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Abstract

A parallel finite element simulator, ichannel, is developed for ion transport through three-
dimensional ion channel systems that consist of protein and membrane. The coordinates of
heavy atoms of the protein are taken from the Protein Data Bank and the membrane is repre-
sented as a slab. The simulator contains two components: a parallel adaptive finite element
solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion
process of ion transport, and a mesh generation tools chain for ion channel systems, which is
an essential component for the finite element computations. The finite element method has ad-

vantages in modeling irregular geometries and complex boundary conditions. We have built a
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tools chain to get the surface and volume mesh for ion chans& g, which consists of a set

of mesh generation tools. The adaptive finite element solver in our simulator is implemented
using the parallel adaptive finite element package PHG developed by one of the'awtiion
provides the capability of doing large scale parallel computations with high parallel efficiency
and the flexibility of choosing high order elements to achieve high order accuracy. The simu-
lator is applied to a real transmembrane protein, the gramicidin A channel protein, to calculate
the electrostatic potential, ion concentrations &rev curve, with which both primitive and

transformed PNP equations are studied and their numerical performances are compared.

1 Introduction

lon channels are pore-forming proteins that help establish and control the small voltage gradient
across the plasma membrane of cells by allowing the flow of ions down their electrochemical
gradient? lon channels regulate the flow of ions across the membrane in all cells. lon channels are
integral membrane proteins; or, more typically, an assembly of several proteins. They are present
on all membranes of cell (plasma membrane) and intracellular organelles (nucleus, mitochondria,
endoplasmic reticulum and so on). lon channels are essential to cell sustaining and control a wide
variety of important physiological processes, ranging from nerve and muscle excitation, muscle
contraction, action potential generation and resting, sensory transduction, cell volume and blood
pressure regulation, cell proliferation, hormone secretion, fertilization, maintenance of salt and
water balance, learning and memory, to programmed cell d&@ttere are over 300 types of ion
channels in a living celf. lon channels may be classified by gating or by selecti®ifMoltage-
gated ion channels open or close depending on the voltage gradient across the plasma membrane,
while ligand-gated ion channels open or close depending on binding of ligands to the channel.
Different channels are selective for different ions and the flows and resulting concentration changes
of different ions carry different biological signals.

Over the past decade methodological developments in nuclear magnetic resonance (NMR),

x-ray crystallography, and electron spectroscopy have led to significant progress in determin-
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ing structures of integral membrane proteins that form iomakts®11 This accumulation of
high-resolution structural information has enabled better understanding of channel conductance,
gating, and selectivity. Various theoretical and computational approaches, from fundamental to
phenomenological, also help understand the biological mechanism of ion channels. The most
commonly used theoretical techniques in the field are stochastic models, ab initio molecular dy-
namics (MD)}? classical molecular dynamics (MD), and continuum descriptions. Among these
techniques, ab initio MD has played a crucial role in revealing the complex mechanism of molecu-
lar systems, such as chemical reactions. Due to its detailed description of electronic structure and
the extremely demanding nature of coupling electronic structure to molecular motion, ab initio
MD is limited to small systems at present. Classical MD utilizes empirical interaction potentials
or force fields to describe molecular motions and is able to handle an entire ion channel, including
ions, counterions, solvent, lipids and proteins. Unfortunately, it is still quite difficult for commonly
used MD methods to run up to the time scale of ion permeation across most real channel mem-
branes and to determine ion conductaheds a result, approaches that reduce the dimensionality

of the ion channel systems are playing important roles in ion channel dynamics and transport. One
of these approaches is Monte Carlo (MC) metH&dsghich rely on repeated random sampling to
compute the probability of movement of a selected set of particles. Monte Carlo approaches sim-
ulate the ion permeation across the membrane over long time-scales without having to treat all the
solvent molecules explicitly. Another class of important reduced models is Brownian dynamics
(BD),-Which is based on the stochastic equation of motions of ion particles driven by some
effective potential functions. Both MC and BD approaches provide an explicit representation of
ions while treat solvent and lipids as featureless dielectrics. These reduced models are simpler

and computationally less expensive than all-atom MD and have been some of the main workhorses

in ion channel transport modeling and prediction for many y<{iNICIIEIIEIEEE Sful ap-

channels? a-hemolysir?* and the VDA have been investigated utilizing BD simulatiis.

