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Ionic solutions are not ideal. Everything interactions with everything else 
through the electric field and steric repulsion.  

Ions are highly concentrated where they are most important, particularly 
in the highly concentrated solutions (>10 M) in and near ion channels, active 
sites, and electrodes (see European Biophysics Journal 41:449-460 (2012) .  

A variational approach is needed in such interacting systems (see J Chem 
Phys 133: 104104 (2010). The resulting Euler Lagrange differential equations 
are difficult to integrate.  

Here we present the first terms of a perturbation expansion that is much 
easier to compute and can produce current voltage curves in complex 
solutions and channels in a few hours of time on a notebook computer. 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equations are solved with the multiblock Chebyshev pseudospectral method 
together with the method of lines: J Computational Physics 231:2498 (2012). 

Computations have also been done for DEKA Na and EEEA Ca channels.  
 

Details are in the  
Journal of Physical Chemistry B 116:11422-11441 (2012). 
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 The calcium and sodium channel are represented as in the models introduced by Nonner 
and Eisenberg1 that have been used in a series of some 35 papers recently reviewed2 and 
extended to deal with current voltage relations of the Ryanodine Receptor by Gillespie3, more 
than anyone else. Most of these papers use the Monte Carlo MC methods of Boda and 
Henderson4 and so deal with equilibrium situations. Here we present an easily computable  
nonequilibrium treatment of the same model derived using the energy variational approach 
EnVarA of Chun Liu and collaborators5 that allows extension of an equilibrium model to 
nonequilibrium conditions producing flow. The EnVarA variational approach provides a unique 
consistent set of differential equations given a model of the conservative and dissipative 
energetics of the system. Few methods deal consistently with flow, dissipation and friction. 
Polarization forces are determined by Poisson’s equation without approximations used in MC. 
 Calculations are of properties of the open channel. Models of gating are not yet available, 
although it is becoming clear that some kinds of gating can arise from instability in models of 
the open channel. Other properties of gating require explicit models of the energy and 
dissipation of conformational changes of the electric and steric fields produced by ions, protein 
structures, and boundary conditions (e.g., membrane potential). 
 The model used is a one dimensional cylinder of variable diameter. Three dimensional 
calculations are needed and are in progress. Baths are represented by regions of much larger 
(“infinite”) diameter. The channel protein is represented by primitive models of side chains 
known to be important for selectivity. Side chains are spheres of different diameter and charge. 
 Calculations shown here use Kong combining rules6 for the first time to estimate 
interactions between different types of ions, and ions and side chains. Similar rules are used  
throughout physical chemistry to describe Lennard Jones forces between different types of 
ions, for example, in molecular dynamic simulations of bulk solutions. Interaction terms have 
profound effects on the coupling of fluxes through the open channel. It seems likely that 
evolution controls some channel function by controlling these interaction terms. 

EEEE Calcium Channel concentration distributions with various interactions. 
 With : (a) ; Ca2+ Kong binding ratio=0.60214; (b) ; Ca2+ binding ratio = 0.59418;  

(c) Ca2+ binding ratio = 0.75433;  (d) ; Ca2+ binding ratio = 0.86109; (e) ;  
Ca2+ binding ratio = 0.82580; (f) ; Ca2+ binding ratio = 0.71644 . 

 
Ca2+ = 1 mM,  Na+= 100 mM, on both sides. Membrane potential = 0. 
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