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Abstract A macroscopic model to describe the
dynamics of ion transport in ion channels is the

Poisson-Nernst-Planck(PNP) equations. In this pa-

per, we develop a finite-difference method for solving

PNP equations, second-order accurate in both space

and time. We use the physical parameters specifi-
cally suited toward the modeling of ion channels. We

present a simple iterative scheme to solve the system

of nonlinear equations resulting from discretizing the

equations implicitly in time, which is demonstrated
to converge in a few iterations. We place empha-

sis on ensuring numerical methods to have the same

physical properties that the PNP equations them-

selves also possess, namely conservation of total ions,
correct rates of energy dissipation, and positivity of

the ion concentrations. We describe in detail an ap-

proach to derive a finite-difference method that pre-

serves the total concentration of ions exactly in time.

In addition, we find a set of sufficient conditions on
the step sizes of the numerical method that assure

positivity of the ion concentrations. Further, we il-

lustrate that, using realistic values of the physical

parameters, the conservation property is critical in
obtaining correct numerical solutions over long time

scales.
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1 Introduction

The Poisson-Nernst-Planck(PNP) equations de-

scribe the diffusion of ions under the effect of an
electric field that is itself caused by those same ions.

The system is created by coupling the Nernst-Planck

equation (which describes the diffusion of ions under

the effect of an electric potential) with the Poisson

equation (which relates charge density with electric
potential). This system of equations has found much

use in the modeling of semiconductors [24]. Although

the Poisson-Nernst-Planck equations were applied to

model membrane transport for longer than they have
been employed to model semiconductors [30], the use

of the system to model the behavior of the internal

mechanics of these transport processes is much more

recent [8].

The system of PNP equations and its related

models have been the subject of much study and

numerical simulation. A recent advancement in this
field was the application of energy variational analy-

sis and density functional theory to modify the PNP

system to accommodate various phenomena exhib-

ited by biological ion channels. See [32] and the ref-
erences therein.

The computer simulations of the Poisson-Nernst-
Planck models are able to capture the transient,

dynamical behavior of the system, and the nu-

merical schemes employed are quite varied. Cagni

et al. (2007) [3] discretized the PNP in two di-
mensions using a second-order accurate finite differ-

ence method with central differencing in space and

Crank-Nicolson scheme in time, and simulated an

ion channel subjected to time-dependent perturba-

tions. Nanninga (2008) [27] studied a nerve impulse
using a similar finite difference scheme as in [3] but

in three dimensions, notable in that it directly in-

cluded gating and selectivity into the model. Lopre-

ore et al. (2008) [23] developed a finite-volume-based
technique to solve PNP in three dimensions, which

decomposes the domain using a dual Delaunay-

Voronoi mesh. Neuen (2010) [28] developed a semi-

implicit finite element-based scheme to simulate

three-dimensional, multi-scale extended PNP. Gard-
ner and Jones (2011) [10] simulated a potassium

channel modelled with PNP in two dimensions us-

ing a finite difference method with TR-BDF2 time

integration. Much of the numerical schemes in [10] is
based on the previous work [11], a one-dimensional

model of the same channel. Hyon et al. (2011) [19]

presented another finite element method with back-

Euler method in time to investigate the effects of fi-

nite size of the ions by modifying the PNP via intro-

ducing a repulsive potential energy into the total en-
ergy. Horng et al. (2012) [17] applied the multiblock

Chebyshev pseudospectral method and the method

of lines to solve a one-dimensional modified PNP

modeling the finite-sizeness of the ions via a local
model.

One of the characteristics of the nonlinear PNP

equations is that its overall behavior is very sensi-

tive to the boundary conditions [12]. This presents
a challenge for accurate and efficient numerical sim-

ulations, as generally the boundary conditions will

have to be discretized and approximated. In this

paper, we shall investigate the effects of discretiza-

tion error on the Poisson-Nernst-Planck equations,
in particular discretization of the boundary condi-

tions and the equations at the boundaries. We will

demonstrate that the conservation properties of the

numerical methods could be critical in obtaining the
long-time behavior of the solutions.

To our knowledge, relatively few studies describe

numerical methods such as finite difference method,

finite element method, finite volume method and
many others for solving partial differential equa-

tions(PDEs), which preserve the physical quantities

underlying the PDEs exactly at the discrete level.

Fisher et al. (2012) [9] developed finite difference
methods for solving the Euler equations and the

Burgers equation that relied on using specific split

forms of the equations to preserve the discrete en-

ergy dynamics. Hof and Veldman (2012) [16] devel-

oped finite volume discretizations for the 1D and 2D
Euler equations, as well as the 1D and 2D Shallow

Water equations, which conserved the dynamics of

mass, momentum and energy of the systems. For

the incompressible Navier-Stokes equations, the pa-
pers [15,25,31,20,14,26] presented finite difference

discretizations on uniform or nonuniform grids that

preserve part or all of discrete mass, momentum, and

kinetic energy. Li and Vu-Quoc (1995) [22] developed

a finite difference method for solving the nonlin-
ear Klein-Gordon equation which preserved the total

discrete energy. Qiao et al. (2011) [29] showed uncon-

ditionally energy stable finite difference schemes for

the dynamics of the molecular beam epitaxy, which
preserves the energy decay rate exactly at the dis-
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crete level. Zhang and Qiao (2012) [33] proposed a fi-

nite difference scheme that is mass-conservative and

preserves energy decay rate precisely for the Cahn-

Hilliard equation. Celledoni et al. (2012) [4] devel-

oped a general method of discretizing partial dif-
ferential equations that preserved the total energy

exactly, based on the average vector field method.

Chiu et al. (2012) [5] developed a general meshfree

scheme for solving partial differential equations char-
acterized by conservation of the discrete energy, and

they demonstrated its effectiveness by solving the 1D

and 2D inviscid advection equations.

It is also rare for numerical schemes to preserve

positivity for nonlinear advection-diffusion equations
like PNP, which do not have a maximum principle.

The work on this topic is well summarized by Hunds-

dorfer and Verwer[18]. Bolley and Crouzeix [2] de-

veloped much of the theory, establishing that linear

single-step and multi-step methods of second-order
or higher in time cannot preserve positivity uncondi-

tionally, and obtaining necessary and sufficient con-

ditions for positivity preservation for certain classes

of numerical methods.

The paper is organized as follows. We start by
defining and simplifying the equations we are work-

ing with, in Sect. 2, including the introduction of

the quantities that shall be preserved by our nu-

merical schemes: the total concentration of each ion
species in Sect. 2.1 and the energy dissipation law in

Sect. 2.2. We then describe our numerical schemes in

Sect. 3, which presents an approach to conserve the

total ion concentrations exactly, preserve positivity

of the ion concentrations, and approximate the en-
ergy dissipation law closely. Finally, we shall discuss

the results of simulating the system using our nu-

merical schemes in Sect. 4.