A further simplification in the ion representation, i.e., the so called mean-field approximation
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of ionic solution, leads to a fully continuous model, Poisdéernst-Planck (PNP) equatioR$2*
in which ions are not treated as microscopic discrete entities but as continuous charge densities.
The PNP system is a combination of Nernst-Planck (NP) equations introduced by Nernst and
Planck®26 and Poisson equation (PE). PNP can be derived by explicit averaging of correlated
Brownian trajectorie$. In the context of ion flow through a membrane channel, the flow of ions
is driven by their concentration gradients and by the electric field modeled together by the NP
equations, and the electric field is in turn determined by the concentrations through the Poisson
equation. PNP theory has previously been applied to the study of ion transport in electrochem-
ical liquid junction system®@ and electron transport in semiconductor devié&as well as ion
permeation through biological membrane chaniéft

Mathematical analyses of the Poisson-Nernst-Planck equations have been developed in the last
few decades, but most are limited to 1-D cd$e®® The reduction of the dimensionality greatly
simplifies the mathematical analysis of the electrodiffusion systems, and the results provide useful
guide lines for the analysis of the corresponding fully 3-D systems at some limit cases. As a trade-
off they are generally unable to reproduce the diffusion and reaction processes that critically depend
on the geometry of the system and complicated boundary conditions. In contrast to the limited
amount of work on the mathematical analysis of the PNP equations for biophysical applications,
a number of numerical algorithms, including finite differef€é’ finite element3®-40 spectral
elemenf?! and finite volume method® have been utilized in the past two decades for solving the
PNP equations. A lattice relaxation algorithm in conjugation with the finite difference method was
developed by Kurnikova and coauthors to solve the PNP equations for ion transport with the three-
dimensional (3D) realistic geometry of the gramicidin A dimer. The accuracy of their method
was calibrated with simple parallel plate and cylindrical pore geometries but convergence was not
easy or automatic. Hollerbach et#l.applied a highly accurate and quite convergent spectral
element method for solving the 3D PNP equations with various sensitivity analysis to determine
the impact of the PNP model parametersl toV curves. Mathur and Murttf developed a

multigrid algorithm based on an unstructured cell-centered finite volume method for solving the
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PNP equations.

The object of this paper is to develop a parallel finite element simulator for ion transport through
ion channel systems. To our best knowledge, neither finite element algorithms, nor parallel numer-
ical simulations for solving the 3D PNP equations for ion channels have been reported in the
literature. The finite element method (FEM) has advantages in modeling irregular geometries with
complex boundary conditions. In our finite element approach, the ion channel surface (boundary)
is identified and discretized; this discretization is used as the boundary of the volume mesh gener-
ation. Such meshes are said to be boundary or surface “conforming” because they are aligned with
the “real” ion channel surface, whereas in the finite difference method, the mesh is nonconforming
because itis allowed to “cut through" the ion channel surface. The advantage of adopting conform-
ing mesh in our study is that it is convenient to use and/or accurately treat proper specification of
boundary conditions on the surface for the modeling of reaction-diffusion processes. However, due
to complexity of ion channel structures, the surface meshes are often of poor quality, and even have
defects. This makes it difficult to get high-quality tetrahedral meshes. In addition, the embedding
of a membrane slab representation in a tetrahedral mesh is also a tricky task. We have built a tools
chain to generate high-quality biomolecule meshes by combining a few mesh generation tools. A
parallel adaptive finite element method is implemented and high parallel efficiency is shown in our
numerical studies.

This paper is organized as follows. The method for ion transport simulations is introduced
in Section 2. First, we briefly review the 3D ion channel model and the PNP equations system.
Then, we present our finite element algorithms for solving the PNP equations in which an iterative
scheme is used for solving the coupled nonlinear discrete equations. Finally, we introduce our
tools chain for getting the surface and volume meshes for ion channel systems. In Section 3, we
present some mumerical results and assess the performance of our ion channel simulator in ion
transport simulations. The electrostatic potential, ion concentrations profilds-aviccurves are
computed with certain range of ion concentrations and applied voltages. The paper ends with a

summary in Section 4. It is important to note that finite size effects and resulting correlations can



Journal of Computational Chemistry
(in the press, 2013)

now be included in PNP modéf47 This makes future biological computations quite relevant to

the extensive experimental literature on channels.

2 Method

2.1 Mathematical models of ion channel system

The model system consists of a protein, a membrane surrounding it, and a simulation box. The
coordinates of heavy atoms of the protein were taken from the Protein Data Bank. Partial charges
for the protein atoms were taken from the AMBER force field. Here the membrane is represented

as a slab and no charge is assigned to the membrane in the present{iii R Jives an

illustration of a simple cation-selective ion channel, the gramicidin A channcl.

Membrane

protein

Figure 1: Gramicidin A dimer (left colume). A 2D cut through tbenter of the simulation box

along the z axis illustrates the mesh representation of the protein and the membrane. The membrane
and the protein region are shown in red, solvent reservoirs and the channel region are shown in blue
(right colume).

