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ABSTRACT: A three-dimensional numerical simulator based on Brownian dynamics (BD) for the study of ion transport
through membrane pores is presented. Published BD implementations suffer from severe shortcomings in accuracy and
efficiency. Such limitations arise largely from (i) the nonrigorous treatment of unphysical ion configurations; (ii) the assumption
that ion motion occurs always in the high friction limit, (iii) the inefficient solution of the Poisson equation with dielectric
interfaces, and (iv) the inaccurate treatment of boundary conditions for ion concentrations. Here, we introduce a new BD
simulator in which these critical issues are addressed, implementing advanced techniques: (i) unphysical ion configurations are
managed with a novel retracing technique; (ii) ion motion is evaluated integrating the Langevin equation with the algorithm of
van Gunsteren and Berendsen (Mol. Phys. 1982, 45, 637−647); (iii) dielectric response in the Poisson equation is solved at run
time with the Induced Charge Computation (ICC) method of Boda et al. (J. Chem. Phys. 2006, 125, 034901); and (iv) boundary
conditions for ion concentrations are enforced by an accurate Grand Canonical Monte Carlo (GCMC) algorithm. Although
some of these techniques have already been separately adopted for the simulation of membrane pores, our tool is the first BD
implementation, to our knowledge, that fully retrace ions to avoid unphysical configurations and that computes dielectric
interactions at each time step. Most other BD codes have been used on wide channels. Our BD simulator is specifically designed
for narrow and crowded ion channels (e.g., L-type calcium channels) where all the aforementioned techniques are necessary for
accurate results. In this paper, we introduce our tool, focusing on the implementation and testing of key features and we illustrate
its capabilities through the analysis of test cases. The source code is available for download at www.phys.rush.edu/BROWNIES.

1. INTRODUCTION

Ion channels are integral membrane proteins that catalyze the
diffusion of ions through the cell membrane. Any living
organism, from bacteria to eukaryotes, contains a large number
of ion channels, which are classified into families on the basis of
the ionic species to which the channel is most permeable, (e.g.,
Na+, K+, and Ca2+) and on the stimulus responsible for the
opening/closing of the pore, (e.g., voltage-gated, ligand-gated,
and mechanoreceptors).1−4

Ion channels are involved in a plethora of biological
processes, from the transmission of electrical impulses in

nerve cells to muscle contraction. In a very real sense, ion
channels are the nanovalves of life, playing a role in biological
function not so different from that of transistors in modern
electronics.5 Ion channel malfunctions are involved in several
hereditary diseases, such as cystic fibrosis and long-QT
syndrome or severe pathologies such as arrhythmia. As a
result, ion channels are targets of numerous pharmaceutical
compounds.6−8
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1 Assessment of Brownian dynamics implementation

We checked our Brownian dynamics (BD) implementation by considering the simple case of bulk

electrolytes. We considered a cubic simulation domain (100 Å × 100 Å × 100 Å) with periodic

boundaries filled by an ionic solution (no membrane or channel are present) and an electric field
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Ez is applied along the z direction. Ez produces a net ionic current that can be described by

the Nernst-Planck equation. In this case, since ionic concentrations are constant throughout the

simulation domain, the flux, of the ν-th ionic species is:

Jν =−Dν

zνeCν

kT
Ez (1)

where Dν , zν , and Cν are the diffusion coefficient, the valence, and the concentration of the ν-th

ionic species, respectively. Figure S1(a) shows the currents as functions of the electric field | Ez |

obtained for a NaCl solution at different concentrations: 50 mM (top), 100 mM (center) and 200

mM (bottom). The good agreement between simulation (symbols) and theoretical (lines) results

confirms that the simulator describes the ionic currents correctly. Analogous results were obtained

for different electrolytes over a wide range of concentrations, applied fields and simulation box

sizes (data not shown).

In equilibrium, the ions’ velocities should follow a Maxwellian distribution:1–3

f (vν) =

√
2
π

(mν

kT

)3
v2

ν exp
[
−mνv2

ν

2kT

]
(2)

where vν and mν are the velocity and the mass of the ν-th ionic species, respectively. Figure S1(b)

shows the velocity distributions obtained from BD simulations of 100 mM NaCl bulk solution

with no electric field applied (Ez = 0). Simulation results (circles and diamonds) match those

predicted by Equation 2 (lines). For different ionic mixtures, in the range of concentrations up to

∼3 M, much larger than typical physiological environment, the match between simulation results

and theoretical results still holds (data not shown).

When an electric field is applied, the velocity distribution becomes a displaced Maxwellian.4

Figure S1(c) shows the distributions of the z-component of the velocity (vz) of Na+ ions for dif-

ferent applied voltages (Ez ranges from 0 to 1010 V/m, corresponding to 100 V applied along z).

Although voltages larger than 1 V (| Ez |= 108 V/m in this case) are unphysical in an aqueous
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electrolyte (water molecules split), the displacement of the curves is visible at these values. This

results is in agreement with the fundamental calculations of Eisenberg et al. on the basis of the full

Langevin equation. They showed that the velocity distribution contains an asymmetric term that is

proportional to the ionic flux. This asymmetric term corresponds to the shift seen in Figure S1(c).

This is true even in the high friction limit.4

As an additional confirmation of the correct simulation of the behavior of the interacting ions,

we analyzed the ions’ mean square displacement (MSD) for a homogeneous solution with no

electric field applied. For a given ionic species ν , it can be computed by:1–3

MSDν(t) =
〈
r2

ν(t)
〉
=

〈
1

Nν

Nν

∑
i=1

(ri(t)− ri(0))2,

〉
(3)

where 〈...〉 denotes averaging over all the Nν ions of species ν , t is time, and ri(t)− ri(0) is the

vector distance traveled by a given ion over the time interval t. In electrolytes, the MSD increases

linearly with time. The slope of the MSD, considered for long time intervals, is related to the

diffusion coefficient Dν . Theoretically, the mean square displacement should obey the following

relation:

MSDν(t) = 6
k T

mνγν

t = 6Dν t , (4)

being γi and Di related to each other through the Einstein relation:

Dν =
k T

mν γν

, (5)

where k and T are the Boltzmann constant and the temperature, respectively.5–8 Figure S2 shows

the comparison between the MSD obtained for Na+ (green diamonds) and Cl− (red circles) from

simulations and the predicted slopes obtained with Equation 4 (black and blue lines, respectively).

The good agreement confirms that the simulator accurately describes ions in bulk electrolytes.

Simulated values are averaged over samples of 100 mM NaCl bulk solution in a cubic simulation
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domain (100 Å × 100 Å × 100 Å) with periodic boundary conditions. Similar results have been

obtained for different ionic mixtures in different concentrations (data not shown).

1.1 Comparison with Dynamic Monte Carlo

The assessment of our BD implementation with bulk solutions test cases is crucial, in our view,

to obtain reliable simulation results. Nevertheless, the previous tests do not guarantee that ion

motion in ion channels (where ion crowding and electrostatic interactions become critical issues)

is correctly described. No theoretical results are available in this case, but a comparison between

simulation results obtained for the same channel model with different methods is a good test-bed

and a double-check for all the methods involved in the comparison.

The OX model (See Figure 1(b) in the main manuscript) of L-type calcium channel (with pore

radius equal to 4 Å) has been previously used by Rutkai et al. to investigate binding affinity

and dynamic selectivity with the Dynamic Monte Carlo (DMC) technique.9 Binding selectivity

is defined by the ion concentration profile in the channel, while dynamic selectivity is defined by

ion flux. Thus, we checked BD simulation results in terms of both binding affinity and dynamic

selectivity with those in reference.9 In this test series we imposed a total concentration of cations

(Na+ and Ca2+) of 100 mM in the left bath and changed the Ca2+ mole fraction. The solution

in the right bath had 0 M ion concentration. Concentration imbalance between either side of the

membrane determines a driving force that allows ions to flow through the channel.

Figure S3 shows the occupancies (upper curves) and flux (lower curves) ratios of Ca2+ and

Na+ as functions of the Ca2+ mole fraction. For this model calcium channel, binding affinity is

always larger than dynamical selectivity. The good agreement between BD and DMC results is a

strong consistency double-check for both types of simulation.

The agreement between BD and DMC data holds for ion concentration profiles inside the pore

for calcium (Figure S4(a)) and sodium (Figure S4(b)) at different Ca2+ mole fractions. At any

considerable Ca2+ mole fraction value, a Ca2+ ion occupies the center of the selectivity filter. The
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Ca2+ density in this binding site is substantially independent of the Ca2+ mole fraction. On the

other hand, an increase of Ca2+ produces a noticeable increase of calcium density in the remainder

of the pore. Analogous results were obtained for different Ca2+ mole fractions (data not shown).

Na+ density profiles in the pore decrease more evenly from left to right and their magnitude de-

creases everywhere along the pore axis as the Ca2+ mole fraction increases. In this case, 1 µs BD

simulations are not able to reproduce the DMC results perfectly due to the small number of Na+

ions inside the channel. Longer simulations should provide better statistical accuracy.

1.2 Ionic currents variance

It is common practice in BD to provide currents averaged over different realizations of the same

system and adding standard deviation/standard error. To determine how long an ion channel simu-

lation should be, in order to provide converged results, we studied the variance of ion current for 10

different realizations of the same system: OX configuration, no dielectrics, 100 mM NaCl on both

sides, 100 mV transmembrane potential. Figure S5 shows the currents of the different realizations

(thin lines), average current (red bold line) and the currents’ standard deviation (black bold line)

as functions of the simulated time. After∼250 ns the average current becomes stable, but the vari-

ance is still large (∼5.3 pA, 15.6% of the average current). The standard deviation decreases as the

simulated time increases, reaching 0.862 pA (2.5% of the average current) at ∼5 µs of simulated

time. Thus, in this case, a single simulation run can give accurate results on ion currents provided

that simulated time is at least 5 µs. Similar results have been obtained for other models of Figure

1(b) in the main manuscript. Therefore, we chose 5 µs as a lower limit to simulated time in every

run.
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1.3 Position-dependent diffusion coefficient

An ion’s mobility in membrane pores is believed to be significantly smaller than in bulk so-

lution.10–12 To test this aspect of ion permeation in our implementation, we used a position-

dependent diffusion coefficient Dν(z) for each ionic species ν . Outside the channel its value is

kept constant to the bulk value D∗ν . In the channel it is a function of the channel radius (R(z))

through the scaling factor α:

Dν(z) = D∗ν

(
α +(1−α)

R(z)−RMIN

RMAX −RMIN

)
. (6)

Dν(z) varies smoothly from D∗ν where the channel radius is maximum (RMAX ) to αD∗ν where the

channel radius is minimum (RMIN). The inherent variable of the Langevin equation, however, is not

Dν(z), but γν(z) that are related through the Einstein relation (Equation 3 in the main manuscript).