2 Governing Equations

Consider the PNP equations [8,11]

∂ci
∂t

= ∇ ·
{

Di

[

∇ci +
zie

kBT
ci∇φ

]}

, (1)

i = 1, 2, . . . , N,

∇ · (ǫ∇φ) = −
(

ρ0 +

N
∑

i=1

zieci

)

, (2)

where ci is the ion density for the i-th species, Di

is the diffusion constant, zi is the valence, e is the

unit charge, kB is the Boltzmann constant, T is the

absolute temperature, ǫ is the permittivity, φ is the

electrostatic potential, ρ0 is the permanent (fixed)

charge density of the system, and N is the number of

ion species [19]. The equations are valid in a bounded
domain Ω with boundary ∂Ω and for time t ≥ 0.

In this work, we shall use the no-flux boundary

condition for Eq. (1). This may correspond to mod-

eling the interior conditions of a channel that is in an
occluded state, with closed gates at either end. Sim-

ulations of channels such as the KirBac1.1 channel

in such a state have been conducted in the past [6].

We shall use the Robin boundary condition for the

Poisson equation, which models the effects of mak-
ing the source of the potential across the channel

partially removed from the ends of the channel. The

formula for the boundary conditions are

Di

[

∇ci +
zie

kBT
∇ciφ

]

· n = 0, i = 1, 2, . . . , N,

(3a)

(φ− φ±) + η
∂φ

∂n
= 0, (3b)

for points on the boundary x ∈ ∂Ω.

For some situations, such as a generic potassium

channel separating potassium and chloride ion baths,
the experimental data can be well-approximated by

a one-dimensional model [11]. In one dimension, the

equations (1) and (2) are simplified as

∂ci
∂t

=
∂

∂x

[

Di

(

∂ci
∂x

+
zie

kBT
ci
∂φ

∂x

)]

(4)

∂

∂x

(

ǫ
∂φ

∂x

)

= −
(

ρ0 +
∑

i

zieci

)

, (5)

for −L ≤ x ≤ L and t ≥ 0, where L is the half

of the length of the ion channel. The corresponding
boundary conditions are

∂

∂x

[

Di

(

∂ci
∂x

+
zie

kBT
ci
∂φ

∂x

)]

= 0,

(φ− φ±)± η
∂φ

∂x
= 0, for x = −L,L. (6)

2.1 Total Concentration

The total concentration per ion species is given by

ci,tot(t) =

∫ L

−L

ci(x, t) dx, i = 1, 2, . . . , N. (7)
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Due to the no-flux boundary conditions (6), the

total concentration of each ion species is constant in

time. This can be verified easily by differentiating (7)

with respect to time, then applying the convection-

diffusion equation (4) and no flux boundary condi-
tion (6).

One of the metrics we can use to evaluate differ-
ent numerical schemes is therefore to measure how

well the total concentration is conserved in numeri-

cal simulation. Ensuring that the total concentration

for each species ci,tot is constant will be the idea be-
hind the schemes presented in this work. As will be

seen in Sect. 4, the preservation of the conservation

property is crucial for producing correct numerical

results over long time scales.

2.2 Energy Dissipation

The governing equations (4) and (5) for the trans-

port of ions can be derived from the energy of the

system using variational principles. Similar to [19],
the total energy for our specific system is defined by

E =

∫ L

−L

[

kBT

N
∑

i=1

ci log
ci
ci,0

+
1

2
(ρ0 +

N
∑

i=1

zieci)φ

]

dx

+
ǫ

2η
(φ+φ(L) + φ−φ(−L)), (8)

where ci,0 are constants called “reference concentra-
tions”. Using the Poisson equation (5), the total en-

ergy can be written as

E =

∫ L

−L

[

kBT

N
∑

i=1

ci log
ci
ci,0

+
ǫ

2

(

∂φ

∂x

)2
]

dx

+
ǫ

2η
(φ2(L) + φ2(−L)), (9)

where the last term is the contribution of the elec-

tric energy from the boundaries. The total energy E

satisfies the energy dissipation property

dE

dt
= −

∫ L

−L

N
∑

i=1

Di

kBT
ci

∣

∣

∣

∣

∂µi

∂x

∣

∣

∣

∣

2

dx, (10)

where µi is the chemical potential of i’th ion species
defined by the variational derivative of the energy

with respect to the concentration ci

µi =
δE

δci
= kBT

(

log
ci
ci,0

+ 1

)

+ zieφ. (11)

The energy dissipation law (10) can be derived by

taking the time derivative of the total energy (8)

and applying integration by parts, Eqs. (4)-(5) and

the boundary condition (6):

dE

dt
=

∫ L

−L

kBT
∑

i

(log
ci
ci,0

+ 1)
∂ci
∂t

dx

+

∫ L

−L

[

1

2

∑

i

zie
∂ci
∂t

φ+
1

2
(ρ0 +

∑

i

zieci)
∂φ

∂t

]

dx

+
∂

∂t

[

ǫ

2η
(φ+φ(L) + φ−φ(−L))

]

=−
∫ L

−L

∑

i

Di

kBT
ci

∣

∣

∣

∣

∂µi

∂x

∣

∣

∣

∣

2

dx

− 1

2
ǫ

(

∂φ

∂x

∂φ

∂t
− ∂2φ

∂x∂t
φ

) ∣

∣

∣

∣

L

−L

+
∂

∂t

[

ǫ

2η
(φ+φ(L) + φ−φ(−L))

]

. (12)

The rate of energy decay (10) can be obtained by

using the boundary condition (6) to show the last

two terms on the RHS of (12) cancel each other.

2.3 Parameters and Nondimensionalization

We specify the units and the parameters using

the approximate values corresponding to the KcsA
potassium channel [7]. In our 1D model, the cylindri-

cal channel takes a diameter of 10 Å and a length of

120 Å. We shall assume no permanent charges or se-

lectivity for the purposes of this simulation. We con-
sider the case of two ion species, i.e. N = 2, with the

initial concentration for each ion being 2 molar, re-

sulting in an initial number density (number of ions

per unit volume) of 1.2044×10−3 ions/Å
3
. The com-

bination of the parameters kBT/e is approximately

0.025 V, assuming the temperature is T = 298 K.

The permittivity ǫ = ǫrǫ0 is determined by the value
of the vacuum ǫ0 = 8.854187817× 10−12 F/m and

the relative permittivity ǫr (78.5 for water).