The PNP model combines the Nernst-Planck theory describing electrodiffusion of ions in the
transmembrane channel with the Poisson theory describing the electrostatic potential whose gradi-
ent serves as a driving force of the ion motion. Consider an open ddnaif®3, Q = QU Qs,

QmN Qs = 0, whereQ, represents the protein and membrane region@iipresents the solvent

reservoirs and the channel region. We Gd® denote the interface between the two regions, such

6
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thatl” = QN Qs, andly to denote the membrane boundary on the simulation box. We obtain the

PNP equations by coupling the Nernst-Planck equation

g— xe Qs 1<i<N, 1)
J =-Di(0c +BacOy), 2)

and the electrostatic Poisson equation with internal inteffface

~0-(e0@) =AY gci+p', xeQ, 3)
|
=@, xerl,
Om 0
gmﬁ—ssﬁ, Xer,

wherec;(x,t) is the concentration of thieth ion species carrying chargg. D; is the spatial-
dependent diffusion coefficient, amgis the electrostatic potential. N is the number of diffusive
ion species in solution that are considered in the system. The cofstady (ksT) is the inverse
Boltzmann energy wherkg is the Boltzmann constant and is the absolute temperature. We
assume that the dielectric permittivity is piecewisely constant withemgg in Qm ande = &&

in Qg, wheregy is the dielectric constant of vacuum. Typical valuessgfand &g are 2 and 80,
respectively. In later work, three dielectric regions will be included. The permanent (fixed) charge

distribution

p'(X) = T aid(x—x;)
J

is an ensemble of singular atomic charggdocated ak; inside biomolecules. The characteristic
function A is equal to 1 inQgs and 0 inQp,, suggesting that mobile ions are present only in the

solvent region.
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2.2 Regularization and transformation of PNP system

In this paper, we only consider the steady state PNP equations. An effective strategy for solving
eg 3 is to decompose the solution of the Poisson equation into a singular component, a harmonic
component and a regular componéft@i.e., o = ¢>+ @" + ¢'. The singular component is the

restriction onQp, of the solution of
—&mh@*(x) = p'(x), x€R, @)
and the harmonic componegt is the solution of a Laplace equation:
—AP"(X) =0, Xx€Qm, (5)

P"(X) = —@%(x), xelUulm.

It is seen thatp3(x) can be given analytically by the sum of Coulomb potentials. Th(g) is then
used to compute the boundary condition @@Yx), the latter is to be solved numerically from eq
5, for which we use finite element methods in this study. Subtracting these two components from

eq 3, we get the governing equation for the regular compogm:
—D'(ED(pr(X,t)):A Zqici(x7t)7 X€Q7 (6)
|

and the interface conditions

(pé_(pr%:O?
o dg, _ d(¢°+ 9"
Esdn —&m = = &m PR xerl.

It is worth noting that there is no decomposition of the potential in the solvent region, thus

o(x) = ¢' (X) in Qs. For the steady-state of the system, the final regularized Poisson-Nernst-Planck



Journal of Computational Chemistry
(in the press, 2013)

equations consist of the regularized Poisson eq 6 and theysstate Nernst-Planck equations
00 Di(x)(Hei(x) + Baici(x)0¢' (x)) =0, x€ Qs (7
Physically there is no ion penetration through the interfaciee., a zero macroscopic normal flux
Di(Oci + Baicilg')-n=0, onT.

To get a symmetric weak form for Nernst Planck equations, the Slotboom variables, which are
widely used in the study of semiconductor devices, can be employed. It is seen that by introducing

the Slotboom variable$§
@s@@® o -pcv, ®)

the Poisson-Nernst-Planck equations can be transformed as
~0-(e0¢) = A Y aiGe 4P?, 9
|

0-(Bi0¢) = 0. (10)

We will refer to numerical algorithms based on the transformed equations astistormation
method while those based on the original equations aspiitive method In our numerical
computations both primitive and transformation methods were used for solving the PNP equations.
Numerical results indicate that the transformation method converges at a much higher rate than the

primitive method.

2.3 Finite element discretization

The PNP equations are solved using finite element method and the algorithms are implemented
with the parallel adaptive finite element package PHG. We now describe the numerical algorithms

employed for the static PNP equations. For the boundary condition, fixed electric potential and
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ion concentrations are set on the upper and lower faces of thewtational box. The channel is
normal to these two faces (along thaxis). On the side faces the potential is a linear function of

the vertical coordinate. The concentrations of the positively and negatively charged ions are equal
to each other on both top and bottom faces to ensure charge neutrality in the reservoirs. Moreover,

there is a no-flux boundary along the interféicd_etu = ¢', then consider the transformed Poisson

equation
—0-(e0u) = A Zqiéie*qi’}”, (11)
|
u=¢@, onodQ, (12)
P N AR )
[u] =0, [8%] =&m— 5 ——, 0N r. (13)

Let HY(Q) = {ue HY(Q) |u= ¢ ondQ}, here¢ denotes the boundary function, aHd(Q)
is a Sobolev space of weakly differentiable functions. First, multiply both sides of eq & 1hlay

is a vector inH3(Q) and integrate them on the global dom&in
/ —D~(£Du)VdQ:A/ S gGe 9PhvdQ, e HE(Q), (14)
o 04

