience
(201,229,296–301).

All these problems of MD can be solved, I suspect, with
decades of future work. Future work must deal explicitly
with the unavoidable problems of calibrating atomic simula-
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tions of macroscopic systems. Avoiding problems rarely sol-
ves them.
IT IS IMPORTANT TO KEEP IN TOUCH WITH ALL
ATOM SIMULATIONS IN SEMICONDUCTORS

It is important to keep in touch with all-atom simulations in
semiconductors (see (302) and references cited there and in
(6) and at the website (2)). It seems that progress is possible
but slow. Calibrated simulations of the tiniest semicon-
ductor systems and transistors are possible (303–305). It is
important to try to extend such methods from crystalline
semiconductors to more disordered fluid systems like ionic
solutions.
DIFFERENT MODELS AT DIFFERENT SCALES

The central issue in ionic systems is the need for different
models at different scales. Direct computation cannot fill
10 orders of magnitude in time, and space, and concentra-
tion, all together, all at once. Interactions among ions
make this task essentially impossible if each interaction is
computed one by one (as in MD simulations) because ions
interact on the macroscopic scale of millimeters to meters
as they produce physiological behaviors like an action po-
tential, that depend in an essential way on the dielectric
properties of membranes.
DIELECTRIC PROBLEMS HAVE MORE THAN
PAIRWISE INTERACTIONS

The electric field in the presence of dielectric boundaries
(i.e., lipid membranes (306–308)) cannot be described by
pairwise interactions, as a matter of simple mathematics.
The induced charge at the boundary couples every particle
to every other particle making the number of interactions
beyond astronomical and jeopardizing even the usual statis-
tical mechanical definition of the state of one atom. If the
state of one atom depends on the coordinates of a macro-
scopic number of other atoms, it is not clear that the idea
of state (as usually used in statistical mechanics) is useful
or well defined.
ACTION POTENTIALS LINK ATOMIC AND
MACROSCALES

Biophysicists have known for more than 30 years (since
Neher and Sakmann (309–311)—and suspected for more
than 60 years (since the work of Hodgkin and Huxley
(312) if not Cole (313–316))—that the action potential is pro-
duced by atomic scale changes in structure controlled by
electrical potentials far away, millimeters or centimeters
away (in squid axon). They have known that action potentials
propagate over meters and depend on properties of small
groups of atoms (selectivity filters and gates) of individual
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molecules of channel proteins. They have known that statis-
tical properties of single channel molecules (the open
probability for example) control macroscopic potentials
and also depend on those potentials. Thus, biophysicists
have known forever that computations of action potentials
(along with many other biological functions) must involve
both atomic length scales and biological time and length
scales. What they did not, and do not know is how to span
the gaps between atomic and biological timescales.

In fact, it seems clear to me that there can be no general
way to deal with these gaps in scales. I think it is easy to
create counterexamples to any attempt at a general
approach. One simply has to add a process that is invisible
on one scale. Measurements in the invisible region can never
detect the invisible process. But the invisible process can
dominate on another scale. Think of an added linear reso-
nance process for a trivial example in a linear system.
Added nonlinear processes can obviously have even more
dramatic effects.
GUESS AND CHECK

Instead of a general multiscale theory, it seems to me that
one needs to guess simplifications and check them, hoping
to find the simplifications that evolution has chosen to fill
these enormous gaps. The simplifications imposed by evolu-
tion may make primitive models of biological systems more
useful than primitive models of physical systems, as they
seem to make primitive models of calcium channels more
useful than primitive models of bulk calcium solutions.
ATOMIC SCALE STRUCTURES CONTROL MOST
OF BIOLOGY

We all know that atomic scale structures control most of
biology. We all should know that these atomic scale struc-
tures move (102) more or less at the speed of sound (ang-
stroms in 10�12 s). We all know that most biology occurs
on a millisecond to second timescale. What we do not usu-
ally know is how evolution spans these gaps, except in a few
cases, like the propagating action potential just described
where the electric field spans the gap because the electric
field exists on all scales. It is inherently multiscale.
MULTISCALE ANALYSIS AND THE ACTION
POTENTIAL

Multiscale analysis is familiar to classical biophysicists but
under a different name. The Hodgkin Huxley analysis of the
action potential is inherently multiscale, and stunningly suc-
cessful, for just that reason, in my view. The classical anal-
ysis of the action potential spans scales by using the cable
(i.e., telegrapher’s) equation (317).

Multiscale analysis of the action potential is dramatically
simplified because most ionic channels function indepen-
dently (85,311). The currents from separate channel mole-
cules can be simply added to produce the macroscopic
response. Markov models are not needed. Any complete
summation of the currents through single channels—e.g.,
by nested convolutions of single-channel records—will do
fine, as long as the summations include all behaviors and
openings.
BIOLOGY REQUIRES EXPLICIT INTERMEDIATE
SCALE MODELS

Thus, I would argue in general that working out biophysical
mechanisms will require explicit intermediate scale models
linked together in a hierarchy starting with atomic struc-
tures, winding up with the biological function itself.