The values of the diffusion coefficients Di depend

on both the ion species and the channel. The only

net effect of different diffusion constants is the rate
of evolution of the system. Typical values for the

diffusion coefficients for ion species in a channel are

around 109 Å2/s [13]. We will select both diffusion

coefficients to be equal to each other, causing them
to take a value of one after nondimensionalization.
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The parameter η, as a component of the Robin

boundary condition (3b), is an aggregate of multi-

ple physical constants and is highly dependent on

the properties of the surrounding membrane. mod-

eling the experimental setup as an electrical circuit
shows that the quantity Aǫl/η, where A is the area

of the membrane and ǫl is the permittivity of the

membrane, has units of capacitance and is related

to charge storage. The most significant charge stor-
age contributing to Aǫl/η is in fact the membrane

capacitance, so we may surmise that the primary

contributor to η is the membrane capacitance. If a

very high capacitance to ground is present, η is ap-

proximated by the appealing formula η = Aǫl/C,
where C is the capacitance of the membrane, how-

ever realistically η is much smaller than that. In this

work, we shall take η = 2.78×10−3 Å for our numer-

ical simulations, but will also examine the effects of
η over a range from 10−5 Å to 60 Å. Changing the

value of η might correspond to adding a parallel ca-

pacitance in experiment.

Define the dimensionless variables and parame-
ters c′i = ci/c0, x

′ = x/L, t′ = t/(L2/D0), D
′
i =

Di/D0, φ
′ = φ/φ0, and ρ′0 = ρ0/(ec0) where c0 is the

average of the initial charge concentration, L is the

half of the channel length or computational domain,

D0 is a typical diffusion coefficient, φ0 is a charac-
teristic value of the electrostatic potential such as

the boundary value. Then, non-dimensionalizing the

Nernst-Planck Eq. (4), we obtain

∂c′i
∂t′

=
∂

∂x′

{

D′
i

[

∂c′i
∂x′

+ χ1

(

zic
′
i

∂φ′

∂x′

)]}

, (13)

where χ1 := eφ0/kBT . From the above, the dimen-
sionless parameter χ1 ≈ 3.1, if φ0 = 0.08V. The

nondimensionalized Poisson Eq. (5) is given by

∂

∂x′

(

ǫ′
∂φ′

∂x′

)

= −χ2

(

ρ′0 +
∑

i

zic
′
i

)

, (14)

where χ2 :=
ec0L

2

φ0ǫt
. Here, the dimensionless param-

eter ǫ′ is defined as ǫ′ := ǫ/ǫt where ǫt is the charac-

teristic permittivity chosen to be the value for water:

ǫt = 6.950537436×10−20 F/Å. The non-dimensional

parameter χ2 is approximately 125.4 with these val-
ues. The corresponding dimensionless boundary con-

ditions are

D′
i

[

∂c′i
∂x′

+ χ1

(

zic
′
i

∂φ′

∂x′

)]

= 0,

(φ′ − φ′
±) + η′

∂φ′

∂n
= 0, for x = −1, 1, (15)

where η′ := η/L.

We drop the primes when we present our numer-

ical methods for clarity.

3 Numerical Methods

We present a method for deriving numerical schemes

that would conserve total concentration of each ion

species exactly if computations were performed with-
out round-off errors. We will illustrate the method

by describing a mass-conservative scheme (i.e. pre-

serving ion concentration exactly) for solving the

nonlinear systems of PDEs (13) and (14). The ex-

tension of the method to the multi-dimensional case
is straightforward. This scheme uses the trapezoidal

rule and the second-order backward differentiation

formula (TR-BDF2) in time and the second-order

central differencing in space. The TR-BDF2 scheme
is implicit in time, resulting in a system of nonlinear

equations after discretization. Instead of using the

Newton-Raphson method for solving the large non-

linear systems at each time step, we present a simple

iterative scheme which is easy to implement and can
solve the systems efficiently.

3.1 Discretization in Time

For time-stepping, we shall use a slight modification

of the scheme described in [1], which combines the

trapezoidal rule with the second-order backward dif-
ferentiation formula.

(1) TR step:

cn+γ,k+1

i − γ
∆tn
2

f(cn+γ,k+1

i , φn+γ,k)

= cni + γ
∆tn
2

f(cni , φ
n), i = 1, 2,

∂

∂x

(

ǫ
∂φn+γ,k+1

∂x

)

= −χ2

(

ρ0 +

2
∑

i=1

zic
n+γ,k+1

i

)

,

(16)

for k = 0, 1, 2, . . . .
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(2) BDF2 step:

cn+1,l+1

i − 1− γ

2− γ
∆tnf(c

n+1,l+1

i , φn+1,l) =

1

γ(2− γ)
cn+γ
i − (1− γ)2

γ(2− γ)
cni , i = 1, 2,

∂

∂x

(

ǫ
∂φn+1,l+1

∂x

)

= −χ2(ρ0 +

2
∑

i=1

zic
n+1,l+1

i ), (17)

for l = 0, 1, 2, . . . , where f(ci, φ) is defined as the

right-hand side of (13)

f(ci, φ) =
∂

∂x

{

Di

[

∂ci
∂x

+ χ1

(

zici
∂φ

∂x

)]}

. (18)

We take γ = 2−
√
2, which minimizes the local trun-

cation error [11].

Removing the inner iterations, corresponding to

the indices k in (16) and l in (17), Eqs. (16) and
(17) is the TR-BDF2 scheme requiring a nonlinear

solver for the two systems of nonlinear equations:

(16) for (cn+γ , φn+γ) at the grid points and (17)

for (cn+1, φn+1). With the inner iterations, Eqs. (16)
and (17) provide a simple iterative scheme for solv-

ing the systems of nonlinear equations. For instance,

at k-th iteration, we update the array cn+γ,k+1 at

the grid points by solving the first equation of (16)

which is a tri-diagonal system after the spatial dis-
cretization, since the values of φn+γ,k are known at

k-th iteration; then, we update φn+γ,k+1 using the

second equation of (16). We perform the inner itera-

tions until convergence and, as shown later, choosing
two inner iterations k = 2 and l = 2 would be suffi-

cient. As for initial guesses at the n-th time step, we

choose φn+γ,0 = φn for (16) and φn+1,0 = φn+γ,k+1

for (17) with k corresponding to the last inner it-

eration at the previous inner iteration. As shall be
seen in Sect. 4, without any such inner iterations

(k = l = 0), one could only attain first-order accu-

racy in time; on the other hand, with just one inner

iteration (k = l = 1), one can attain second-order
accuracy in time. In other words, the simple itera-

tive scheme is very effective in solving the systems

of nonlinear equations.