WhereH&(Q) is a Sobolev space of weakly differentiable functions which vanish on the boundary
of the domairdQ. Then, by integrating by parts, the weak form of eq 11 is obtained as follows:

Findu € H}(Q) which satisfies:

/ (eOulv)dQ = / z(QiCie_q‘B”)des
Q Qs §

0 h
_ em/r%vds W e HA(Q). (15)

Compared with the original PE, these transformations lead to a nonlinear part of potential field and
a Newton or inexact-Newton method is used here to solve eq 15. Dendt@®by--, Py} the
finite element basis, wheld denotes the number of bases (or degrees of freedom, DOF), Let

be the finite element approximation ofat then-th Newton iteration, which can be expressed by

10
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its expansion in the finite element space with respect to thengdases and regarded as a vector
in RM, i.e., up = SM; uld', whereu! is thek-th degree of freedom (DOF) in theth Newton

iteration. We define a nonlinear functiéru,) (RM — RM) whosej-th component is given by:

Fj(un) = /Q(SDUnD(DDdQ—/Q Z(qié‘ie—QiﬁUn>¢des
s g

(@ +o") .
+ em/rTqajds j=1.--M. (16)

Then the Newton iteration of the Poisson equation reads
F’(Un)(Un—Un+1) = F (Un),
whereF’(uy) is the M x M) Jacobian matrix whosg k-th element is given by:
Fudun) = [ 000000+ [ S (B SP)9y01d0; (17)
In each Newton iteration we need to solve a linear system of equations of the form
Au =, (18)

where the stiffness matrik = [Aj klmxm = [Fj’7k(un)]M «M, the vectorf = [f;]m = [Fj(un)]m, and
the solution vectou = [uk — uﬁﬂ]M. We start from an initial guessp, which should satisfy the
boundary conditionig = ¢ on dQ, and carry out a certain number of Newton iterations until a
given criterion for convergence is met, to obtain the final solutipn

The NP equations are linear equations, whose weak form is obtained as follows:

For each, 1<i <N, find § € H}(Qs) which satisfies

/ (Die9PU0GV)dQs = 0, W e HY(Qy), (19)

S

11
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whereH}(Q) = {& ¢ HY(Q) | & = ni onT s}, heren; denotes the dirichlet boundary function, and
He(Q) = {6 e HY(Q) | & =0onl}.

For a discrete solution to eq 19, denote the discretized approximat@pby€ . We employ a
finite element spacé” = spar{ 2, - - - , Y-}, with L denoting the number of DOF in the finite ele-
ment space. And denote a subspacelbfQs) by V" = spar{¢?, - -, @b, pttL - Pty with
Yt+1 ... @t T denoting the finite element bases on the vesexy,---,A 1 of the dirichlet
boundary.

Denoting the approximate solutiaf' By its expansion with respect to the finite element bases

as follow:

L T _
"=y &lyl+ 2 (ALt evh, (20)
j=1 S=
wherec is the j-th DOF of the ion concentration, and the discrete weak form is given by
/ (Die"9PUDE " OYHdQs=0, vyl e {g?,-- y'}. (21)
Qs

To formulate eq 21 into a matrix equation, we write its left hand side as

L

.a—GiBumah ' _ ~ k . a—GiBu ' K
/QS(D.eq 0&"0wHdQs — Z[c. /QS(D|e Oy 0YNdQs 22)
T .
£ YImALs) [ (DeSPopingstdos  @3)

Then we get a linear system of equations in the following form
Bx=y, (24)

where the stiffness matri® = [Bj x]LxL = [ /o, (Die”%PUO¢I OyYk)dQs)L «L, the vectory = [yj]

= [~ 3 Mi(ALts) fo,(Die”%PU0YI OySTHdQg)L and the solution vectors= [G¥]. .

12
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2.4 lteration procedure between the coupled NP equations and PE

For the steady-state case, in order to make the iterations between the diffusion and electrostatic
eqguations to converge, it was found necessary to employ under-relaxation, especially when macro-
molecule exists. In other words, variables are updated with a linear combination of old values and
calculated new values, rather than just using the new values. The under-relaxation ¥ciseme

described by

uew  — auold+(1_a)unew

Ginew = aéimd"i_(l_a)éinew? |:17’N

where the relaxation parametexOa < 1 is a predefined constant. We have noted that without

under-relaxation the iterations may not converge.

2.5 Mesh generation for ion channel system

Our finite element algorithms use tetrahedral meshes. Mesh generation is a prerequisite for finite
element method. However, it has been a long-existing and challenging task for meshing biomolec-
ular systems due to their highly irregular shapes, which, historically, was actually a great imped-
iment to using finite element method in continuum molecular modeling. A reasonable strategy
to generate biomolecular meshes follows two steps: first generate a molecular surface conforming
mesh, then generate a volume mesh based the surface*fhstong the two steps, surface mesh-
ing is the more difficult one. Recently, we have developed a tool called TMSmesh that is potentially
capable of generating manifold surface meshes for arbitrarily large molecular syStefmhich,
we hope, will facilitate the finite element simulations of biomolecular systems.