This relation, strictly speaking, is valid only in the baths, where the high friction limit is satisfied.

The relation between γν(z) and Dν(z) in crowded environments will be discussed in future works.

We performed a set of simulations, with α ranging from 1 to 0.1, for the OX configuration

(Figure 1(b) in the main manuscript). The left and right baths contained 100 mM NaCl solution and

the transmembrane potential was 100 mV (left to right). α affected only the diffusion coefficient

of permeating ions (Na+ and Cl−) while it was not applied to structural O1/2− charges.

A lower α produces a smaller mobility and, thus, a larger accumulation of ions in the pore.

The smaller α is, the larger the number of Na+ ions in the pore (Figure S6, red line). However,

this dependence is very weak: a 10-fold reduction of α causes an increment of <5% in the total

number of Na+ ions in the pore. On the other hand, Na+ current is severely altered by the scaling

factor α . In particular Na+ currents are scaled by the same factor α (Figure S6, black line).

Figure S7 shows the distribution (a), the velocity (b) and the flux (c) of Na+ ions in the pore

for different values of α . The plots are averages over the 2 µs of the simulation. Ion density in

the pore is essentially the same for different values of α (as seen in the average number of Na+
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in the pore in Figure S6). On the other hand, the average Na+ velocity along the pore is highly

influenced by the scaling vector α: larger values of α produce larger velocities. The difference is

more visible in the channel vestibules, while in the selectivity filter, where α has a smaller impact.

Na+ fluxes show a linear dependence of ion current on the scaling factor α .

To evaluate ion density, velocity and flux profiles we divided the simulation domain into a

number of slices with 1 pm width along z. The ion density was the time-averaged number of ions

in each slice. The flux was the average net number of ions that crossed the boundary between two

neighboring slices. Finally, the velocity was the ratio between the flux and the ion density.

1.4 Computational efficiency

To give an idea of the computational resources required, we provide information about the compu-

tation time for the systems we studied. We ran all the simulations on a single core of an Intel Xeon

CPU x5365 3 GHz processor. For the OX configuration, with no dielectric forces (εM = εW = 80)

and an average number of ion of 48.79 it took ∼2.5 hour to simulate 100 ns. For the same system,

with dielectric forces (εM = 10, εW = 80) and an average number of ion of 50.21 it took∼3.3 hour

to simulate 100 ns. The extra time required is due to the computation of dielectric forces.
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Figure S1: BD algorithm test for bulk NaCl electrolyte (analogous results have been obtained for
other electrolytes, data not shown). Simulated currents are in excellent agreement with theoret-
ical results predicted by the NP equation for different values of the electric field | Ez | applied
along z (a). When Ez = 0, ion velocity distribution follows the Maxwellian distribution predicted
theoretically (b). Distribution of the z-component of ions’ velocities for values of | Ez | (c).
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The capability of ion channels to respond to different
physicochemical stimuli has also inspired the design of hybrid
sensors, in which ion channels are adopted as sensing units and
electronic circuitry is used to detect the permeating
currents.9−12 Prototypes based on this setup have already
been developed for the detection of molecules in solution13−15

and, more recently, as an alternative to the current DNA-
sequencing techniques.16

Solid-state nanopores are nanometer-scale pores set in
electrically insulating membranes that can be used to study
the transport properties of different ionic species or molecules
in confined space.17−19 Being much more stable and reliable
than ion channels, they can be used to investigate some
properties of ion permeation through biological membrane
pores. Moreover, they can be used as detectors of specific
molecules in electrolytic solutions. In this case, the detection
principle is based on monitoring the variations of the ionic
current flowing through the nanopore caused by the transit of a
single molecule.20−25 Nanopore sensors represent a very
promising technology and a complete knowledge of ion
permeation through such structures is needed.
Therefore, ion permeation through ion channels or synthetic

pores, is a process of considerable importance and there is a
need to determine its dependence of the structure of the pore.
The numerical simulations of ion motion near and within
membrane pores can enable the realistic estimation of their
conductance and provide great insights on the particular
aspects of ion permeation through such structures. For
example, they can shed light on the concentration and velocity
distribution of ions within the channel and can help to localize
possible binding sites for ions inside the pore. Moreover, they
allow one to study how different parameters affect ion
permeation, and, therefore, to predict their influence on pore
conductance and possibly identify critical ion channel
mutations.
Different approaches can be employed to simulate ion

permeation through membrane pores.26−32 With all-atom
models simulated by molecular dynamics (MD), it is possible
to describe ion channels and electrolytic solutions at the
atomistic level, explicitly modeling the interactions among all
the simulated particles. Thus, MD should represent the most
detailed approach to the simulation of ion transport through
membrane pores,33−38 but due to the huge computational
burden, it allows the analysis of relatively small systems with
large ionic concentrations and over extremely short time scales,
too short in most cases for the estimation of transport
properties such as channel conductance.39−44

The Poisson−Nernst−Planck model (PNP) is an approx-
imation based on electrostatic continuity and the mean-field
approximation. Ions are not explicitly treated as discrete
particles but as continuous charge densities that represent the
space-time average of the microscopic ion’s charge. Ion flux
inside the system is described by the Nernst−Planck (NP)
equation. The self-consistency of this method is obtained by
iteratively solving the Poisson equation and the NP
equation.27,40,45−57 This approach allows the calculation of
conductance but deals approximately (at best) with many
important aspects that influence ion translocation through
narrow or crowded channels, such as ions’ finite size and
discrete charge.40−42,48−50,58 The PNP model has been
extended to include the effects of finite size ions in several
different ways that give results comparable to Monte Carlo
simulations for the same systems.54,59−64 A newly developed

method in which the NP equation is coupled to Local
Equilibrium Monte Carlo (LEMC) simulations (NP+LEMC)
goes one step further.62,65,66 It still uses the NP equation to
describe transport, while the ionic distributions and the
electrochemical potential profiles are computed on the basis
of a molecular model, where ions are treated explicitly.
The Brownian dynamics (BD) approach represents an

intermediate level of approximation between MD and PNP
and offers a good trade-off between simulation accuracy and
computation time for the analysis of ion currents flowing
through nanometer-scale pores. BD also has the advantage over
NP+LEMC that it simulates the dynamics of ions directly
instead of just assuming an underlying transport equation.
BD is particularly well-suited for the use of the so-called

primitive model of electrolytes. Within the primitive model,
water is treated as a continuum; ions are spheres with finite size
with their charges treated as discrete charges at spheres’
centers.67 Therefore, the BD approach explicitly models only
the trajectories of all the ions inside the simulation domain,
avoiding the computation of water molecules’ trajecto-
ries.29,68−73 The presence of water molecules is treated
implicitly, considering only the average effect on the ions.
Furthermore, the pore, the membrane, and the charges inside

the membrane are considered at fixed positions during the
whole simulation. This allows BD to be much less computa-
tionally demanding than MD. On the other hand, with respect
to PNP, BD takes into account ions’ finite size and allows one
to accurately model ion motion in narrow and crowded
channels.
The BD approach allows the microsecond time scale

simulation of membrane pores, and thus, it lends itself to the
accurate and reliable estimation of their conduc-
tance.40,42,43,51,70,74−85 For these reasons, BD simulations have
been widely adopted to analyze conduction in membrane
proteins or nanotubes, providing good agreement with
experimental data.43,49,75−77,82,86−88

Although several implementations of BD have been
proposed in the past,42,43,77,80 improvements are still possible,
in terms of both accuracy and efficiency. In particular, it is
possible to identify critical aspects that, if underestimated, can
easily lead to inaccurate or wrong results: (i) the handling of
unphysical ion configurations; (ii) the integration of the
Langevin equation of motion; (iii) the evaluation of the
dielectric forces acting on the ions; and (iv) the treatment of
boundary conditions for ion concentration in the solution
baths.
Specifically, the treatment of unphysical ion configurations

can introduce artifacts that can invalidate the simulation results.
The inaccurate integration of the Langevin equation can
produce a poor representation of the ions’ Brownian motion
and, as a consequence, meaningless simulation results since
ions do not move according to the prescribed model. The
imprecise computation of the electrostatic forces acting on the
ions determines an inaccurate or wrong evaluation of ions’
motion and therefore simulation results will be inaccurate or
wrong as well. Finally, if boundary conditions for ion
concentrations are not enforced correctly, the system is not
simulated correctly. We focused on these issues in the attempt
to improve the state of the art in this field.
The next sections describe how we tackled each of these

critical points. Section 2.1 introduces our new technique to
handle unphysical ion configurations. Section 2.2 illustrates the
integration of the Langevin equation and the BD engine.
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Section 2.3 describes the Induced Charge Computation (ICC)
method. Finally, section 2.4 presents the treatment of boundary
conditions for ion concentrations through a Grand Canonical
Monte Carlo (GCMC) algorithm.
Some of these features have already been separately included

in the simulation of electrolytes or ion channel permeation. In
our work, these features have been consistently integrated to
obtain an efficient and accurate particle-based numerical BD
simulator for the realistic analysis of ion permeation through
membrane pores.
Typycally, BD implementations use a “fixed charge” model to

mimic ion channel charged groups: point charges (possibly
obtained from PDB files) are embedded in the membrane and
cannot move in response to ions’ movement. This model can
provide a satisfactory approximation in the case of wide pores
(e.g., α-hemolysin and VDAC protein channels).78,81,83

However, a large number of ion channels (e.g., Ca2+ channels
and K+ channels) have a very narrow selectivity filter. In this
case, permeating ions interact strongly with the protein charges
in terms of electrostatic forces and steric repulsions. The result
is a correlated motion of selectivity filter charges and ions in a
very dense environment. In such a case, the “fixed charge”
model appears to be inadequate. To provide a better
description of ion motion in narrow pores, accounting for
selectivity filter structural changes, we adopted a “mobile
charge” model in which protein charges are treated similarly to
other ions (i.e., they move according to BD) but are confined in
the central section of the pore. This model is much more

challenging than the “fixed charge” model, requiring the
evaluation of ion dynamics in crowded environments and the
accurate evaluation of dielectric forces at each time step. We
tackle these issues by introducing a novel retracing technique to
safely handle unphysical ion configurations (which occur very
frequently in the case of charge crowding) and by, for the first
time, computing the dielectric forces on the fly. The use of
these advanced techniques, and previously established
techniques such as van Gunsteren and Berendsen integration
and GCMC, allows us to study narrow and crowded channels,
extending the applicability of BD, limited, until now, to wide
ion channels.42,43,77,78,80,81,89−91 The source code of our
BROWNian Ion channel and Electrolyte Simulator (BROW-
NIES) is available for free download at www.phys.rush.edu/
BROWNIES.