3.2 Discretization in Space

Next, we provide the discrete equations for the spa-
tial differential operators in Eqs. (16) and (17). Let’s

divide the dimensionless interval [−1, 1] to J subin-

tervals, xj = −1 + j∆x, where ∆x = 2/J and

j = 0, 1, · · · , J . We denote the numerical values of

g(x, t) at (xj , tn) by gnj and g(x) at xj by gj . We

present the standard second-order central differenc-
ing schemes for the spatial differential operators here

to facilitate the description of the mass-conservative

scheme which depends on the details of the dis-

cretization at the interior grid points (1 ≤ j ≤ J−1).
The ion diffusion term in Eq. (13) is discretized

as

∂

∂x

(

Di
∂ci
∂x

)

(xj) ≈ (19)

Di,j+ 1
2
cj+1 − (Di,j+ 1

2
+Di,j− 1

2
)ci,j +Di,j− 1

2
ci,j−1

(∆x)2
.

The term driven by the electrostatic potential gra-

dient in Eq. (13) is given by

∂

∂x

(

Dici
∂φ

∂x

)

(xj) ≈ (20)

Di,j+1ci,j+1(φj+2 − φj)−Di,j−1ci,j−1(φj − φi,j−2)

4(∆x)2
.

The Laplacian in the Poisson Eq. (14) is approxi-

mated by

∂

∂x

(

ǫ
∂φ

∂x

)

(xj) ≈ (21)

1

(∆x)2

[

ǫj+ 1
2
φj+1 − (ǫj+ 1

2
+ ǫj− 1

2
)φj + ǫj− 1

2
φj−1

]

.

The fully discretized form of (18) can be expressed

as the matrix form F (φ)ci, where the nonzero entries

of the tridiagonal matrix F (φ) are given by

Fi(φ)j,k =















1

∆x2

(

Di,j− 1
2
− χ1ziDi,j−1

φj−φj−2

4

)

for k = j − 1

− 1

∆x2 (Di,j+ 1
2
+Di,j− 1

2
) for k = j

1

∆x2

(

Di,j+ 1
2
+ χ1ziDi,j+1

φj+2−φj
4

)

for k = j + 1

(22)

and the vector ci = (ci,0, ci,1, · · · , ci,J)T denotes the
unknown concentration at the grid points for the i-th

ion species.

We can then write the fully discretized system as

(1) TR step:
(

I − γ
∆tn
2

Fi(φ
n+γ)

)

cn+γ
i =

(

I + γ
∆tn
2

Fi(φ
n)

)

cni ,

for i = 1, 2, (23)

Gφn+γ = −
(

ρ0L
2

φ0ǫt
+ χ2

2
∑

i=1

zic
n+γ
i

)

,
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(2) BDF2 step:

(

I − 1− γ

2− γ
∆tnFi(φ

n+1)

)

cn+1

i

=
1

γ(2− γ)
cn+γ
i − (1 − γ)2

γ(2− γ)
cni , i = 1, 2, (24)

Gφn+1 = −(
ρ0L

2

φ0ǫt
+ χ2

2
∑

i=1

zic
n+1
i ),

where Gφ provides the matrix form of the right-hand

side of (21).

3.3 Discretization of Boundary Condition

We shall implement the boundary conditions us-
ing two different schemes. The first scheme is ob-

tained by applying standard finite differencing to the

boundary conditions, and the second is obtained by

requiring the conservation of ions within the chan-

nel. As shown later, it is critical to preserve the ion
concentrations for accurate numerical solutions.

Standard Implementation

Applying the forward differencing to the right-hand

side of the Nernst-Planck equation (13) at the left
boundary and using the no-flux boundary condition

in (15), we obtain

∂

∂x

{

Di

[

∂ci
∂x

+ χ1

(

zici
∂φ

∂x

)]}

(−L)

≈
Di,1

[

ci,2−ci,0
2∆x + χ1zici,1

φ2−φ0

2∆x

]

− 0

∆x

= Di,1

ci,2 − ci,0 + χ1zici,1(φ2 − φ0)

2(∆x)2
. (25)

It is similar at the right boundary. We implement the

Robin boundary condition in (15) with the second-
order central differencing using ghost grid points as

(φ0 − φ−)− η
φ1 − φ−1

2∆x
= 0,

or φ−1 = φ1 −
2∆x

η
(φ0 − φ−), (26)

and similarly φJ+1 = φJ−1 −
2∆x

η
(φJ − φ+).

Conservative Scheme: TR Step

The no-flux boundary condition in (15) implies that

the total concentration of each ion species is constant

throughout time. Thus, we discretize the equations
by requiring the numerical value of the total concen-

tration be conserved exactly in time.

First, we approximate the total concentration
ci,tot(tn) defined in Eq. (7) using the trapezoidal rule

as follows

cni,tot =
J−1
∑

j=1

cni,j∆x+
∆x

2

(

cni,0 + cni,J
)

(27)

Let us examine the change of the total concentration

in the TR step (23).

cn+γ
i,tot − cni,tot

γ∆t
=

J−1
∑

j=1

cn+γ
i,j − cni,j
γ∆t

∆x

+
∆x

2

(

cn+γ
i,0 − cni,0

γ∆t
+

cn+γ
i,J − cni,J

γ∆t

)

=
J−1
∑

j=1

[

Di,j+ 1
2
cn+γ
i,j+1 − (Di,j+ 1

2
+Di,j− 1

2
)cn+γ

i,j

2∆x

+
Di,j− 1

2
cn+γ
i,j−1

2∆x
+ χ1zi

Di,j+1c
n+γ
i,j+1

(

φn
j+2 − φn

j

)

8∆x

−χ1zi
Di,j−1c

n+γ
i,j−1

(

φn
j − φn

j−2

)

8∆x

+
Di,j+ 1

2
cni,j+1 − (Di,j+ 1

2
+Di,j− 1

2
)cni,j

2∆x

+
Di,j− 1

2
cni,j−1

2∆x
+ χ1zi

Di,j+1c
n
i,j+1

(

φn
j+2 − φn

j

)

8∆x

−χ1zi
Di,j−1c

n
i,j−1

(

φn
j − φn

j−2

)

8∆x

]

+
∆x

2

(

cn+γ
i,0 − cni,0

γ∆t
+

cn+γ
i,J − cni,J

γ∆t

)

. (28)

This summation has a telescoping effect where most
of the interior terms cancel each other and we are
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left with

cn+γ
i,tot − cni,tot

γ∆t
=

∆x

2

(

cn+γ
i,0 − cni,0

γ∆t
+

cn+γ
i,J − cni,J

γ∆t

)

+
Di, 1

2
(cn+γ

i,0 + cni,0 − cn+γ
i,1 − cni,1)

2∆x

+
Di,J− 1

2
(cn+γ

i,J + cni,J − cn+γ
i,J−1

− cni,J−1)

2∆x

− χ1zi
Di,0(c

n+γ
i,0 + cni,0)

(

φn
1 − φn

−1

)

8∆x

− χ1zi
Di,1(c

n+γ
i,1 + cni,1) (φ

n
2 − φn

0 )

8∆x

+ χ1zi
Di,J−1(c

n+γ
i,J−1

+ cni,J−1)
(

φn
J − φn

J−2

)

8∆x

+ χ1zi
Di,J(c

n+γ
i,J + cni,J )

(

φn
J+1 − φn

J−1

)

8∆x
.

