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The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like dis-
tribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and
the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selec-
tivity filter of the channel. Much of the analysis is algebraic, independent of differential equations.
The Fermi distribution is derived from the configuration entropy of ions and water molecules with
different sizes, different valences, and interstitial voids between particles. It allows us to calculate
potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains)
directly from the experimental data using algebraic formulas. The spatial resolution of these results
is comparable with those of molecular models, but of course the accuracy is no better than that
implied by the experimental data. The glutamate side chains in our model are flexible enough to
accommodate different types of binding ions in different bath conditions. The binding curves of Na+

and Ca2+ for [CaCl2] ranging from 10−8 to 10−2 M with a fixed 32 mM background [NaCl] are
shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation—
that includes both steric and correlation effects—is then used to obtain the spatial profiles of energy,
concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of
ions are shown to depend sensitively on the steric energy that is not taken into account in the clas-
sical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects
of excluded volumes of all ions and water molecules and empty spaces between particles created
by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies signifi-
cantly with bath concentrations. The energy landscape is not constant. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4892839]

I. INTRODUCTION

The “all-spheres” model of voltage-gated calcium (CaV)
channels introduced by Nonner and Eisenberg1–4 has stimu-
lated many papers on primitive models of selectivity in bi-
ological channels (some 30 papers reviewed in Ref. 5; see
more recent work cited in Refs. 6–16). Calcium selective
channels17, 18 and electrochemical diodes19 have actually been
built, inspired by the model, as the critical role of the inter-
actions of crowded protein side chains and permeating ions
came to be understood.20, 21 The literature is described toward
the end of the paper.

The all-spheres model has been analyzed in the litera-
ture with methods that use interatomic forces to enforce steric
discipline and prevent overlap. Steric forces of this sort can
be expensive to compute6 and introduce certain mathematical
difficulties because they are nearly singular.

A different way to prevent two ions from occupying the
same space is to compute energies and forces from an adapta-
tion of the Fermi distribution that automatically prevents over-
lap. Thomas and Fermi used this approach22 early in the his-
tory of quantum mechanics (in place of the Pauli exclusion
principle) to enforce Fermi-Dirac statistics for particles that
do not overlap. A formal derivation of a Fermi like distribu-
tion of ions with different sizes and valences in general elec-
trolyte solutions has been developed in Ref. 15 by deriving
the configuration entropy of hard spheres. Important historical

antecedents of steric effects are discussed in Refs. 23–25. Ad-
vances in numerical methods25 allow three-dimensional cal-
culations of calcium channels using the Poisson-Fermi differ-
ential equation with results quite similar to experiments and
Monte Carlo simulations.15, 25

A great deal of chemistry has been deduced from the
equilibrium properties of statistical distributions without us-
ing the field theories found in most of physics. Differential
equations are noticeable by their absence in classical text-
books of statistical mechanics26 compared to those of multi-
particle physics.27 We imagine that using the Fermi distri-
bution instead of the Boltzmann distribution in analysis of
ions and water molecules in solutions and channels is likely
to help deal with the nonideal properties of bulk solutions
that arise from the finite volume of particles. Nonideal prop-
erties are particularly important in biology where divalents,
concentrated bulk solutions, and mixtures are nearly always
present.12 The Fermi distribution provides a natural descrip-
tion of the saturation of concentration produced by the crowd-
ing of ions5 near “working” electrodes of electrochemical
cells, and in and near ion channels, nucleic acids, and ac-
tive sites of enzymes.28 Here, we emphasize the biological
application but we are quite aware that the Fermi like dis-
tribution and the Poisson-Fermi equation imply a reason-
ably general “all spheres” theory of electrolyte solutions and
mixtures.

0021-9606/2014/141(7)/075102/11/$30.00 © 2014 AIP Publishing LLC141, 075102-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

144.74.242.180 On: Tue, 19 Aug 2014 15:24:33

http://dx.doi.org/10.1063/1.4892839
http://dx.doi.org/10.1063/1.4892839
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4892839&domain=pdf&date_stamp=2014-08-19


075102-2 J.-L. Liu and B. Eisenberg J. Chem. Phys. 141, 075102 (2014)

We show that important binding properties of the calcium
channel can be calculated by algebra alone using the Fermi
like distribution that takes into account ions of any size and
water molecules and satisfies the saturation condition of ionic
concentrations in mean field theory. In a certain sense, the
Fermi distribution allows analysis much as classical statistical
mechanics allows analysis using the Boltzmann distribution.
Neither needs differential equations or boundary conditions
to describe many important (e.g., integral) properties of bind-
ing systems. Partial differential equations are needed to probe
spatial profiles—and we use them here—and will be needed
to explore time dependence and dissipation.6, 11, 29–31