In this work, we have built a tools chain for high-quality biomolecule volume mesh generation
by using TMSmesh and a few other meshing tools. The tools chain has essentially three compo-
nents: surface meshing, quality improving, and volume mesh generation. First, a triangulation of

the Gaussian surface is generated using our recently developed program TMSm#sth is a

13
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robust tool for meshing molecular Gaussian surfaces and hers $f®wn to be capable of han-

dling molecules consisting of more than one million atoms. It reads a PQR file as an input file
and exports a molecular surface mesh in OFF file format. The surface meshes generated by the
old version of TMSmesh for large molecules sometimes have geometric defects such as containing
intersecting, overlapping, and other nonmanifold surface triangles. Recently, we have improved
TMSmesh by developing a method that avoids intersections, ensuring mesh manifoldness and pre-
serving the topology of the molecular Gaussian surf@&he surface meshes produced by the

new version of TMSmesh are manifold mesh without intersections, but their quality still needs to
be improved. Here, a manifold mesh means that the surface formed by all the elements of the
mesh is a manifold. Therefore, in the second step, we firstly use the program ISCG2Mesh
simplify the surface mesh by reducing the number of faces or adding some nodes while preserving
its manifoldness, volume and boundary shape. ISO2mesh is a free matlab/octave-based mesh gen-
eration and processing toolbox, which can read the OFF file format exported from TMSmesh and
export the filtered molecular surface in OFF file format. Subsequently, if self-intersecting faces
exist, then the program TransforMeghwhich can robustly handle topology changes and remove
self-intersections, is used to find and remove self-intersecting faces. Finally, in the third step, a
tetrahedral volume mesh is generated using the program TeX&anich consists of 4-node tetra-
hedral elements and is ready for 3D finite element simulations. TetGen provides a set of switches
to control its behavior. We generally use thgyy” switch to get a high-quality tetrahedral mesh,
where the ® p” switch reads a piecewise linear complex (PLC) stored inpdl y” file and gen-

erates a constrained Delaunay tetrahedralization (CDT) of the PLC, andghewitch performs

quality mesh generation by using the Shewchuk’s Delaunay refinement algéfithm.

Additionally, the membrane meshing also contains tricky tasks, such as how to find the set of
tetrahedra belonging to the membrane region and get the membrane boundary. The membrane
mesh is obtained by three steps. In the first step, two plages andz= z, are used to mark the
position of the membrane region, and tetrahedra with all their four vertices located betwegn

andz = z, are marked as belonging to the membrane region. In the second step, tetrahedra which

14
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intersect with the planes= z or z= z are first marked as the “interface tetrahedra” between the
membrane region and the bulk region, then the faces of these “interface tetrahedra” are picked up
and connected together to form the membrane boundary. Finally in the third step, the membrane
boundary is submitted to a careful topology check to ensure its continuity, closedness, etc.

In order to facilitate the simulation of ion transport through ion channel systems, in the gener-
ated tetrahedral mesh, tetrahedra belonging to different regions are properly marked with different
numbers. The triangles on the faces of the simulation box and the membrane boundary are also
marked with different numbers. The final mesh is exported to a file in the Rfefilié format

which can be read by PHG.

2.6 Adaptive finite element method

The adaptive finite element method (AFEM) was originally proposed by Ivo Babuska®ttal.
provides an efficient and systematic way of drastically improving the accuracy of finite element
simulations by repeatedly adjusting the finite element mesh using a mesh adaptation strategy and
ana posteriorierror estimate, which would eventually lead to a quasi-optimal mesh for the given
problem. For steady state problems, the AFEM consists of starting from an initial mesh and per-

forming the following loop to get a final adaptive mesh and a solution on it:
e Step 1. compute an approximate solution on the current mesh.

e Step 2: compute an error indicator using thposteriorierror estimate on each element. If

the error estimate meets the convergence criterion then stop.

e Step 3: mark (select) the elements to be refined (adjusted) using the error indicators with a

prescribed marking strategy.
e Step 4: refine the marked elements, plus possibly a few more to maintain mesh conformity,
and goto Step 1.

In AFEM literature the above loop is often called tBelve-Estimate-Mark—Refineloop, which

represents the standard mesh adaptation procedure in AFEM. There are traditionally three ways to

15
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refine an element: a) divide the element into smaller eleméntsfinement); b) increase the poly-
nomial order of finite element bases in the elemgntgfinement); ¢) a combination of a) and/or

b), i.e., perform one of or both- and p-refinement on the elemerttg-refinement). The poste-

riori error estimate also plays an important role in AFEM. It should give an accurate estimation of
the error of the approximate solution on each element and can be computed using known data such
as the numerical solution and other given data.