(29)

We can achieve the conservation of the total con-

centration cn+γ
i,tot = cni,tot, if we discretize the Nernst-

Planck equation (13) at the left boundary as

cn+γ
i,0 − cni,0

γ∆t
=

Di, 1
2
(cn+γ

i,1 − cn+γ
i,0 + cni,1 − cni,0)

(∆x)2

+χ1zi
Di,0(c

n+γ
i,0 + cni,0)

(

φn
1 − φn

−1

)

4(∆x)2

+χ1zi
Di,1(c

n+γ
i,1 + cni,1) (φ

n
2 − φn

0 )

4(∆x)2
, (30)

and at the right boundary as

cn+γ
i,J − cni,J

γ∆t
=

−
Di,J− 1

2
(cn+γ

i,J − cn+γ
i,J−1

+ cni,J − cni,J−1)

(∆x)2
(31)

−χ1zi
Di,J−1(c

n+γ
i,J−1

+ cni,J−1)
(

φn
J − φn

J−2

)

4(∆x)2

−χ1zi
Di,J(c

n+γ
i,J + cni,J)

(

φn
J+1 − φn

J−1

)

4(∆x)2
.

It is important to point out that Eq. (30) can be

seen as discretizing Eq. (13) using a first-order finite

difference with grid size ∆x/2 and using the no-flux
boundary condition (15). Eq. (30) can be rewritten

as

cn+γ
i,0 − cni,0

γ∆t
=

[

Di, 1
2
(cn+γ

i,1 − cn+γ
i,0 )/∆x

∆x

+

χ1zi
2

(

Di,0c
n+γ
i,0

φn
1 −φn

−1

2∆x +Di,1c
n+γ
i,1

φn
2 −φn

0

2∆x

)]

− 0

∆x

+

[

Di, 1
2
(cni,1 − cni,0)/∆x

∆x

+

χ1zi
2

(

Di,0c
n
i,0

φn
1 −φn

−1

2∆x +Di,1c
n
i,1

φn
2 −φn

0

2∆x

)]

− 0

∆x
(32)

≈
1

2

[(

Di
∂cn+γ

i

∂x + χ1ziDic
n+γ
i

∂φn

∂x

)

(x 1
2
)

∆x/2

+

(

Di
∂cni
∂x + χ1ziDic

n
i
∂φn

∂x

)

(x 1
2
)
]

− 0

∆x/2
.

Conservative Scheme: BDF2 step

We can rewrite Eq. (24) in such a way that the nu-

merical value of the derivative of the total concentra-

tion becomes a linear combination of the result from

the TR step and the right hand side of equation (13)
evaluated at the n+ 1th time step.

cn+1
j − cn+γ

j

(1 − γ)∆t
=

1− γ

2− γ

cn+γ
j − cnj
γ∆t

+
1

2− γ
f(cn+1

j )

(33)

As with the TR step, almost all of the interior
terms cancel in a telescoping sum, and we can require

the exact conservation of the total concentration

cn+1

i,tot = cn+γ
i,tot in order to obtain the discretization of

the Nernst-Planck equation (13) at the boundaries

for the BDF2 step:

cn+1
i,0 − cn+γ

i,0

(1 − γ)∆t
=

1− γ

2− γ

(

cn+γ
i,0 − cni,0

γ∆t

)

+
2

2− γ

Di, 1
2
(cn+1

i,1 − cn+1
i,0 )

(∆x)2

+
χ1zi
2− γ

Di,0c
n+1

i,0

(

φn
1 − φn

−1

)

+Di,1c
n+1

i,1 (φn
2 − φn

0 )

2(∆x)2
,

(34)
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cn+1

i,J − cn+γ
i,J

(1 − γ)∆t
=

1− γ

2− γ

(

cn+γ
i,J − cni,J

γ∆t

)

− 2

2− γ

Di,J− 1
2
(cn+1

i,J − cn+1

i,J−1
)

(∆x)2

− χ1zi
2− γ

Di,J−1c
n+1

i,J−1

(

φn
J − φn

J−2

)

2(∆x)2

− χ1zi
2− γ

Di,Jc
n+1

i,J

(

φn
J+1 − φn

J−1

)

2(∆x)2
. (35)

Equation (34) can be seen as discretizing only

the term f(cn+1

i,j ) in Eq. (24) using forward difference
with grid size ∆x/2 and using the no-flux boundary

condition in (15). Eq. (35) can be viewed similarly

at the right boundary.

3.4 Positivity-preserving Conditions

The ion concentrations governed by the PNP equa-

tions are always positive or non-negative at any point
in space and for all times. The numerical solution to

(23) and (24) does not necessarily guarantee to pre-

serve positivity property of the solution. In this sec-

tion, we derive a set of conditions, (44a) and (44b),
on the time and space step sizes to ensure that the

solution be always non-negative at every point.

First, by factoring and simplifying, we combine

the TR step (23) and BDF2 step (24) into the fol-

lowing compact form

(I − γ∆t

2
F (φn+γ))(I − 1− γ

2− γ
∆tF (φn+1))cn+1

=

(

I +
∆t

2(2− γ)
(F (φn) + (1− γ)2F (φn+γ))

)

cn,

(36)

where the matrices F are defined in (22). Here,
we have dropped the subscript i for convenience of

presentation. We can analyze this in steps to find

the conditions under which the system is positivity-

preserving. We assume the gradient of the potential,
|∂φ∂x |, is bounded. Consequently, we denote the bound
for its finite difference approximations by

Φ := max
j,n

∣

∣

∣

∣

(φn
j+1 − φn

j−1)

2∆x

∣

∣

∣

∣

(37)

Lemma 1 All matrix equations of the form (I −
kF (φ))c∗ = c̃ preserve positivity for any k > 0,

where F is defined in (22), i.e., c∗ > 0 (all elements
of c∗ are positive) provided that c̃ > 0.