2. OVERVIEW OF THE SIMULATOR

In this section, we present the main characteristics of the
simulator using a simple model of a selective ion channel as a
test bed to illustrate the main concepts. Although our 3-D
simulator can handle structures with complex geometries, in
this paper, we limit the analysis to a pore featuring a rotational
symmetrya reasonable assumption for ion channelsin
order to simplify the simulation domain, to ease the explanation
of the methodologies.
The simulation domain consists of a rectangular box

featuring, at its center, a planar membrane oriented on the
x−y plane that separates two ionic baths representing the intra-

Figure 1. (a) 2-D simulation domain sketch. Water (white region) and membrane (light gray regions) feature different dielectric constants (εW = 80
and εM = 10, respectively). Two 30 Å width GCMC control cells (dark gray regions) are on either side of the membrane. White and black circles
represent the negative and positive charges of dipole rings embedded in the membrane to mimic ion channel charged groups. We investigate ion
permeation through this channel model for different configurations (N0, E6, C31, C32, and C33) of fixed dipoles and for a model of the L-type calcium
channel with mobile structural charges inside the pore (OX). (b) The cross section of the channel is surrounded by active (white filled circles)
dipoles. Note that OX is the only configuration in which channel charges are mobile whereas dipole charges are kept fixed for the entire simulation.
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and extracellular environments. Ions can flow from one bath to
the other through a pore set at the center of the septum. A 2-D
schematic section of the simulated system is shown in Figure
1a. The 3-D simulation domain with the 3-D channel structure
is obtained by rotating the 2-D section in Figure 1a around the
pore (z) axis. Unless otherwise stated, in our simulations we
use different dielectric constants for water (εW = 80) and the
membrane (εM = 10).
With the “fixed charge” model, we use two rings of six

dipoles embedded in the membrane (light gray region) at z = ±
3 Å to model the selectivity filter of the channel. Dipole
negative charges (empty circles, −1 e each) are set 2 Å far from
the dielectric boundary, and the positive charges (filled circles,
1 e each) are 3 Å further inside the membrane (E6 configuration
in Figure 1b). The dipoles produce a potential well within the
pore that attracts cations and repels anions, resulting in a
cation-selective channel. Furthermore, we added two other
rings of six dipoles at the mouths of the channel whose charges
and orientation allows us to control the spatial extent of the
potential well created by the filter dipoles, thus enhancing the
selectivity of the channel; the configuration adopted in this
work includes negative charges (−1 e each) located at z = ± 7
Å and r = 8 Å and positive charges (1 e each) located at z = ± 8
Å and r = 11 Å.
In this paper, we describe the capabilities of our BD

implementation by means of simulation of various channel
models that differ in the configuration of their active dipoles
(Figure 1b). The N0 configuration models an uncharged
channel and has no dipoles (mouth and filter), while the E6
configuration has all the dipoles (mouth and selectivity filter).
In the C31, C32, and C33 configurations, only three out of six
filter dipoles in each ring are present (all mouth dipoles remain
active).
We also use the “mobile charge” model to simulate narrow

and crowded pores simulating a model of a L-type calcium
channel. We use 8 half-charged oxygens to mimic its
carboxylate-rich selectivity filter (OX configuration in Figure
1b). Oxygen ions are not linked to a fixed position and are
moved the same as other ions, except they are confined in the
central region of the pore (z = ± 5 Å) with a hard wall
potential. In this case, no dipoles are present in the membrane.
This setup has been successfully used to study conduction
properties of the open calcium channels66,92−101 and allows us
to deal with a realistic model of a narrow ion channel in BD for
the first time.
Ions are free to move according to BD in the whole

simulation domain except for the membrane. Details on the
computation of ion motion are provided in section 2.2.
Ion concentrations within the bulk solutions are controlled

by adding two control cells to the simulation domain (dark gray
regions in Figure 1a) on both sides of the membrane. The
control cells are placed at the far sides of the simulation domain
(from z = −100 Å to z = −70 Å and from z = 70 Å to z = 100
Å, respectively). In the control cells ions move according to BD
and their average concentration is controlled by the periodic
execution of a GCMC algorithm (details in section 2.4).
Figure 2 illustrates the execution flow of our BD tool. The

simulation setup (top box) consists of the initialization of the
simulation domain and of the ions’ position. Then, the chemical
potentials of the ionic species in the baths are evaluated by an
iterative GCMC routine (GCMC module). The main loop of
our Brownian simulator involves three main blocks: the
periodic execution of a GCMC routine to maintain the

prescribed ion concentrations in the baths using the
precalculated values for electrochemical potentials (GCMC
module), the update of ions’ positions and velocities as well as
other statistics (BD module), and the evaluation of the
electrostatic forces (for the BD module) and the electrostatic
potentials (for the GCMC module) exerted on the ions with
the ICC method (Electrostatic module). The retracing module,
introduced in this paper, checks the ions’ position and velocity.
In the case of unphysical configurations, it takes care of
retracing the simulation to a previous “safe” step (details in
section 2.1).
We use periodic boundary conditions along the x-, y- and z-

directions. When an ion flows out of the simulation box, it is
reinserted on the opposite side of the simulation domain. When
ion reinsertion is performed along z, ionic concentrations in
baths are changed momentarily, but the GCMC routine
preserves the prescribed concentrations on average.
The channel currents for each ionic species are evaluated at

each BD time step using the Ramo−Shockley theorem:

Figure 2. Simulation flow diagram. The five components of the
simulator are highlighted by different backgrounds. The techniques
introduced into BD by this paper (ICC dielectric force computation
and the retracing technique) are highlighted with dash contours.
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where qi, E(ri), and vi are the charge, the electric field at ion’s
position ri and the velocity of the i-th ion, respectively.102−104

E(ri) is evaluated solving the Laplace Equation (i.e., removing
all charges (ions and membrane charges) from the simulation
domain) and applying a potential difference of 1 V (left to right
ends). The sum runs over the Nν ions of species ν.
Channel conductance is evaluated by averging the ionic

current values sampled via the Ramo−Shockley theorem. This
approach provides more robust statistics and faster convergence
of the estimator with respect to the conventional approach, that
is, counting ion channel-crossing events.43,91,105 This is
particularly helpful for channels of very low conductance for
which the number of crossing events would be inadequate for
reliable current estimation.
For each configuration, we simulate ion motion for at least 5

μs. This allows us to obtain reliable results on ion permeation
without the need to average results of a number of simulations.
An analysis of the variance of current estimation as a function
of simulated time is provided in the Supporting Information.
The values for the ions’ physical parameters are shown in

Table 1: ionic radii are those defined by Pauling1 and diffusion
coefficients are set according to reference.106

It is generally thought that an ion’s mobility inside ion
channels will be significantly smaller than in bulk solution due
to charge crowding.81,89,107 Our BD tool can handle such a
position-dependent diffusion coefficient in the channel. Results
for a test case are in the Supporting Information.
2.1. Retracing Module. A critical issue affecting BD

simulations of narrow pores is unphysically long ion jumps.
This is particularly significant for the problem at hand because
of charge crowding occurring inside the pore. During a time
step, ions can get very close to each other, due to random
forces. In such a case, the short-range repulsive electrostatic
force evaluted at the next time step becomes so large that its
application during the whole subsequent time step Δt leads to
unphysically long ion jumps, possibly pushing ions out of the
simulation domain or into the membrane. This error can be
minimized by reducing Δt, leading to increased simulation time
and reduction of the number of significant digits while
evaluating finite difference derivatives. On the other hand,
this error could be avoided by correctly taking into account the
variation of the electrostatic and steric forces during each time
step, as the distance between ions changes. In this case, the
equations of motion become nonlinear and their solution
requires iterative loops within the numerical integration
procedure. The downside is, again, a larger computational
burden.
These problems related to ion configurations are often

overlooked in BD simulations, and a standard technique to

treat such exceptions is not yet established. While a clear
explanation of their treatment is not present in some
implementations,75,77,85,87,90 other BD implementations look
for unphysical configurations caused by long jumps. When such
configurations occur, the status of the ions is set back by one
time step, the ions involved are identified, and their positions
and velocities are arbitrarily changed in order to avoid the too-
long ion flight.43,91

Here, we present a new procedure to rigorously treat
unphysical ion configurations, without introducing artifacts
caused by the change of ions’ position or velocity. The basic
idea is that, in case of an unphysical ion configuration, the
simulation is retraced to a previous “safe” step, which may be
several steps in the past. Then, the simulation restarts with the
generation of a different sequence of random numbers.
Retracing the simulation by a single time step, as is done by

other BD simulators, might not always avoid unphysical ion
configurations (e.g., in case of ion crowding in the selectivity
filter, see section 2.2.3). The result is an infinite loop in search
of a physical configuration. For this reason, our procedure
allows the retracing of a variable number of time steps. If an
unphysical configuration occurs at time t = tn, the simulation is
traced back by one step and then restarted. If an exception
occurs again at t = tn or t = tn−1, the number of retraced steps is
increased by one, and the simulation is restarted. If another
exception occurs before reaching t = tn+1, the number of
retraced steps is increased by one, and the simulation is
restarted. Once time t = tn+1 is eventually reached, the retracing
procedure is finished, the number of retracing steps is reset to
one, and the simulation continues until another exception
occurs.