For the PNP system, we use the followimgosteriorierror estimate>’

H

1/2
Ns= (h | ZQICI+P +0- (e@) H + ht [| [(e@n) - nt] HEZ(f)> (25)
feF(s

wheresrepresents an arbitrary element in the meshrayid the error indicator o, F (s) denotes
the set of (non-boundary) facess)hs denotes the diameter gsfandh; andn; denote the diameter
and normal vector of the facé, respectively. This error estimate is similar to a well-known
a posteriorierror estimate for the Poisson-Boltzmann equation introduced by M. Hafsive
consider steady-state diffusion process.

Our adaptive finite element solver for the PNP system is implemented using the toolbok PHG.
PHG is a parallel toolbox for writing adaptive finite element programs. It is developed at the State
Key Laboratory of Scientific and Engineering Computing of Chinese Academy of Sciences and
is featured by supporting bisection based conforming parallel adaptive tetrahedral meshes and
the ability to scale to thousands of MPI processes (or tens of thousands of CPU cores through
MPI1+OpenMP two level parallelism). For parallel processing, PHG partitions a mesh into sub-
meshes, which are then distributed onto MPI processes. PHG supports fully parallel local mesh
refinement and coarsening based on a tetrahedron bisection algorithm. It has an object oriented
design which hides parallelization details, allowing the users to concentrate on the modeling and
numerical algorithms. Although PHG provides falp-refinement support, onlig-refinement is

used in this work.
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3 Numerical test with gramicidin A ion channel

In this section, we apply our parallel finite element simulator, ichannel, to gramicidin A ion channel
to compute the electrostatic potential, ion concentrationd and curve under various combina-
tions of inputs. The convergence rate of the solver and its parallel efficiency are also investigated.
In the computations only MPI parallelism is used and the parallel efficiency fanocesses is

defined as

Ep _ pOTpo
pPTp

; (26)
whereTy denotes the execution time (wall-clock time) when usipgocesses in the computation,
andpp, 1 < po < p, denotes the smallest number of processes used in the computations (due to
memory requiremenpy may be greater than 1).

The computations were carried out on the cluster LSSC-III of the State Key Laboratory of
Scientific and Engineering Computing of China, which consists of compute nodes with dual Intel

Xeon X5550 quad-core CPUs, interconnected via DDR InfiniBand network.

3.1 lon channel simulation

One of the most widely studied ion channe! SIS CcA) channel (PDB code: 1MAG)
which forms aqueous pores in lipid bilayers that selectively pass monovalent c2titfiSA is

a small 15 amino aci@ helical peptide with a narrow pore. Because it is relatively small and
well characterized experimentally, a wide variety of theoretical models has been applied to the gA
channel. In the present work, we utilize the PNP equations to calculate the current as a function of
voltage applied across the channel. The whole domain of the gA channel consists of the membrane
protein region, bulk region, and the channel region. The layout of the gA channel on the grid is
shown in Figure 1. The partial charges and atomic radii for each atom in the protein are obtained
by using the PDB2PQR softw® The gA channel pore region is along thdirection. The box

size is 30 Ax 30 A x 45 A. The membrane layer is represented as a slab with a length of 21 A
alongz direction (fromz=11 Atoz= 32 A).
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The triangular surface mesh and tetrahedral volume mesh aeraged using the methods
mentioned above. The molecular surface mesh of the gA channel protein is generated by the
TMSmesh program and the mesh quality is improved through topology check and smoothing.
Then the volume mesh is generated using TetGen. Finally, the membrane region is extracted and
the involved tetrahedra and boundary faces are properly marked, which end the mesh construction
for the whole ion channel systems. Figure 8 shows an example of the unstructured tetrahedral
volume mesh and triangular surface mesh of gramicidin A ion channel. The mesh over the whole

domain has a total of 22753 vertices and 142954 tetrahedra.

(©) (d)

Figure 2: Triangular boundary mesh conforming to the granmcidion channel surface: (a) top
view. (b) lateral view. (c) Boundary surface mesh of ion channel with the membrane which is
represented as a slab. (d) A view of cross section of the whole tetrahedral volume mesh.

In the following computations, the membrane and protein regions (red area in Figure 1) are
described by low dielectric constag, = 2. The high dielectric constaat = 80 is assigned to the

agueous region, i.e., the volume outside of the protein-membrane region (blue region in Figure 1).
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The diffusion coefficients for cation and anion, elg.t and ClI~, in the bulk region are set to

their experimental value®¢ = 0.203 A% /ps, Dk = 0.196 A2/ps. While there is no experimental
measurement of appropriate values for the diffusion coefficients inside the channel, it is known
that the diffusion coefficients in the bulk region and the channel pore region should be different,
particularly for narrow pores. GA is a narrow ion channel with a diameter of about 4 A. Here we
present a case where the diffusion coefficients of ions continuously change inside the channel. The

diffusion coefficient function is given as follow®:

Dbulks r € bulk region
D(r) = Dchant (Dehan— Douik) £(r), r € buffering region (27)
Dchan r € channel region

where the functiorf (r) is given by

Z—Zchan \n+1 Z—Zchan \n
f(r)y="1(2 =n(— —n+1)(—————) ", 28
) @ (Zbulk—zchan) ( )(Zble—Zchan) (28)

wheren is an integer and we sat= 9 in our computationsz:nanis the boundary value of channel
region onz axis andzyk is the boundary value of bulk region araxis. For the bottom boundary,
Zchan= 11 andz,,x = 9. For the top boundargchan= 32 andz,,x = 34. This profile for the
diffusion coefficients ensures thatr) is differentiable in the Nernst-Planck equation.