Proof This is a consequence of Lemma I.7.4 of [18]. If

we can show that the conditions (I.7.14) and (I.7.15)

of [18] are satisfied, then the positivity is preserved.

Consider the forward Euler scheme

c∗∗ = (I + kF (φ))c̃. (38)

First, we show that c∗∗ is conditionally positive given

all entries of c̃ are positive (c̃j > 0 ∀j), i.e.,

0 ≤ c̃j + k
Dj+ 1

2
c̃j+1 − (Dj+ 1

2
+Dj− 1

2
)c̃j +Dj− 1

2
c̃j−1

(∆x)2

+kχ1zi
Dj+1c̃j+1(φj+2 − φj)−Dj−1c̃j−1(φj − φj−2)

4(∆x)2

To get the coefficients of c̃j terms to be positive, we

need

1− (Dj+ 1
2
+Dj− 1

2
)

k

∆x2
≥ 0 (39)

or

1− (2Dmax)
k

∆x2
≥ 0, i.e. k

2Dmax

∆x2
≤ 1, (40)

where

Dmax = max
i,j

Di,j , Dmin = min
i,j

Di,j (41)

are the maxium and the minimum of the diffusion

coefficients respectively. In order to guarantee the
terms involving cj+1, cj−1 be positive, we impose

Dj+1/2

∆x2
+

Dj+1χ1zi
2∆x

φj+2 − φj

2∆x
≥ 0, (42a)

and

Dj−1/2

∆x2
− Dj−1χ1zi

2∆x

φj − φj−2

2∆x
≥ 0 (42b)

to be true for all i, j. We can thus guarantee positiv-
ity by

Dmin

∆x2
− Dmaxχ1Φ

2∆x
≥ 0, i.e. ∆x ≤ 2Dmin

Dmaxχ1Φ
,

(43)

where Φ, Dmax andDmin are defined in (37) and (41)

respectively. Therefore, if we assume the system of

equations (I − kF (φ))c∗ = c̃ is solvable, by Lemma

I.7.4 of [18], we have proved that c∗ is positive for
any k > 0.
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With Lemma 1, we are ready to show the

positivity-preserving property of our scheme (36) as

follows. First, similar to the proof of Lemma 1, one

can show that the right-hand side (36), denoted by

cn,∗, preserves positivity if the following conditions
are satisfied

∆t

∆x2
≤ 2− γ

(1 + (1− γ)2)Dmax

(44a)

and

∆x ≤ 2Dmin

Dmaxχ1Φ
. (44b)

Next, the matrix equation (36)
(

I − γ∆t

2
F (φn+γ)

)(

I − 1− γ

2− γ
∆tF (φn+1)

)

cn+1

= cn,∗ (45)

is equivalent to the following two equations of the

form in Lemma 1
(

I − γ∆t

2
F (φn+γ)

)

cn,∗∗ = cn,∗, (46a)

(

I − 1− γ

2− γ
∆tF (φn+1)

)

cn+1 = cn,∗∗. (46b)

Finally, applying Lemma 1 to each of the equations

(46a) and (46b), we have shown that, if the con-
ditions (44a) and (44b) are satisfied, our numerical

scheme (36) is positivity-preserving.

4 Numerical Results

4.1 Validation and Convergence Results

To validate the accuracy our numerical method,

we compare the steady-state solution from our dy-

namic simulations of PNP with that of the Poisson-

Boltzmann solution taken from the work [21]. Fig-
ure 1 shows that our steady-state solutions match

perfectly with those in [21] for two sets of parame-

ters: one with η = ǫ = 2−2 and the other η = ǫ =

2−6 while keeping the other parameters constant:

φ− = −1, φ+ = 1, D1 = D2 = 1, χ1 = 1, χ2 = 1

2ǫ ,
and ρ0 = 0. The maximum difference in φ between

the two solutions is less than 5.6 × 10−5. To get

the steady-state solution, we have used the mass-

conservative TR-BDF2 method described in previ-
ous sections with 2048 grid points in the interval

[−1, 1] as in [21] and the time-step size 10−4. At

time t = 0, the initial profiles for the ion concentra-

tions are uniform in space. In this case, our time-

dependent solution is close to the steady-state solu-

tion for the time t ≥ 2. We have also verified that
our solutions agree with those in [21] for other sets

of parameters as well, although they are not shown

here.

We have also checked the orders of convergence of
our methods. The discretization method described in

the previous section always has O(∆x2) convergence

in space, regardless whether we have implemented

the mass-conservative difference scheme or not. The

order of convergence in space is computed using the

formula log2
|Φ(2∆x) − Φ(4∆x)|
|Φ(∆x) − Φ(2∆x)| , where Φ(∆x) de-

notes the numerical solution of the potential φ at the

point (x, t) = (0.904, 0.02) obtained with the spa-

tial resolution ∆x. In this case, the time step size
is chosen to be very small ∆t = 10−6 so that the

discretization error is dominated by that in space.

To obtain the numerical orders of convergence

in time, we compute the numerical solutions with

three different time-step sizes ∆t, 2∆t and 4∆t and
then calculate the numerical order of convergence p

by computing the ratio Φ(2∆t)−Φ(4∆t))/(Φ(∆t)−
Φ(2∆t)) at the fixed position and time (x, t) =

(0.904, 0.02). Here, the spatial resolutions in these
simulations are kept the same, ∆x = 0.002. The

numerical convergence results in time are given in

Table 1. We find that, if one did not perform inner

iterations (k = 0 in (23) and l = 0 in (24)), the con-

vergence of TR-BDF2 would be first-order in time.
If we include at least one inner iteration (k ≥ 1 and

l ≥ 1), then the convergence becomes second-order

as expected.

4.2 Evolution of the Distributions of the Ions

First, we examine the evolution of the ion concen-

trations and the electrostatic potential starting from

a uniform ion distribution of two ion species of op-

posite valence z1 = 1 and z2 = −1: ci(x, 0) = 1,

i = 1, 2, for −1 ≤ x ≤ 1. The prescribed electro-
static potentials on the left and the right at far-

field are φ− = 1 and φ+ = −1 respectively. The

physical parameters are specified as in Sect. 2.3.

In the rest of this work, unless we specify other-
wise, the non-dimensionalized parameters are cho-
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sen as D1 = D2 = 1, χ1 = 3.1, χ2 = 125.4 and

η = 4.63 × 10−5, as they were defined in Sect. 2.3.

Due to the symmetries of the initial and boundary

conditions, the parameters and the domain, the pro-

files for the concentrations of the two ion species at
any time are symmetric with respect to the center

of the channel, x = 0.