2.2. Brownian Dynamics Module. 2.2.1. Langevin
Equation of Motion. In the framework of the primitive
model for ions in aqueous solution, the evolution of the ions’
positions and velocities in time can be modeled with the full
Langevin equation of motion:108−112

γ̇ = − + +m t m t t t tv r v F r R( ) ( ( )) ( ) ( ( )) ( )i i i i i i i i i (2)

where ri, vi, mi, and γi are the position, the velocity, the mass
and the friction coefficient of particle i, respectively.29,68

Equation 2 breaks up the force that acts on the i-th ion into
three components: a random force (Ri(t)), a frictional force
(−miγi(ri(t))vi(t)), and the systematic force (Fi(r(t))). The
random and frictional forces represent the effects of ion
collisions with the surrounding water molecules. The three
directional components of the random force are uncorrelated
and can be described by a stationary Markov process with
Gaussian distribution, zero mean value, not correlated to other
forces; on the other hand, the frictional force is proportional to
the ion velocity. The magnitude of both depends on the friction
coefficient γi(ri(t)), which is related to the diffusion coefficient
Di(ri(t)) through the Einstein relation:

γ
=D t

kT
m t

r
r

( ( ))
( ( ))i i

i i i (3)

where k and T are the Boltzmann constant and the
temperature, respectively.68,113−115 By defining a position-
dependent diffusion coefficient we can account for different
ion mobilities in the channel.
The systematic force is the sum of all the forces other than

those caused by the surrounding water molecules. In our
model, it is the sum of two contributions: a short-range

Table 1. Ions’ Physical Parameters Used in the Simulations

ion valence
mass

(×10−27 kg)
radius
(Å)

diff. coefficient
(×10−9m2/s)

K+ 1 65.3967 1.33 1.96
Cl− −1 59.2995 1.81 2.03
Ca2+ 2 67.0353 0.99 0.79
Na+ 1 38.4532 0.95 1.33
O1/2− −0.5 26.552 1.40 2.2
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repulsive force that prevents ion overlap and the electrostatic
forces from the sources of electric field in the system, such as
electrical charges and transmembrane potential.
The short-range force that accounts for ions’ finite size,

preventing the overlap of the ions’ electronic clouds, is modeled
with the following inverse power formula:43,85,116
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where Ri, ri, and qi are the radius, the position and the charge of
the i-th ion, respectively. ε is the permittivity of the medium
where ions i and j are set, p is a hardness parameter that
represents the strength of the interaction (we assume p = 12
following reference75), and rîj is the unit vector pointing from
the i-th to the j-th ion centers. An analogous approach is
adopted to model the repulsion of ion i from the membrane or
channel wall (Rj = 0). The description of the numerical
evaluation of the electrostatic force is described in section 2.3
Some BD implementations assume that ion motion always

occurs in the high friction limit. In this case, ion interaction
with the surrounding water molecules is so strong that ions
always move in a diffusive regime and the systematic force is by
far dominated by the random force. The left-hand side of eq 2
(representing the inertial term) becomes negligible, resulting in
the reduced Langevin equation:

̇ = + ̂t
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t tr
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where R̂i(t) is a random Gaussian variable with ⟨R̂i⟩ = 0 and
⟨R̂i

2⟩ = 6Di(ri(t))Δt, where Δt is the time step used in the
integration.
The approximation of damped motion of particles has been

widely applied in numerous simulations of electrolytes and ion
channels.77,117 These simulators produce flux using this
equation on the microscopic level even though Eisenberg et
al. showed that this equation applied for averaged distributions
does not produce a flux.112 The discrepancy arises from the fact
that, in the simulations, the reduced Langevin is applied to each
ion at the microscopic level and not to the macroscopic ion
ensemble. Flux is produced by adding an external driving force
to the Hamiltonian of the system in terms of boundary
conditions for the potential and/or the ion concentrations.
The assumption of the diffusive regime holds for bulk

electrolytes, but there is no evidence for its accuracy in the
presence of a membrane slab and, in particular, inside narrow
pores. In confined spaces (e.g., in the selectivity filter of an ion
channel), crowding becomes extremely important and plays a
key role in ion motion. Therefore, in our opinion, it is vital to
model ion dynamics according to eq 2.
2.2.2. Numerical Integration of the Langevin Equation.

Many algorithms have been proposed to integrate eq 2 in order
to evaluate the ions’ motion.29,68,74,118−122 We employed the
method of van Gunsteren and Berendsen, since it proved to be
highly reliable and accurate.43,68,105,116

At each time step tn (of duration Δt), we evaluate for ion i
the new position ri(tn+1):
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and its velocity:
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where Gi = eγi
Δt−2γiΔt − e−γi

Δt, Hi = γiΔt/(eγiΔt − e−γi
Δt) and

Xi
n is a random variable defined as Xi

n = (1/miγi)∫ tn
tn+Δt(1 −

e−γi(tn+Δt−t))Ri(t) dt. For a detailed description of Xi
n, Gi, and Hi,

the reader is referred to ref 68. In case of a position-dependent
diffusion coefficient, γi(t) = γi(ri(t)) in eqs 6 and 7. For each ion
i at location ri(tn), γi(ri(tn)) is used throughout the time step. γi
can change from time step to time step as ion i enters or exits
the channel and moves to position ri(tn+1), but it is assumed
constant during a single time step in eqs 6 and 7. Therefore, we
can use the same integration technique for both constant and
varying γi.
This approach has two major advantages: high accuracy

(higher order terms are included in the integration) and low
sensitivity to time step duration (Δt is not subject to the
condition Δt ≪ γi

−1). Thanks to these features, this method
allows us to treat ion motion both in bulk solution, where the
frictional forces dominate, resulting in a diffusive regime, and
near and within the channel, where ion motion is determined
by short-range electrostatic and steric forces due to charge
crowding.

2.2.3. Assessement and Validation. The accuracy of our
Brownian engine was tested through several simulations for the
simple case of bulk electrolytes. As documented in the
Supporting Information, our implementation succeeds in
describing ion motion correctly under different conditions in
terms of solution composition, ion concentrations, and applied
electric fields.
The relevance and the impact of unphysical ion config-

urations detected by long jumps exceptions (LJE) (discussed in
section 2.1), is analyzed by comparing the results of the full
Langevin equation (LAN) (eq 2) and the reduced Langevin
equation in the high friction limit (HFL) (eq 5). Our results
show that LAN is less sensitive to LJE at relatively large Δt
values. The sensitivity of LAN and HFL models to LJE is
estimated by the percentage of LJE events over the total
number of steps (LJE%) and by the distribution of the number
of back-trace steps needed to circumvent such events (NBT).
First, we considered a rectangular box with periodic

boundaries filled by various ionic solutions; no membrane or
channel is present. Under different conditions for ion mixtures,
electric fields applied to the solutions, and time step durations
(1−100 fs), for both LAN and HFL, LJE% is limited to 0.1.
The two methods produce identical results in terms of ion
transport (velocity distributions, radial distribution functions)
and solution properties (ion distribution, ion currents) (data
not shown).
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Then, we tested LAN and HFL using an uncharged channel
(N0 configuration in Figure 1b). We had a 100 mM NaCl
solution in the left bath and a 0 mM NaCl (infinite dilute)
solution in the right bath. Again, LAN and HFL provide
essentially the same results (independent of time step duration
in the 1−100 fs range) for ion distribution along the simulation
domain (in particular inside the channel) and for ion currents.
This is essentially due to very low average number of ions
present in the channel (<0.1, data not shown).
Finally, we compared LAN and HFL in the case of the more

complex OX configuration (see Figure 1b), where 8 oxygens
model the selectivity filter of the L-type calcium chan-
nels.92−94,98 The charge crowding occurring in the pore, due
to the high density of oxygens in the central region of the pore,
represents a numerical challenge for both LAN and HFL. In
both cases the simulation overhead LJE% increases with the
time step duration Δt and is limited to 10% for Δt < 5 fs
(Figure 3a). For larger values of Δt, LAN performs significantly
better than HFL.
Figure 3a also gives a qualitative picture of the numerical

difficulties introduced by the “mobile charges” selectivity filter
model. Unphysical ion configurations are very frequent in such
dense systems, and their treatment with simpler techniques is
detrimental and can easily affect the simulation results. In this
view, our retracing technique is vital to obtain reasonable
results in a reasonable amount of time.
The distribution of back-trace length, NBT, provides

important information about the capability of the Brownian
simulation to circumvent forbidden configurations; the shorter
the retracing window, the more efficient the algorithm is. In the
LAN case, the retrace window length never exceeds 4

(necessary only once over 1000 LJE events) and is independent
of Δt (Figure 3b). On the other hand, HFL needs a larger
retrace window length that significantly increases with Δt.
Figure 3c shows the average number of Na+ ions in the pore

(z = ± 10 Å) and in the selectivity filter (z = ± 5 Å) obtained
with LAN and HFL for different Δt. Figure 3d shows the Na+

ion distribution along the pore obtained with LAN and HFL for
different Δt. Both Figure 3c and d show how LAN preserves
the accuracy of ion motion description as the time step
duration increases.
These results show that, due to the missing inertial term

(left-hand-side of eq 2), HFL is more prone to LJE and its
accuracy is significantly degraded for increasing Δt. According
to our analysis, the LAN description of ion motion with the van
Gunsteren and Berendsen integration scheme and 5 fs < Δt <
10 fs represents a good trade off between accuracy and
simulation time.