For the boundary condition, the voltage applied to the systgppieq is given by the potential
difference along thedirection. On the box side boundary faces the potential is set by interpolating
linearly between top and bottom potential values. lon concentrations on the top and bottom side
boundaries are set to their bulk values. Additionally, there is a no-flux boundary surrounding
the peptide and membrane that prevents ions from penetrating through the region occupied by
the peptides and lipids. Throughout the remainder of this manuscripz-divection will refer

to the direction along the axis of the channel. Letting Ly andL, represent the length of the
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computational domain, we can summarize the above boundadjtmms as:

P(x,y,z=Lz) = 0;9(X,y,z= 0) = Vapplied (29)

Px=0.2) = Plx=Liy.2) = 220 (30)

By =0.2) = plcy = Ly.2) = Pz @31)

Gi(%Y,2=0) = Gi(XY,2= Lz) = G puik (32)

Gi(x=0,y,z¢€ bulk region = ¢i(x= Lx,y,z € bulk region) = ci pui, (33)
Gi(xy=0,z¢€ bulk region) = ci(x,y = Ly,z € bulk region = G pui, (34)
J-n=0onrl. (35)

We solve the coupled egs 9 and 10 to obtain the steady-state ion concentrations and electrostatic
potential. For a given boundary conditiofgpies= 100mV andc; puk = 1.0 M), a cross section
view of the potential and ion concentration of the whole domain region are shown in Figure 3.
It can be seen that the concentrationkof is higher than that of Cl in the pore. To obtain a
rough idea of the difference between the Poisson-Boltzmann (PB) electrical potential (equilibrium
state) and the potential resulted from PNP calculation (non-equilibrium state) for the same channel
system, Figure 4 shows a comparison between these two potential profiles.

K

1

C
38
2

-1.25
(a) (L] (©

Figure 3: Electrostatic potentidkgT /e;) and ion concentration\). (a) is a cross section view of
the electrostatic potential of the whole domain. (b) is a cross section visw adn concentration
of the whole domain. (c) is a cross section view of @n concentration of the whole domain.
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Figure 4: Comparison of electrostatic potentiedT/e;) between PB and PNP calculations. (a)

is a cross section view of the electrostatic potential obtained from PB calculation with the Debey-
Htickel boundary condition and with the same bulk ion concentrations as in the compared PNP
calculation. (b) is a cross section view of the electrostatic potential obtained from PNP calculation

With Vapplied= 200mV andc; pyk = 0.5 M.

The electrical current across the pore can be calculated as:

Bt o

Eq 36 can be applied at amyposition along the pore axis, and shows only minor differences in the

current values, due to numerical inaccuracies. In most cases presented here, these variations are

on the order 0f-2%.

To getl —V curve and compare with the experimental data, the PNP equations are computed for

a variety of voltages and concentrations. For exam({ifipiaGlESIED

The potential profile for five

different bulk concentrations with the same voltagg,gieq= 100mV) is presented in Figure 5. It

is shown that the potential with a higher concentration boundary condition is larger than that with

a lower concentration boundary condition in the channel pore region due to ionic screening effect.
Figure 6 showKk™ and CI" concentration profiles for five different applied voltage values,

while the bulk concentration is the san@dx = 0.5 M). It is seen that although different volt-

age values as boundary condition are applied, the changes of concentrations have almost the same
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Potential(kBT/ec)

Figure 5: Electrostatic potential at the center of the gA cledplotted along-axis obtained from
the PNP calculation witRpplieq= 100mV.

tendency. It is seen that ti@ ™ concentration inside the gA is not exactly zero in our simula-
tion, though it should be zero experimentally. But we think this would be a common problci of
tranditional mean-field continuum model, such as PNP mocicl,

The experimental —V data are obtained from Cole et &F. which are used as the reference
data for the comparison. The diffusion coefficient in the bulk region can be got from the exper-
imental data. However, there are no experimental data available for the diffusion coefficient in
the channel pore. Here we obtain the diffusion coefficient in channel pore through matching the
experiment data, i.e., the current valueVat= 100 mV. We find that a reasonable match will
be obtained with a diffusion coefficient which is 18 times smaller than the bulk coefficient, i.e,
Do = 1.13x 102 A%/ps, Dk = 1.09x 10-2 A®/ps. We use the same data in all the simulations

performed in this work. Comparisons between the simulation results and experimental data are

shown in Figure 74 SRS  rosults
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Figure 6:K™ (top) and CI (bottom) concentrations at the center of the gA channel plotted along
z-axis obtained from the PNP calculation wigfpyk = 0.5 M.
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Figure 7: Comparisons of the computkd V curves with experimental datal. —V curves are
plotted for five bulk ion concentrations and the squares represent the experimental data.