Figure 2 shows the profiles of the ion concentra-

tion with the valence z2 = −1 and the electrostatic

potential at the times t = 0, 0.01, 0.05, and 1. The
Robin boundary condition (15) for the electrostatic

potential drives the ions with negative charges to-

ward the left boundary and the no-flux boundary

condition (15) for the ions causes those charges to
accumulate at the boundary. In this case, the ion

concentrations keep their uniform profile in the bulk

of the domain away from the two ends, while the elec-

trostatic potential changes from an initially linear

profile to one that is essentially constant (zero) ex-
cept for the sharp gradient at each end. We find that

the existence of the thin boundary layers requires

high spatial resolution or small ∆x in the simula-

tion. The numerical results would be far away from
the correct solution if we chose ∆x > 0.05. These

results show the overall behavior of the system as

time elapses.

4.3 Comparison between Mass-conservative and

Standard Schemes

Next, let us compare the numerical results from

a standard discretization (called as the non-

conservative schemes) of the boundary conditions,

(25), with those obtained from the mass-conservative
schemes (30) and (34). Figure 3 shows the ion con-

centration profiles and the electrostatic potential at

time t = 1 obtained from both the mass-conservative

schemes(the solid lines) and the non-conservative
schemes (the dashed lines). The parameters in the

computations are the same as described in the pre-

vious Sect. 4.2. To make fair comparison, all other as-

pects are kept same, including the time-step scheme

(TR-BDF2), the discretization scheme for interior
points of the domain, the initial condition, the phys-

ical parameters, the time-step size ∆t and the space

resolution∆x. As shown in Fig. 3(a), the ion concen-

tration from the non-conservative scheme is substan-
tially lower than that from the mass-conservative

scheme and the variations near the boundaries are

much smaller in the result from the non-conservative

scheme. Furthermore, the electrostatic potential ob-

tained from the non-conservative scheme, shown in

Fig. 3(b), has a linear profile with non-zero slope in
the middle of the domain and much milder slopes at

the boundaries, when compared with that from the

mass-conservative schemes.

Because of the no-flux boundary conditions (3a),
the total concentration of each ion species should

be invariant in time. Figure 4 shows that the mass-

conservative scheme preserves the conservation of

the ions perfectly (up to the level of roundoff error)
over a long period of time, while the total number

of ions at the time t = 1 obtained from the non-

conservative scheme is reduced to less than half of

the original amount.

Figure 5(a) shows that the total energy E as

a function of time t for both the conservative and

non-conservative schemes. The total energy obtained

from the mass-conservative scheme approaches the
minimum energy state much faster than that from

the non-conservative scheme. More importantly, in

Sect. 2.2, it is shown that the total energy of the sys-

tem E defined as (8) satisfies the energy dissipation

law (10). In Fig. 5(b), we plot the rate of change
in energy, dE

dt , for the mass-conservative (the solid

line) and the non-conservative schemes (the dotted

line) obtained by using a second-order finite differ-

ence based on the numerical result E(t) shown in
Figure 5(a). In the same graph, we also plot the

expected dissipation rate given by the right-hand

side of (10), computed using the second-order cen-

tral differencing and trapezoidal rule and shown by

the dashed line for the conservative scheme and the
dash-dotted line for the non-conservative scheme in

Fig. 5(b). It shows that the numerical result from

the conservative scheme (the solid line) agrees with

the energy dissipation law (the dashed line) very
well. In contrast, the corresponding results for the

non-conservative scheme show that the energy dis-

sipation law is not satisfied after a short period of

time. This is due to the fact that the total concentra-

tion from the non-conservative scheme displays very
poor performance in conserving the total concentra-

tions. The results show that the discretization of the

boundary conditions have profound impact on satis-

fying the physical properties: the energy dissipation
law and the conservation of the total number of ions.
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In addition to energy decay, we compute the

maximum rate of change in the concentrations of

the species over the domain, i.e. max
i,−1≤x≤1

|∂ci
∂t

|. It
is notable from the time derivative of concentration

shown in Fig. 6 that the numerical results from the
conservative numerical scheme steadily approach the

equilibrium in time. On the other hand, the non-

conservative scheme is approaching a steady state

much faster initially, but, later in time, the non-
conservative scheme’s behavior changes and it does

not appear to reach a steady state. This result em-

phasizes the necessity of the conservative numerical

scheme for long-time simulation.

4.4 Effect of Parameters

The size of the difference in the results from con-

servative and non-conservative schemes depends on

the non-dimensional parameter χ2 =
ec0L

2

φ0ǫt
. For the

physical model of the ion transportations, the value

of χ2 can be arbitrarily large, depending on the val-

ues of average ion concentration c0 and the applied

electrostatic potential φ0 at the boundaries. Con-

sequently, it is important to pay attention to the
size of the dimensionless parameter χ2. In Fig. 3,

we have shown that, for χ2 = 125.4, the results of

non-conservative schemes are far away from the cor-

rect results. Figure 7(a) and (c) show the profiles
of the electrostatic potential φ at a fixed time t = 1

from both the conservative and the non-conservative

schemes with two more different values of χ2 = 31.35

and 501.6, while keeping all other parameters the

same as those for Fig. 3. At t = 1, the system has
reached the steady state, shown by the constant val-

ues for the conservative scheme in the energy plots of

Fig. 7(b) and (d). Comparing the graphs of potential

in Fig. 3(a), (c) and Fig. 7, we find that the value
of χ2 primarily affects the width of the boundary

layer, with larger χ2 resulting in thinner boundary

layers. A thinner boundary layer transitions much

more sharply near the boundaries, and thus requires

more computational grid points in the region and
more truthful discretization of the boundary con-

ditions. This causes the differences in electrostatic

potential profiles and the energy dissipation in time

(shown by Figs. 7(b) and (d)) between the conser-
vative and non-conservative schemes to be greater

as one increases χ2. A thinner boundary layer also

affects performance with regard to the energy dissi-

pation law, which is not shown here in plots. Larger

χ2 leads to a larger discrepancy between the decay

rate of the total energy (the left-hand side of Eq. 10)
and the energy dissipation rate (the right-hand side

of the law Eq. 10), and this discrepancy gets worse

faster for the non-conservative scheme than for the

conservative scheme.

Finally, we examine the effect of the parameter η
in the Robin boundary condition (3b) on the nu-

merical results. As noted in Sect. 4.1, the steady

state changes dramatically if the relative values of

the physical parameters η and ǫ are changed. In order
to determine the effect of η itself on the results, we

have tested a range of non-dimensionalized values for

η ranging from 10−6 to 1, while holding ǫ at its con-

stant non-dimensionalized value of 1. We find that,

when η increases from 10−6 to 0.001, the concentra-
tion profiles at the steady state do not change much,

having a maximum relative difference of only 10−4,

but this property does not generalized to larger η.