2.3. Electrostatics Module: Evaluation of Fields and
Systematic Forces. In order to determine ions’ positions and
velocities, via eq 2, it is necessary to compute the systematic
force Fi(r(t)) acting on each ion in the system. As described in
section 2.2, this force is the sum of short-range and long-range
electrostatic contributions. The latter arises directly from the
electric field generated by all the source charges located inside
the simulation domain, from the charges that generate the
applied field, and from the polarization charges induced by
these on the dielectric interfaces. The accurate and fast
evaluation of electrical forces is a crucial aspect for the
simulation of charged particles in general and is particularly
critical for the simulation of nanometer-scale structures. The

Figure 3. (Color online) Percentage of the number of long jump exception events over the total number of steps (LJE%) for full Langevin (LAN)
and reduced Langevin in the high friction limit (HFL) motion integration for the simulation of a model calcium channel (OX configuration in Figure
1b). Left and right baths contained 100 mM NaCl and 0 mM NaCl (infinite dilute) solution, respectively. LAN describes ion motion more carefully
requiring a smaller number of rejected steps (a). Retrace window size distribution (b) reveals that HFL needs larger retracing windows than LAN.
Moreover, LAN is substantially insensitive to Δt (indicated by numbers, in fs) while HFL retrace window size increases with Δt. LAN is able to
preserve the accuracy of ion motion description as Δt increases both in terms of channel occupancy (c) and ion distribution along the channel (d).
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relation between electrical charges and electrostatic forces is
described by the Poisson equation:

ε ε ρ− ∇ ∇Φ = −r r r[ ( ) ( )] ( )0 (8)

where ε0 is the permittivity of free space and ρ(r) is the charge
density of free charges. Free charges include the ionic, the
electrode, and the structural protein charges. The ionic charges
are point charges at the centers of ions, while the electrode
charges are uniform surface charges ± σ at the boundaries of
the system (at ±100 Å in Figure 1a) producing an applied
electric field EZ

T along the z (normal to the membrane)
direction that defines the transmembrane potential.123,124

The formulation of the electrostatic problem (primitive
model for electrolytes; well-defined uniform dielectric regions
separated by sharp rigid boundaries) lends itself to preserving
the discreteness of charges, through the explicit evaluation of
interparticle Coulombic forces and employing Boundary
Element Methods (BEM) to treat the case of inhomogeneous
dielectrics. In particular, BEMs exploit the Poisson equation to
evaluate the polarization surface charges induced at the
boundaries between different dielectric regions where a
discontinuity of permittivity is located.94,125−135

Once the polarization surface charges are converted into
equivalent point charges, the electric field can be evaluated
everywhere in space as the superposition of Coulombic
contributions from two sets of point charges: the source
charges (e.g., the ions) and the charges induced at the dielectric
boundaries.94,128−131,133,135−141

BEMs feature three major advantages with respect to classical
finite differences/finite elements Poisson solver: (i) BEMs
require only the discretization of the 2-D dielectric boundary
instead of the discretization of the whole 3-D simulation
domain; (ii) the ions’ charges are not converted into equivalent
charge densities, preserving the discrete nature of charged
particles; and (iii) electrostatic forces are evaluated only at the
ions’ exact positions, and thus, no interpolation between values
computed on a grid of points is needed.94,132,133,135

Note that, for homogeneous dielectric media, there are no
polarization charges and the evaluation of the electrostatic
forces is obtained applying Coulomb’s law to source charges
only. For this reason, some simple BD implementations
assumed the same dielectric constant for water and
membrane.77 Although this approach considerably reduces
the computational effort, it neglects reaction field effects, that
are relevant in narrow pores (i.e., surface charges induced on
the membrane and pore wall by ions).141,142

Some previous works accounted for polarization induced
charges by using an iterative BEM.42,43,91,143 Its huge
computational burden made its run-time usage impractical.
To circumvent this problem, the electrostatic forces were
evaluated in advance on a grid of points for a large number of
ion configurations and then stored in lookup tables. During the
simulations, the forces exerted on the ions were evaluated as
the superposition of elemental contributions obtained by
interpolating between lookup table entries. This approach
involves two kinds of limitations: (i) the loss in accuracy due to
interpolation between table entries and (ii) only charge
distributions featuring rotational symmetry can be simulated,
since the number of grid points needed to solve the Poisson
equation accurately in a fully asymmetrical 3-D system makes
calculations and storage unfeasible.42,43,80,91,105,143,144

We tackle the electrostatic problem by employing the
Induced Charge Computation (ICC) method, a BEM proposed

by Boda et al.94 In ref 132, we showed that for a given level of
accuracy and for the same number of surface discretization
elements, ICC is ∼2 orders of magnitude faster than iterative
BEM42,43,91,143 and is therefore much better suited for the
simulation of membrane pores. The accuracy and speed of ICC
allows run-time solution of the Poisson equation and, therefore,
lookup tables are not required and asymmetric 3-D systems can
be simulated as easily as symmetric ones.
The evaluation of induced charges with ICC is briefly

discussed in section 2.3.1. For a more detailed description,
please refer to refs 94, 130, 133, 134, and 137.

2.3.1. Evaluation of the Induced Surface Charges at the
Dielectric Boundaries. For the problem at hand, the simulation
domain is divided into two homogeneous regions by a sharp
boundary : a low-permittivity region representative of the
membrane layer and of the protein (εM = 10) and a high-
permittivity region representative of the aqueous solution (εW =
80) (Figure 1a).
Mobile ions and fixed membrane/protein charges are treated

as point charges. We can rewrite eq 8 in a form that emphasizes
the relation between the polarization vector P(r) and the
electric field E(r):

ε ρ∇ = − ∇PE r r r( ) ( ) ( )0 (9)

where P(r) = (ε(r) − 1)ε0E(r) accounts for the permittivity
discontinuity. Polarization effects can be modeled via the
polarization charge density h(r) = −▽P(r) that is induced at

only, because the surface of each source charge is neglected.
Starting from eq 9, after some mathematical manipulations it

is possible to express h(s):94,130,133
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where Δε and ε ̅ are the difference and the arithmetic mean
value, respectively, of the dielectric coefficients across the
surface, n(s) is the unit vector normal to at s, and ε(rk) is the
dielectric constant at charge qk position rk. In eq 10, the integral
is performed over the entire boundary surface . The right-
hand side includes the contributions to the polarization charge
by all the point source charges (ions or membrane/protein
charges) and by the applied electric field, EZ

T, producing the
transmembrane potential (applied voltage).
EZ
T is the solution of the Laplace equation (i.e., Poisson

equation with source charges removed) with prescribed
electrical potentials on the system’s boundaries (Dirichlet
boundary conditions) and removing the dielectrics. For a
simple simulation box such as ours, the solution is a constant
electric field, producing an applied potential changing linearly
between 0 and the value of the voltage (see the red dotted line
in Figure 4a). EZ

T also represents a source term in eq 10; thus, it
induces charges on the dielectric boundaries that, in turn,
contribute to the electric field acting on ions (see the red
dotted line in Figure 4b). Because of this, we do not need to
include the dielectrics in the Laplace equation. If the cell is large
enough, the charges induced by EZ

T do not affect the potential at
the system’s boundaries (red dotted line in Figure 4c).
The prescribed voltage is also maintained if the effect of the

ions is taken into account. The average electrical potential
produced by the ions (green dashed line in panel c has two
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components: the average potential produced by the ions
directly and the average potential of their polarization charges
induced on (green dashed lines in panels a and b,
respectively). As seen in Figure 4, the average effects of both
terms vanish at the system’s boundaries. This means that the
prescribed voltage is imposed at the system’s boundaries on
average. Of course, a fully self-consistent treatment of
electrostatics would require the solution of the Poisson
equation with the imposed Dirichlet boundary conditions “on
the fly” as pointed out by Crozier et al.145 and Hollerbach and
Eisenberg.146 In this case, the electrode charges would fluctuate
and the potential of the ions would be zero at the boundaries
not only on average but at every instant of the simulation. The
solution used in this work, however, provides a good
approximation. The approximation becomes better with
increasing system size because the ions in the channel would
have less influence on the fluctuating electrode charge. This
approach has been used to perform MD simulations of
e lectrolytes separated by an impermeable mem-
brane123,124,147,148 and in previous BD simulations of ion
channels.43,91,105,149

We evaluate the integral in eq 10 by discretizing the dielectric
boundary into S surface elements, named tiles, and
approximating the induced charge density hi over a single tile
of area ai as a point charge hiai located at its centroid si. This
produces a matrix formulation of eq 10 in the form

=Ah b (11)

where A is a S × S matrix describing the interactions between
the S tiles, b is the electric field normal to each surface element

Figure 4. (Color online) Time-averaged electrical potentials along the
channel axis from a simulation for the uncharged N0 configuration.
The baths contained 100 mM NaCl. The applied electric field, Ez

T = 5
× 106 V/m, produced a transmembrane potential of 100 mV. (a)
Potential from source (free) charges: ionic charges (green dashed line)
and electrode charges (red dotted line). (b) Potential from
polarization charges induced by either the ions or the applied field
(same line types as in part a). (c) Sum of the source and induced
terms (same line types as in part a).

Figure 5. (Color online) Asymmetrically charged channel. C31, C32, and C33 configurations provide very similar Na
+ distributions along the pore (a)

but different Na+ currents (b) due to the different cross-sectional arrangement (c), (d) and (e). Na+ ions pack in correspondence of the active
dipoles (white-filled numbered circles). Note that Cl− ions are excluded from the pore due to the unfavorable dipole orientation. Na+ distributions
along the pore were obtained by dividing the simulation domain in slices along z, counting the average number of ions per slice and dividing by the
slice thickness.
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due to any source of electric field in the system (ions,
membrane/protein charges, and transmembrane potential), and
the vector h contains the polarization charges induced on the
surface elements.94,130,133 Within the ICC formulation, the
elements of the matrix A are defined as
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where si is the centroid of the i-th boundary element and δij is
the Kronecker delta function. The integral in eq 12 is extended
over the entire surface of the j-th tile. We approximate this
integral by subdividing each tile into M subtiles as described in
ref 94.
Solving eq 11 for h, the induced surface charges are known

and can be converted into point charges (h1a1,h2a2,..,hSaS) set at
the tiles’ centroids (s1,s2,..,sS,). Then, the electric field acting on
the i-th ion can be evaluated at its position ri as a superposition
of Coulombic contributions.
ICC’s effectiveness lies in its matrix formulation: since the

matrix A does not change throughout a simulation run (because
the dielectric boundaries do not change shape and position), it
can be inverted just once at the beginning of the simulation.
Then, each electric force evaluation reduces to a matrix-vector
product. This operation is relatively light computationally and
allows for the solution of the Poisson equation at each time
step. Moreover, the subtiling of every tile takes the curvature of
the dielectric boundary into account properly, a feature absent
in earlier BEM implementations,126,130,137,150−153 with a
relatively small number of tiles that still gives very accurate
results.94,130,133

In each electrostatic calculation (Coulombic, ICC, and
GCMC) we considered, in the x and y directions, the primary
cell and two replicas of the primary cell (one left and one
right), with the closest image replica convention. Instead, in the
z direction we considered the system as an isolated box.
2.3.2. Assessment Analysis: The Case of Asymmetric

Protein−Charge Spatial Distribution. The suitability of ICC
for ion channel simulation, its accuracy and computational
efficiency have been discussed extensively by the authors in refs
94, 132, 133, and 137. Here, we extend the assessment of this
powerful method further by demostrating its applicability to
asymmetrically charged ion channels.
We investigate current and selectivity in asymmetrically

charged channels by switching off three out of the six filter
dipoles in each ring (configurations C31, C32, and C33 of Figure
1b). In this study, all the mouth dipoles are switched on as in E6
configuration. We performed simulations for each configuration
and for different transmembrane potentials. The intra- and
extracellular baths contained 100 mM NaCl solutions.
Figure 5a shows the Na+ concentrations along the pore for

the three configurations for a transmembrane potential of 100
mV. The different configurations produce very similar cross-
section-averaged concentration profiles (almost identical for
C32 and C33 configurations) with two small peaks near the filter
dipole rings (z = ± 3 Å). Similar results were obtained for
different transmembrane potentials (data not shown).