3.2 Convergence rate and parallel efficiency

With the transformation method, the Poisson equation is nonlinear and is solved by Newton itera-
tions, thus it costs more internal iterations than with the primitive method. However, the external
iterations between NP and the PE can converge much faster with the the transformation method
than with the primitive method. This is true when solving the PNP equations for gA channel,
as demonstrated by the numbers of iterations in Table 2, in which a same relaxation parameter
a = 0.8 is used in the external iterations of all the computations.

In our numerical study of gA ion channel, with the transformation method, the number of
internal Newton iterations for solving the PE ranges from 2 to 4, and the total number of iterations
is about 50 for each PNP solution, which is fewer than with the primitive method.

To assess the parallel efficiency of our parallel code, we introduce a much larger system with a
mesh containing a total of 1523013 vertices and 9149056 tetrahedra, on which we solve the PNP
equations using the transformation method. Table 3 gives the wall-clock time and parallel effi-
ciency for different number of MPI processes. The smallest number of processes pged 8s
whose parallel efficiency is regarded as 100%. The parallel efficiencies obtained are satisfac-

tory. A rapid drop in the parallel efficiency can be noted when going from 512 processes to 1024
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Table 2: Number of external iterations between the NP and then@Er different combinations of
ion concentrationN1) and voltage ifiv).

lon concentration and VoltagePrimitive | Transformed
0.1M,50mV 156 16
0.1M,100mv 156 16
0.1 M,200mvV 159 16
0.5M,50mVv 154 21
0.5M,100mv 154 21
0.5M,200mv 156 21
2.0M,50mVv 158 23
2.0M,100mv 154 23
2.0M,200mv 155 23
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processes, which we believe is caused the interconnecti@ogpof the underlying InfiniBand
network. The code is expected to be able to solve larger systems with more CPUs through us-
ing computers with faster interconnection network and/or exploiting the MPI+OpenMP two level

parallelism provided by PHG.

Table 3: Parallel efficiency in solving the PNP equations using the transformation method

Num of Procs| Num of Iters| Time (s) | Efficiency
8 11 3755.6 100%
16 11 1840.7 | 102.0%
32 11 836.5 112.2%
64 11 428.3 109.6%
128 11 280.1 83.8%
256 11 160.3 73.2%
512 11 94.3 62.2%
1024 11 76.4 38.4%

One feature of PHG is that one can easily change the type of etarsed in the computations
without changing the code. By exploiting this feature, we have experimented with a few high order
elements, including quadratic and cubic elements. We find that with high order elements one can

achieve at a given error tolerance using much fewer DOF than with the linear element.

4 Summary

The PNP theory is a well-established electrodiffusion model for a wide variety of chemical, physi-
cal and biological applications. It has been extensively used in the ion channel analysis to compute

the electrostatic and concentration profiles, as well-a¥ curves.
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In this paper, we present a parallel adaptive finite elementlaior, ichannel, for ion transport
through ion channel systems. Numerical applications are carried out with the gramicidin A channel
protein. The electrostatic and concentration profiles, as wdll-ag curves are obtained under
certain range of ion concentrations and applied voltages. A good agreement is achieved between
the computed —V curves and the available experimental data. Moreover, due to complexity of
molecular structure, there is no software so far that can solely finish the task of generating high
quality molecular surface mesh and tetrahedral volume mesh for the whole channel system for FE
simulation. We have built a tools chain for high-quality biomolecule mesh generation by using a
few of mesh generation tools including the surface meshing tool developed by us recently.

By comparing the primitive and the transformed formulations of the PNP equations applied
to gA system, it is found that the number of iterations between the Poisson equation and the NP
equations is significantly reduced using the transformed formulation. Our code is based on the
parallel adaptive finite element package PHG, which provides the simulator with the ability of
using large scale parallel processing, parallel mesh adaptation, and high order elements. High
parallel efficiency of the code is confirmed by the numerical results. Further examinations and

applications of the simulator to complex, large ion channel are under (i IIEIEE: < arc
‘a number of inherent problems in standard-PNP model. Such as, the PNP theory negiccts the

also under investigation. We aim to develop an user-friendly software platform for ion transport
G ENEEER. <. Including the correlations produced by the finite

size of ions is likely to allow PNP to deal with the selectivity phenomena of calcium, sodium, and

Ryr channel$®
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