We also find that the discretization error, especially
for the non-conservative scheme, is significantly af-

fected by the value of η. For large values of η, say

η > 0.1, the growth of the discretization error of

the non-conservative scheme is rather slow, and con-

sequently the concentration and electric potential
profiles obtained from the non-conservative scheme

are close to those obtained by the mass-conservative

schemes. An example of this property is shown in

Fig. 8. It appears that, for η = 0.5, the total energy
from the non-conservative scheme decreases linearly

in time after an initial sharp drop, becoming nega-

tive at later time. On the other hand, the conser-

vative scheme reaches a steady state very quickly

and does not deviate from it. For small values of
η such as those shown in Fig. 3, both the conser-

vation property of the total concentrations and the

energy dissipation law deteriorate at a fast pace for

the non-conservative scheme, and the difference be-
tween the results from the conservative and the non-

conservative schemes grows bigger as η gets smaller.

5 Conclusion

The primary objective of this work is to investigate
the effects of conservation property of discretization
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schemes on the numerical results. We have shown

that, with regard to the PNP equations, whether a

numerical method preserves the mass conservation

could have a critical impact on the behavior of the

system, especially the steady state results. We have
provided a discretization scheme that preserves the

mass conservation exactly (excluding the round-off

errors) and the energy dissipation law well for long-

time simulation.

Our method is implicit in time and second-order

accurate in both space and time. We have verified

that approximating the fully implicit solution is nec-
essary for second-order convergence in time. Fur-

ther, we find that one can avoid using Newton-type

nonlinear solvers by performing a simple iterative

scheme.

Further, we have derived the conditions on the

proposed numerical scheme under which it will pre-

serve the positivity of the concentrations.

In this work, we have simulated the equations

with realistic physical parameters, particularly in-
vestigating the effect of the non-dimensional param-

eters χ2 in the Poisson equation and η in the Robin

boundary condition for the electrostatic potential.

We find that the mass-conserving scheme is more
robust to changes in parameters, especially changes

to the value of η.

Although this work makes good progress in
constructing an accurate method for solving the

Poisson-Nernst-Planck equations numerically, there

are many challenges remaining. First, one of them is

to account for the finite size of the ions as its effect
is enormous considering the narrow width of the ion

channels [19,17]. Second, for most ion channels, the

appropriate boundary conditions are Dirichlet-type.

We will investigate the possibility to preserve the

energy dissipation law exactly instead of the mass
and study the effect of the conservation on long-term

behavior of the simulation. Third, we would like to

include distributions of permanent charges for study-

ing selectivity of ion channels.
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PB, ε = 2−6
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Fig. 1 Comparing our steady-state solution (the dashed lines) using TR-BDF2 method with that of the Poisson-Boltzmann
equation (the solid lines) obtained in [21]. The parameters are ǫ = 2−2, 2−6, η = ǫ, φ

−
= −1, φ+ = 1.

∆t 5× 10−5 2.5× 10−5 1.25× 10−5

order of convergence for TR-BDF2, no inner loops 1.0016 1.0008 1.0028
order of convergence for TR-BDF2, two inner loops 2.2197 2.1779 2.2143

Table 1 The numerical order of convergence in time for the mass-conservative TR-BDF2 method solving the PNP equations in
one dimension for two ion species. The non-dimensionalized physical parameters are ǫ = 1, η = 4.63× 10−5, φ

−
= 1, φ+ = −1.

The calculations are performed with ∆x = 0.002 and the numerical solution of φ is evaluated at the point (x, t) = (0.904, 0.02).
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Fig. 2 Simulation results using the mass-conservative TR-BDF2 method for ǫ = 1, η = 4.63 × 10−5, φ
−

= 1, φ+ = −1. The
calculations were performed with ∆t = 10−4 and ∆x = 0.002. (a) The concentration profiles for the ion species with the valence
z2 = −1, c2(x, t), are plotted at the times t = 0 (the solid line), 0.01 (dashed), 0.05 (dotted) and 1 (dash-dotted). (b) The
corresponding time sequence of the electrostatic potential φ is plotted.
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Fig. 3 Comparison between the simulation results from the mass-conservative and the non-conservative schemes for ǫ = 1,
η = 4.63 × 10−5, φ

−
= 1, φ+ = −1, T = 1. The calculations were performed with ∆t = 10−4 and ∆x = 0.002. (a) The ion

concentration profiles of c2 from the mass-conservative method (the solid line) and the non-conservative method (the dashed
line). (b) The corresponding electrostatic potentials.
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Fig. 4 (a) The total ion concentration for species 2 as a function of time from the simulations using the mass-conservative
(solid) and non-conservative (dashed) schemes. (b) The relative error in total concentration for both species. The parameters
are identical to those in Fig. 3.
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Fig. 5 (a) The total energy as a function of time from the simulations using the mass-conservative (solid) and non-conservative
(dashed) schemes. (b) The rate of change in energy, dE

dt
, obtained from the graph (a) and the right-hand side of Eq. (10). The

solid and the dotted lines correspond to the left-hand side of Eq. (10) for the mass-conservative and the non-conservative schemes
respectively. The dashed and the dash-dotted lines correspond to the right-hand side of Eq. (10) for the mass-conservative and
the non-conservative schemes respectively. The parameters are identical to those in Fig. 3.
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Fig. 6 The maximum rate of change in ion concentrations as a function of time for the non-conservative(the dashed line) and
conservative(the solid line) schemes. The parameters are identical to those in Fig. 3.
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Fig. 7 Comparison between the simulation results from the mass-conservative and the non-conservative schemes for different
values of the non-dimensional parameter χ2. (a) the electric potential for the conservative and non-conservative schemes using
χ2 = 31.35. (b) The total energy for the conservative and non-conservative schemes using χ2 = 31.35. (c) the electric potential
for the conservative and non-conservative schemes using χ2 = 501.60. (d) The total energy for the conservative and non-

conservative schemes using χ2 = 501.60. The calculations were performed with ∆t = 10−4 and ∆x = 0.001. The other
parameters are identical to those in Fig. 3.
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Fig. 8 Comparison between the simulation results from the mass-conservative and the non-conservative schemes for η = 0.5.
The other parameters are identical to those in Fig. 3. (a) The ion concentration of species 2 at the non-dimensionalized time
T = 1. (b) The electric potential at the non-dimensionalized time T = 1. (c) The total energy as it varies in time.
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