Figure 5b shows Na+ currents as functions of the
transmembrane potential. At low transmenbrane voltage, all
the configurations produce currents roughly proportional to the
transmembrane potential, but feature distinctly different
conductances. The most conductive configuration is C32,
while C31 is the least conductive one.
The analysis of cross-sectional Na+ concentration maps at the

right-most binding site allows us to analyze the link between
the Na+ permeation properties and the distribution of protein
charges (Figure 5c, d, and e, for C31, C32, and C33
configurations, respectively). Na+ ions are attracted by the
negative terminal of the dipoles (displayed by white-filled
numbered circles), resulting in very different concentration
patterns. Although the total concentration is roughly the same
for the three configurations (the average number of Na+ ions
occupying the pore is 1.55, 1.52, and 1.51 for C31, C32, and C33
respectively), the C31 configuration features a strong binding
site due to three consecutive active dipoles, while C33 shows the
most uniform-spreaded concentration because the active and
inactive dipoles alternate. C32 is an intermediate case.
According to our results, strong ion localization within the

selectivity filter due to the asymmetry of protein’s charges leads
to degradation of the channel conductance. The explanation of
this effect is that the mobility of ions is reduced at the sites
where ions accumulate. They are bound more strongly to the
binding site by electrostatic attraction, so they are more
reluctant to proceed through the channel. The effect of this
competition between binding and conductance on selectivity
was discussed in ref 98.

2.4. Interaction with the Surrounding Solution Bath:
The Grand Canonical Monte Carlo Module. Mixtures of
electrolytes, with different ionic species at very different
concentrations, are common in biological systems (10−1 M
K+, 10−7 M Ca2+, 10−3 M Mg2+ in the cytoplasm).1,39,67 Indeed,
almost all solutions inside cells are highly concentrated (more
than 200 mM) with monovalent salts (i.e., namely more than
1−50 mM, according to the standards of physical chemistry)
but contain less than 10−6 M Ca2+. Ideally, the simulation of
membrane pores should model the actual physiological
conditions or experimental setup. However, due to limited
computational resources, only a limited portion of the intra-
and extracellular regions can be included in the simulation
domain, making the treatment of ion and energy exchange with
the surrounding solution baths challenging.
Early BD works employed a small simulation box where the

number of ions was kept constant.43,50,91 This approach does
not provide a satisfactory representation of the whole baths and
a rigorous treatment of boundary conditions since the
simulated system was treated as isolated.154,155 More recent
implementations adopted two control cells, representative of
the intra- and extracellular electrolytic baths, where the number
of ions is kept constant in the control cells during the whole
simulation run, while the total number of ions in the system
could fluctuate.42,156 This technique does not correctly model
the energy exchange between the simulated system and the
baths. Moreover, due to discreteness of ion charge, it is suitable
only when concentrations and control cell dimensions allow
one to deal with several ions for each ionic species, making
submillimolar concentrations practically unmanageable.
Other works42,77,81,90 used a Grand Canonical Monte Carlo

(GCMC) algorithm, iteratively executed during the simulation,
to force the prescribed time-averaged ionic concentrations and
instantaneous chemical potential for each ionic species in the
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control cells. This approach is based on the Dual Control
Volume method of Heffelfinger and van Swol,157 and it was
applied to ionic systems by Im et al. for the first time.77

The GCMC approach is by far the most accurate and
affordable for our purposes. Therefore, we maintain boundary
conditions for ion concentrations in the control cells by
employing a GCMC algorithm.158 This setup has already been
adopted successfully for the investigation of diffusion in
chemical physics159−163 and for the permeation of ion through
ion channels.65,77,81,90,98,164

The GCMC algorithm allows concentration fluctuations but
enforces constant time-averaged concentrations by performing
individual ion insertions and deletions.29,165,166 The insertion
(deletion) probability pv

i (pv
o) of an ion of species ν is evaluated

according to
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where ΔU is the energy change associated with the insertion
(deletion); k and T are the Boltzmann constant and the
absolute temperature, respectively; Nν is the number of ions of
species ν in the control cell before the insertion (deletion); μ̅ν
is the chemical potential of the ion ν (that can be different in
the two control cells); V is the control cell volume; and χ is 1
for the insertion and −1 for the deletion.
ΔU is the potential energy change of the particular ion

distribution before and after the ion insertion (deletion); thus,
it takes into account the energy of the whole system. On the
other hand, χμ̅ν is a global property of ion species ν that
describes the energy needed to insert (remove) a ν ion in an
electrolytic solution made up by different ionic species at given
concentrations.
In the same way, the GCMC algorithm attempts ion

displacements within the control cell with probability:
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This method provides enough flexibility to deal with ionic
concentrations from the molar down to the submillimolar
range. At very low concentrations, however, sampling can be
inadequate because of the very low probability of having ions in
the control cells. This affects both the calculation of
conductances and the ability of GCMC algorithm to ensure
the prescribed ionic concentrations quickly. Treatment of

concentrations in the micromolar range (relevant in biological
situations such as the L-type calcium channel97,167) requires
special techniques to circumvent these problems that we do not
consider here.62,65 We pay attention to using wide control cells
at large distances from the membrane to avoid altering ion
distributions and dynamics in the vicinity of the channel and to
provide ion screening from outside the simulation domain.
In our setup, preliminary iterative GCMC simulations

provide accurate estimates of the chemical potentials inside
the two control cells (dark gray regions in Figure 1a). The
chemical potentials are computed for each ionic species,
accounting for solution composition and temperature, with
bulk GCMC simulations in a cubic simulation cell by means of
an iterative method developed by Malasics and Boda168,169

called the Adaptive GCMC (A-GCMC) method.
During the simulation, a GCMC cycle is periodically

executed to preserve the correct ionic concentrations in the
control cells. Each cycle performs ion insertion, deletion and
displacement attempts, using eqs 14 and 15, with the chemical
potential values calculated by the A-GCMC routine.

2.4.1. Assessment Analysis: Millimolar and Submillimolar
Ion Concentrations. We investigated the ability of our GCMC
routine to ensure boundary conditions for ion concentrations
using the OX model (Figure 1b). Both baths contained 100
mM NaCl solutions. In addition, we added different
concentrations of CaCl2 solution to the left bath only. No
transmembrane potential was applied.
Figure 6 shows ion density profiles throughout the

simulation domain for 10 mM (a) and 100 μM (b) CaCl2
added to 100 mM NaCl in the left bath only. In both cases, our
GCMC is able to ensure the prescribed concentrations in the
baths. Analogous results have been obtained for different ionic
concentrations (data not shown).
In both cases, we executed a GCMC cycle every 10 ps (1000

BD steps with a time step of 10 fs). Each GCMC cycle
consisted of 400 creation, 400 deletion (with eq 14), and 200
displacement (with eq 15) attempts for each ionic species in
each individual control cell.
GCMC parameters (e.g., the number of creation, deletion

and displacement attempts of each GCMC cycle, number of
BD steps between two GCMC cycles) have a strong influence
both on simulation accuracy and performance. For example,
increasing the number of ion creation/deletion attempts in
each GCMC routine helps to maintain the desired bulk
concentrations. On the other hand, it requires a larger

Figure 6. (Color online) Ion density profiles throughout the simulation domain for 10 mM (a) and 100 μM (b) CaCl2 added to 100 mM NaCl on
the left bath only. The right bath contains 100 mM NaCl. Concentrations were evaluated by dividing the simulation domain in slices along z,
counting the average number of ions per slice and dividing by the volume of the slice. Our GCMC routine is able to ensure the prescribed
concentrations in the baths.
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computational effort. Optimal parameters are those that, for a
given simulation, provide the desired boundary conditions with
the minor computational effort.
GCMC parameters are strongly affected by the intrinsic

properties of the simulated system (e.g., channel conductance,
ion concentrations). Therefore, optimal parameters must be
tailored for the specific system, and it is not possible to find
GCMC parameter values with general validity, just as it is not
possible to know how many time steps are needed to have a
converged current. Without a rigorous mathematical analysis,
which is beyond the scope of this paper, GCMC parameter
optimization is a guess (parameter values) and check (ion
concentrations) process.

3. CONCLUSION
A fully 3-D Brownian dynamics simulator of ion transport
through membrane pores was presented. Although our tool can
be adopted to investigate ion permeation through both
synthetic nanopores and wide biological ion channels (e.g., α-
hemolysin, VDAC),78,81,83 it is specifically designed to treat
with high accuracy the ion transport through narrow and
crowded ion channels (e.g., Ca2+ and K+ channels), where
dielectric and steric effects are crucial issues. These kinds of
channels have generally not been treated before with BD.
Electrostatics in crowded pores, as well as crowding itself, are
challenging issues that require the use of all the novel
techniques introduced in our tool:

1. Unphysical ion configurations are handled rigorously
with a novel retracing procedure; in case of such
configurations, the simulation is retraced and restarted
with the generation of new, different sequences of
random numbers.

2. The dielectric calculation is tackled with the ICC method
developed by Boda et al.94 This accurate and efficient
approach allows us to avoid the use of lookup tables and
paves the way to fully 3-D simulations in asymmetric
channels. This is the first time dielectric forces have been
calculated on the fly in BD, to our knowledge.