These models must of course include the substances
known to flow and to modulate flow in the biological func-
tion. And here we are back to interactions and ions. Almost
all properties of membrane proteins and nucleic acids are
sensitive to the type and concentration of salts in their envi-
ronment. Most enzymes behave differently when KþCl� in
surrounding solutions are replaced by NaþCl�. Most
enzyme reactions have different rates when Ca2þ is added
to the surrounding solution or when concentrations of any
of the bio-ions Naþ, Kþ, or Ca2þ are changed substantially.
If rates of enzymatic reactions depend on concentrations,
(free) energies depend on concentration. Thus, some of
the energies of the enzymatic reaction depend on the con-
centration of interacting ions of nonideal ionic solutions.
The energies are not ideal. Excess free energy is significant.
INCOMPLETE MODELS ARE UNLIKELY TO BE
USEFUL

If such excess (i.e., nonideal) energies and interactions are
not included in the description or models of enzymatic ac-
tivity, the models are incomplete. The models, in my
opinion, are unlikely to allow understanding and control if
they are so incomplete. Much biological control comes
from trace concentrations of Ca2þ and other messenger mol-
ecules perhaps concentrated a great deal in selective binding
sites. It seems very likely indeed that evolution will use in-
teracting ions to control and energize protein function. Part
of the power supply of enzymes is likely to come from the
enormous concentration of interacting ions nearby.

For these reasons, bio-ions and messenger molecules
must be included in the hierarchy of models. Bio-ions and
messenger molecules interact with each other through elec-
tric and steric fields. Ionic interactions, both steric and elec-
trical, must be naturally included in the hierarchy of models.
POWER OF ELECTRICAL MODELS

Here the power, precision, and generality of the laws of elec-
tricity are an enormous help. Maxwell’s equations describe
Biophysical Journal 104(9) 1849–1866
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the flow of current no matter what the chemical nature, or
atomic or macroscopic (or nuclear or astronomical) scale
of the current carrier. Where electrical phenomena are
involved, it is often possible to ignore chemical and atomic
detail. Appropriate approximations (like Kirchoff’s current
law and the telegrapher’s equations of cable theory) can
be used to link scales. The power and importance of Kirch-
off’s law can be appreciated when one realizes that it im-
plies perfect correlation (within the accuracy of Maxwell’s
equations, something better than 1 part in 1018) of ion mo-
tions, in contrast to the perfect independence of motion of
the ideal particles assumed in classical models.
MODELS MUST INCLUDE FLOW

The hierarchy of models needed to link atomic structure and
biological function must also include macroscopic flows and
current because most biological function requires flow.
Flows cease only at death.

Classical models and approaches do not include interac-
tions, current, or flows. Fortunately, classical mathematics
has been extended so we now know how to deal with inter-
actions and flows without guessing.

Mathematics has recently been developed to do what
Onsager (318–324) and Curran (325) and Katchalsky
(326) tried to do so valiantly. It is now possible to write
the free energy and dissipation (i.e., friction) of components
of a system, combine them in a natural way, and then
uniquely derive the mathematical description of the
behavior of this interacting system.

This new energy variational method is a generalization of
the variational methods long used by physicists to describe
mechanical, friction-free systems. The breakthrough is the
inclusion of friction and flow in a well-defined way consis-
tent with remarkably successful work in computational and
theoretical fluid dynamics (327–331). The methods of this
energetic variational calculus allow a (nearly) unique set
of predictions given a model of the free energy and friction
of a system.
ENERGETIC VARIATIONAL METHODS

Energetic variational methods (EnVarA) are discussed in
tutorial detail in (48), which extends to ionic solutions the
earlier work of other authors on more complex systems
(49,56,332–341). Variational methods of this sort (50–
53,58) and others (119,120,122,138,250,342) have been
applied to a range of problems involving ionic solutions.
These methods have been used, in a somewhat less general
form, in the work on liquid crystals (343,344) that help
makes possible the liquid-crystal display technology we
use every day.

The energy variational methods are not magic, of course;
the predictions are no better than the physical models them-
selves. If we use an inadequate physical model, we will get
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an inadequate result, but we cannot know what part of the
model is inadequate until we correctly compute the model,
under a range of conditions and compare those computa-
tions with experiments. The new mathematics allows one
to compute models including friction and predict—by math-
ematics alone—what the model will give in a variety of con-
ditions, including interactions and flows. Models can be
tested and improved much more quickly if predictions can
be made (with minimal adjustable parameters) and tested
over a wide range of experimental conditions. Otherwise,
comparing models tends to be an ill posed problem.
ENERGETIC VARIATIONAL APPROACH

The methods of the energetic variational calculus are a
promising new approach. These methods allow natural
and mathematically consistent treatment of interactions
and of flows but they depend on models of ions in
solutions and proteins and these are not general. In the
case of some ion channels, exceedingly simple models
work, but there is no reason to believe such success will
apply to other systems until the models actually succeed.
The problem is the models, not the methods: numerical pro-
cedures (52,120,122,250,345) are now available to allow
computations of interacting crowded systems without too
much trouble, even in very complex cases (51,56–58).

If we use an inadequate physical model, we will get an
inadequate result, but we cannot know what part of the
model is inadequate until we compare the model with exper-
iments under a range of conditions. We can then appropri-
ately improve the model and move along toward our goal
of the understanding and controlling of biophysical systems.

This view of ionic solutions may be new to many bio-
physicists and so seem idiosyncratic. This view, however,
has been presented to (and refereed by) communities in
applied mathematics and physics (1,188), physical chemis-
try (97,98,176,285), physiology (99), and biophysical chem-
istry (98).

I am indebted to the referees and editor who made suggestions that substan-

tially improved this paper, in my view. It has been a joy to work with my

many collaborators. Everything is a joint effort.

This work was made possible by the administrative work I have not been

asked to do. I am grateful to the Miller Institute (University of California

Berkeley), Rush University, and the Bard Endowed Chair that made that

possible.
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