Accuracy is also increased with the use of already well
established techniques:

1. The common assumption of ion transport in the high
friction limit is avoided in our approach; ion motion is
evaluated by integrating the full Langevin equation with
the discretization scheme of van Gunsteren and
Berendsen,68 allowing accurate calculation of ion motion,
both in bulk solution and within narrow and crowded ion
channels.

2. Boundary conditions for ion concentrations in the ionic
baths are enforced with an accurate GCMC algorithm
applied to two charge reservoirs. The use of the dual
volume control-grand canonical algorithm77,157 allows us
to model submillimolar ion concentrations.

The key features and capabilities of the simulator have been
extensively tested through the detailed analysis of several test
cases. Accuracy, precision, and flexibility have been the
guidelines for the implementation of all the software modules.
All these aspects make our simulator a state-of-the-art tool for
the study of ion permeation through membrane pores.
The source code of our tool, called BROWNIES

(BROWNian Ion channel and Electrolyte Simulator), is
available for free download at www.phys.rush.edu/
BROWNIES (note that address is case sensitive).
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(72) Kröger, M. Simple models for complex nonequilibrium fluids.
Phys. Rep. 2004, 390, 453−551.
(73) Dufreche, J.-F.; Bernard, O.; Turq, P. Transport in electrolyte
solutions: Are ions Brownian particles? J. Mol. Liq. 2005, 118, 189−
194.
(74) Ermak, D. L. A computer simulation of charged particles in
solution. I. Technique and equilibrium properties. J. Chem. Phys. 1975,
62, 4189−4196.
(75) Marreiro, D.; Saraniti, M.; Aboud, S. Brownian dynamics
simulation of charge transport in ion channels. J. Phys.: Condens. Matter
2007, 19, 215203.
(76) Schirmer, T.; Phale, P. S. Brownian dynamics simulation of ion
flow through porin channels. J. Mol. Biol. 1999, 294, 1159−1167.
(77) Im, W.; Seefeld, S.; Roux, B. A grand canonical Monte Carlo−
Brownian dynamics algorithm for simulating ion channels. Biophys. J.
2000, 79, 788−801.
(78) Im, W.; Roux, B. Ion permeation and selectivity of OmpF porin:
A theoretical study based on molecular dynamics, Brownian dynamics,
and continuum electrodiffusion theory. J. Mol. Biol. 2002, 322, 851−
869.
(79) Vora, T.; Corry, B.; Chung, S.-H. Brownian dynamics
investigation into the conductance state of the MscS channel crystal
structure. Biochim. Biophys. Acta, Biomembr. 2006, 1758, 730−737.
(80) Li, S. C.; Hoyles, M.; Kuyucak, S.; Chung, S.-H. Brownian
dynamics study of ion transport in the vestibule of membrane
channels. Biophys. J. 1998, 74, 37−47.
(81) Noskov, S. Y.; Im, W.; Roux, B. Ion permeation through the α-
hemolysin channel: Theoretical studies based on Brownian dynamics
and Poisson−Nernst−Plank electrodiffusion theory. Biophys. J. 2004,
87, 2299−2309.
(82) Allen, T.; Chung, S. Brownian dynamics study of an open-state
KcsA potassium channel. Biochim. Biophys. Acta, Biomembr. 2001,
1515, 83−91.
(83) Lee, K. I.; Rui, H.; Pastor, R. W.; Im, W. Brownian dynamics
simulations of ion transport through the VDAC. Biophys. J. 2011, 100,
611−619.
(84) Henn, F.; Dutour, J. A microscopic flow model based on
Brownian dynamics for simulating ionic diffusion in a 2D-channel
geometry. J. Non-Cryst. Solids 2005, 351, 1447−1454.
(85) Krishnamurthy, V.; Chung, S.-H. Adaptive Brownian dynamics
Simulation for estimating potential mean force in ion channel
permeation. IEEE Trans. Nanobiosci. 2006, 5, 126−138.
(86) Tindjong, R.; Eisenberg, R. S.; Kaufman, I.; Luchinsky, D. G.;
McClintock, P. V. E. Brownian dynamics simulations of ionic current
through an open channel. AIP Conf. Proc. 2005, 780, 563−566.
(87) Song, C.; Corry, B. Ion conduction in ligand-gated ion channels:
Brownian dynamics studies of four recent crystal structures. Biophys. J.
2010, 98, 404−411.
(88) Chung, S.-H.; Allen, T. W.; Kuyucak, S. Conducting-state
properties of the KcsA potassium channel from molecular and
brownian dynamics simulations. Biophys. J. 2002, 82, 628−645.
(89) Comer, J.; Aksimentiev, A. Predicting the DNA sequence
dependence of nanopore ion current using atomic-resolution brownian
dynamics. J. Phys. Chem. C 2012, 116, 3376−3393.

(90) Im, W.; Roux, B. Brownian dynamics simulations of ions
channels: A general treatment of electrostatic reaction fields for
molecular pores of arbitrary geometry. J. Chem. Phys. 2001, 115,
4850−4861.
(91) Chung, S.-H.; Hoyles, M.; Allen, T.; Kuyucak, S. Study of ionic
currents across a model membrane channel using Brownian dynamics.
Biophys. J. 1998, 75, 793−809.
(92) Nonner, W.; Eisenberg, B. Ion permeation and glutamate
residues linked by Poisson−Nernst−Planck theory in L-type calcium
channels. Biophys. J. 1998, 75, 1287−1305.
(93) Nonner, W.; Catacuzzeno, L.; Eisenberg, B. Binding and
selectivity in L-type calcium channels: A mean spherical approx-
imation. Biophys. J. 2000, 79, 1976−1992.
(94) Boda, D.; Valisko,́ M.; Eisenberg, R. S.; Nonner, W.; Henderson,
D.; Gillespie, D. The effect of protein dielectric coefficient on the ionic
selectivity of a calcium channel. J. Chem. Phys. 2006, 125, 034901.
(95) Boda, D.; Valisko,́ M.; Eisenberg, B.; Nonner, W.; Henderson,
D.; Gillespie, D. Combined effect of pore radius and protein dielectric
coefficient on the selectivity of a calcium channel. Phys. Rev. Lett. 2007,
98, 168102.
(96) Gillespie, D.; Boda, D. The anomalous mole fraction effect in
calcium channels: A measure of preferential selectivity. Biophys. J.
2008, 95, 2658−2672.
(97) Boda, D.; Valisko,́ M.; Henderson, D.; Eisenberg, B.; Gillespie,
D.; Nonner, W. Ion selectivity in L-type calcium channels by
electrostatics and hard-core repulsion. J. Gen. Physiol. 2009, 133,
497−509.
(98) Rutkai, G.; Boda, D.; Kristof́, T. Relating binding affinity to
dynamical selectivity from dynamic Monte Carlo simulations of a
model calcium channel. J. Phys. Chem. Lett. 2010, 1, 2179−2184.
(99) Boda, D.; Henderson, D.; Gillespie, D. The role of solvation in
the binding selectivity of the L-type calcium channel. J. Chem. Phys.
2013, 139, 055103.
(100) Gillespie, D.; Xu, L.; Wang, Y.; Meissner, G. (De)constructing
the ryanodine receptor: Modeling ion permeation and selectivity of the
calcium release channel. J. Phys. Chem. B 2005, 109, 15598−15610.
(101) Gillespie, D. Energetics of divalent selectivity in a calcium
channel: The ryanodine receptor case study. Biophys. J. 2008, 94,
1169−1184.
(102) Yoder, P.; Gartner, K.; Krumbein, U.; Fichtner, W. Optimized
terminal current calculation for Monte Carlo device simulation. IEEE
Trans. Comput.-aided Des. Integr. Circuits Syst. 1997, 16, 1082−1087.
(103) Nonner, W.; Peyser, A.; Gillespie, D.; Eisenberg, B. Relating
microscopic charge movement to macroscopic currents: The Ramo−
Shockley theorem applied to ion channels. Biophys. J. 2004, 87, 3716−
3722.
(104) Eisenberg, B.; Nonner, W. Shockley−Ramo theorem measures
conformation changes of ion channels and proteins. J. Comput.
Electron. 2007, 6, 363−365.
(105) Hoyles, M.; Kuyucak, S.; Chung, S.-H. Computer simulation of
ion conductance in membrane channels. Phys. Rev. E 1998, 58, 3654−
3661.
(106) Robinson, R.; Stokes, R. Electrolyte Solutions, 2nd Revised ed.;
Dover Books on Chemistry; Dover Publications: Mineola, NY, 2002.
(107) Mamonov, A. B.; Kurnikova, M. G.; Coalson, R. D. Diffusion
constant of K+ inside Gramicidin A: A comparative study of four
computational methods. Biophys. Chem. 2006, 124, 268−278.
(108) Coffey, W.; Kalmykov, Y.; Waldron, J. The Langevin Equation:
With Applications to Stochastic Problems in Physics, Chemistry, and
Electrical Engineering; Series in contemporary chemical physics; World
Scientific Publishing Company Incorporated: Singapore, 2004.
(109) Evans, D.; Morriss, G. Statistical Mechanics of Nonequilibrium
Liquids; Theoretical chemistry; Cambridge University Press: Cam-
bridge, U.K., 2008.
(110) Cooper, K.; Jakobsson, E.; Wolynes, P. The theory of ion
transport through membrane channels. Prog. Biophys. Mol. Biol. 1985,
46, 51−96.
(111) Cooper, K. E.; Gates, P. Y.; Eisenberg, R. S. Surmounting
barriers in ionic channels. Q. Rev. Biophys. 1988, 21, 331−364.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4011008 | J. Chem. Theory Comput. 2014, 10, 2911−29262924



(112) Eisenberg, R. S.; Klosek, M. M.; Schuss, Z. Diffusion as a
chemical reaction: Stochastic trajectories between fixed concentrations.
J. Chem. Phys. 1995, 102, 1767−1780.
(113) Einstein, A. Investigations on the Theory of Brownian Movement;
Dover Publications: New York, 1956.
(114) Kramers, H. Brownian motion in a field of force and the
diffusion model of chemical reactions. Physica 1940, 7, 284−304.
(115) Schuss, Z. Theory and Applications of Stochastic Differential
Equations; Wiley Series in Probability and StatisticsApplied
Probability and Statistics Section; Wiley: New York, 1980.
(116) Aboud, S.; Marreiro, D.; Saraniti, M.; Eisenberg, R. A Poisson
P3M force field scheme for particle-based simulations of ionic liquids. J.
Comput. Electron. 2004, 3, 117−133.
(117) Yamaguchi, T.; Akatsuka, T.; Koda, S. Brownian dynamics
simulation of a model simple electrolyte in solvents of low dielectric
constant. J. Chem. Phys. 2011, 134, 244506.
(118) Bran ́ka, A. C.; Heyes, D. M. Algorithms for Brownian dynamics
simulation. Phys. Rev. E 1998, 58, 2611−2615.
(119) Ansell, G. C.; Dickinson, E. Sediment formation by Brownian
dynamics simulation: Effect of colloidal and hydrodynamic interactions
on the sediment structure. J. Chem. Phys. 1986, 85, 4079−4086.
(120) Melrose, J. R.; Heyes, D. M. Rheology of weakly flocculated
suspensions: Simulation of agglomerates under shear. J. Colloid
Interface Sci. 1993, 157, 227−234.
(121) Honeycutt, R. L. Stochastic Runge−Kutta algorithms. I. White
noise. Phys. Rev. A 1992, 45, 600−603.
(122) Chirico, G.; Langowski, J. Calculating hydrodynamic properties
of DNA through a second-order Brownian dynamics algorithm.
Macromolecules 1992, 25, 769−775.
(123) Roux, B. The membrane potential and its representation by a
constant electric field in computer simulations. Biophys. J. 2008, 95,
4205−4216.
(124) Gumbart, J.; Khalili-Araghi, F.; Sotomayor, M.; Roux, B.
Constant electric field simulations of the membrane potential
illustrated with simple systems. Biochim. Biophys. Acta, Biomembr.
2012, 1818, 294−302.
(125) Rush, S.; Turner, A. H.; Cherin, A. H. Computer solution for
time-invariant electric fields. J. Appl. Phys. 1966, 37, 2211−2217.
(126) Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a
solute with a continuum. A direct utilizaion of ab initio molecular
potentials for the prevision of solvent effects. J. Chem. Phys. 1981, 55,
117−129.
(127) Shaw, P. B. Theory of the Poisson Green’s function for
discontinuous dielectric media with an application to protein
biophysics. Phys. Rev. A 1985, 32, 2476−2487.
(128) Yoon, B. J.; Lenhoff, A. M. A boundary element method for
molecular electrostatics with electrolyte effects. J. Comput. Chem. 1990,
11, 1080−1086.
(129) Juffer, A. J.; Botta, E. F. F.; van Keulen, B. A. M.; van der Ploeg,
A.; Berendsen, H. J. C. The electric potential of a macromolecule in a
solvent: A fundamental approach. J. Comput. Phys. 1991, 97, 144−171.
(130) Bardhan, J. P. Numerical solution of boundary-integral
equations for molecular electrostatics. J. Chem. Phys. 2009, 130,
094102.
(131) Kuyucak, S.; Hoyles, M.; Chung, S.-H. Analytical solutions of
Poisson’s equation for realistic geometrical shapes of membrane ion
channels. Biophys. J. 1998, 74, 22−36.
(132) Berti, C.; Gillespie, D.; Eisenberg, R.; Fiegna, C. Particle-based
simulation of charge transport in discrete-charge nano-scale systems:
The electrostatic problem. Nanoscale Res. Lett. 2012, 7, 135.
(133) Berti, C.; Gillespie, D.; Bardhan, J. P.; Eisenberg, R. S.; Fiegna,
C. Comparison of three-dimensional Poisson solution methods for
particle-based simulation and inhomogeneous dielectrics. Phys. Rev. E
2012, 86, 011912.
(134) Boda, D.; Gillespie, D.; Nonner, W.; Henderson, D.;
Eisenberg, B. Computing induced charges in inhomogeneous dielectric
media: Application in a Monte Carlo simulation of complex ionic
systems. Phys. Rev. E 2004, 69, 046702.

(135) Boda, D.; Varga, T.; Henderson, D.; Busath, D. D.; Nonner,
W.; Gillespie, D.; Eisenberg, B. Monte Carlo simulation study of a
system with a dielectric boundary: Application to calcium channel
selectivity. Mol. Simul. 2004, 30, 89−96.
(136) Tausch, J.; Wang, J.; White, J. K. Improved integral
formulations for fast 3-D method-of-moments solvers. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2001, 20, 1398−1405.
(137) Bardhan, J. P.; Eisenberg, R. S.; Gillespie, D. Discretization of
the induced-charge boundary integral equation. Phys. Rev. E 2009, 80,
011906.
(138) Liang, J.; Subramaniam, S. Computation of molecular
electrostatics with boundary element methods. Biophys. J. 1997, 73,
1830−1841.
(139) Zauhar, R. SMART: A solvent-accessible triangulated surface
generator for molecular graphics and boundary element applications. J.
Comput.-Aided Mol. Des. 1995, 9, 149−159.
(140) Altman, M. D.; Bardhan, J. P.; White, J. K.; Tidor, B. Accurate
solution of multi-region continuum biomolecule electrostatic problems
using the linearized Poisson−Boltzmann equation with curved
boundary elements. J. Comput. Chem. 2009, 30, 132−153.
(141) Levitt, D. Electrostatic calculations for an ion channel. I.
Energy and potential profiles and interactions between ions. Biophys. J.
1978, 22, 209−219.
(142) Nadler, B.; Hollerbach, U.; Eisenberg, R. S. Dielectric
boundary force and its crucial role in gramicidin. Phys. Rev. E 2003,
68, 021905.
(143) Hoyles, M.; Kuyucak, S.; Chung, S. Energy barrier presented to
ions by the vestibule of the biological membrane channel. Biophys. J.
1996, 70, 1628−1642.
(144) Hoyles, M.; Kuyucak, S.; Chung, S.-H. Solutions of Poisson’s
equation in channel-like geometries. Comput. Phys. Commun. 1998,
115, 45−68.
(145) Crozier, P. S.; Henderson, D.; Rowley, R. L.; Busath, D. D.
Model channel ion currents in NaCl-extended simple point charge
water solution with applied-field molecular dynamics. Biophys. J. 2001,
81, 3077−3089.
(146) Hollerbach, U.; Eisenberg, R. S. Concentration-dependent
shielding of electrostatic potentials inside the gramicidin A channels.
Langmuir 2002, 18, 3626−3631.
(147) Jensen, M.Ø.; Borhani, D. W.; Lindorff-Larsen, K.; Maragakis,
P.; Jogini, V.; Eastwood, M. P.; Dror, R. O.; Shaw, D. E. Principles of
conduction and hydrophobic gating in k+ channels. Proc. Natl. Acad.
Sci. U.S.A. 2010, 107, 5833−5838.
(148) Tieleman, D.; Leontiadou, H.; Mark, A.; Marrink, S.-J.
Simulation of pore formation in lipid bilayers by mechanical stress
and electric fields. J. Am. Chem. Soc. 2003, 125, 6382−6383.
(149) Chung, S.-H.; Allen, T. W.; Kuyucak, S. Modeling diverse
range of potassium channels with Brownian dynamics. Biophys. J. 2002,
83, 263−277.
(150) Tomasi, J.; Persico, M. Molecular interactions in solution: An
overview of methods based on continuous distributions of the solvent.
Chem. Rev. 1994, 94, 2027−2094.
(151) Mennucci, B.; Cammi, R.; Tomasi, J. Excited states and
solvatochromic shifts within a nonequilibrium solvation approach: A
new formulation of the integral equation formalism method at the self-
consistent field, configuration interaction, and multiconfiguration self-
consistent field level. J. Chem. Phys. 1998, 109, 2798−2807.
(152) Cammi, R.; Tomasi, J. Analytical derivatives for molecular
solutes. II. Hartree−Fock energy first and second derivatives with
respect to nuclear coordinates. J. Chem. Phys. 1994, 101, 3888−3897.
(153) Green, M. E.; Lu, J. Simulation of water in a small pore: Effect
of electric field and density. J. Phys. Chem. B 1997, 101, 6512−6524.
(154) Nadler, B.; Naeh, T.; Schuss, Z. The stationary arrival process
of independent diffusers from a continuum to an absorbing boundary
is Poissonian. SIAM J. Appl. Math. 2001, 62, 433−447.
(155) Nadler, B.; Naeh, T.; Schuss, Z. Connecting a discrete ionic
simulation to a continuum. SIAM J. Appl. Math. 2003, 63, 850−873.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4011008 | J. Chem. Theory Comput. 2014, 10, 2911−29262925



(156) Corry, B.; Allen, T. W.; Kuyucak, S.; Chung, S.-H. Mechanisms
of permeation and selectivity in calcium channels. Biophys. J. 2001, 80,
195−214.
(157) Heffelfinger, G. S.; van Swol, F. Diffusion in Lennard-Jones
fluids using dual control volume grand canonical molecular dynamics
simulation (DCV-GCMD). J. Chem. Phys. 1994, 100, 7548−7552.
(158) Valleau, J. P.; Cohen, L. K. Primitive model electrolytes 1.
Grand canonical Monte-Carlo computations. J. Chem. Phys. 1980, 72,
5935−5941.
(159) Heffelfinger, G.; Ford, D. Massively parallel dual control
volume grand canonical molecular dynamics with LADERA I.
Gradient driven diffusion in Lennard-Jones fluids. Mol. Phys. 1998,
94, 659−671.
(160) Thompson, A.; Ford, D.; Heffelfinger, G. Direct molecular
simulation of gradient-driven diffusion. J. Chem. Phys. 1998, 109,
6406−6414.
(161) Pohl, P.; Heffelfinger, G. Massively parallel molecular dynamics
simulation of gas permeation across porous silica membranes. J.
Membr. Sci. 1999, 155, 1−7.
(162) Thompson, A.; Heffelfinger, G. Direct molecular simulation of
gradient-driven diffusion of large molecules using constant pressure. J.
Chem. Phys. 1999, 110, 10693−10705.
(163) Rutkai, G.; Kristof́, T. Dynamic Monte Carlo simulation in
mixtures. J. Chem. Phys. 2010, 132, 124101.
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