This paper is organized with an introduction to the all-
spheres model and a general discussion of the Fermi ap-
proach to ions and water in solutions and channels in Sec. II.
The anomalous mole fraction effect and the Lipkind-Fozzard
molecular model are presented in Sec. II A. Section II B con-
tains all algebraic formulas derived from the Fermi distribu-
tion and all numerical results of binding phenomena obtained
directly from the experimental data and these formulas. The
Poisson-Fermi differential equation15, 25 is given in Sec. II C
and then used to look into the channel with more resolution.
The energy and concentration profiles are outputs of both al-
gebraic Fermi and Poisson-Fermi differential equations. They
are shown in Sec. II C including the effects of a 106-fold
variation of the Ca2+ bath concentrations. The variable pro-
file of dielectric coefficient is another output of the Poisson-
Fermi equation and is an important determinant of selectivity
in DEKA sodium channels (Figs. 8–10 in Ref. 20)—closely
related to L-type CaV channels. A literature survey to deal
with the various treatments of the all-spheres model is given
in Sec. III A Detailed structures of channels are being pub-
lished every week. We outline an algebraic Fermi approach
in Sec. III B to the structure of a calcium/sodium exchanger
recently published by Liao et al.32 We think it is more help-
ful to provide an outline to a specific problem than to discuss
generalities. Some concluding remarks are given in Sec. IV.

II. MODEL AND RESULTS

A. CaV channel and mole fraction effect

A signature property of CaV channels is the anomalous
mole fraction effect. Trace concentrations of Ca2+ ions ef-
fectively block the flow of abundant monovalent cations.33–38

A variety of experimental results show that the EEEE locus
(four glutamate side chains) is a high-affinity Ca2+ binding
structure in the pore of CaV channels and is essential to Ca2+

selectivity and blockage.39–49 Each glutamate has a terminal
carboxylate COO− group so the pore has a charge of −4e,41

where e is the proton charge. The EEEE structure is quite flex-
ible in simulations50, 51 and the glutamates are accessible to
ions and reagents from the surrounding baths.52–56 The gluta-
mates mix with permeating ions7, 13, 20, 21 over a wide range of
concentrations in the solutions surrounding the channel and
so the selectivity filter is a mixture of Ca2+ and Na+ ions
and carboxylates COO− from the glutamate side chains of the
channel protein. Physiological Ca2+ levels vary from 10−8 M
in resting cytoplasm, to 10−6 M in activated contractile tis-
sue, to 10−3 M in typical extracellular solutions, to >1 M,

FIG. 1. The Lipkind-Fozzard pore model, where 3 Ca2+ are shown in violet,
8 O1/2 − in red, 2 H2O in white and red. Reprinted with permission from
G. M. Lipkind and H. A. Fozzard, Biochemistry 40, 6786 (2001). Copyright
(2001) American Chemical Society.

probably >10 M, in and near ion channels, active sites of
enzymes, binding proteins, and nucleic acids. The binding
mechanism in the L-type CaV channel operates over a 108-
fold range of experimental Ca2+ concentration33 and so poses
a serious challenge to all atom simulations as well as theoret-
ical models.57

We illustrate the use of the Fermi distribution with an
analysis of a particular calcium selective structure proposed
by Lipkind and Fozzard50 and outline how the Fermi dis-
tribution can be applied to a real channel structure recently
published.32 Fig. 1 illustrates the binding site, the filter, and
the EEEE locus, where 3 Ca2+ are shown in violet, 8 O1/2 −

in red, 2 H2O in white and red. If a Ca2+ occupies the bind-
ing site, this molecular model shows that there is no room for
other particles in the filter as the 8 oxygen ions are tightly at-
tracted toward the Ca2+ ion. On the other hand, if a Na+ is lo-
cated at the site, the pore radius of the filter is enlarged by the
strong repulsion of the oxygen ions making sufficient room
for other particles. The EEEE binding site can be filled by
two calcium ions or four sodium ions. The volume of the extra
two sodium ions produces a substantial energy penalty that is
an important determinant of selectivity in this calcium chan-
nel. Fig. 2 is a cross section of a simplified three-dimensional
channel geometry of Fig. 1. The solvent region �s consists of
two baths and the channel pore including the filter region.

The flexibility of the EEEE (Glu–Glu–Glu–Glu) struc-
ture and the binding mechanism3 are analyzed by the Fermi
distribution function using the experimental result of Almers
and McCleskey33 that the Na+ current is halved in a L-type
calcium channel at the “midpoint of the binding curve” (see
below), namely, when

CB
Na+ = CB

1 = 32 mM, CB
Ca2+ = CB

2 = 0.9 μM︸ ︷︷ ︸
Experimental Data

, (1)

where CB
Na+ and CB

Ca2+ are the (bulk) concentrations of
the salts NaCl and CaCl2 in baths, respectively. A trace
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FIG. 2. A simplified Ca channel geometry with baths, pore, filter, and binding site. The channel is placed in a cubic box with the length of each side
being 40 Å.

concentration of calcium [Ca2+], 36,000× smaller than the
concentration of sodium ion [Na+], is enough to bring the
channel to the midpoint of the binding curve. The channel
has a binding selectivity 36,000× higher for Ca2+ than Na+

ions. The particle species are indexed by 1, 2, 3, and 4 for
Na+, Ca2+, Cl−, and H2O with radii a1 = aNa+ = 0.95, a2 =
aCa2+ = 0.99, a3 = aCl− = 1.81, and a4 = aH2O = 1.4 Å, re-
spectively.

B. Algebraic Fermi model

There is more than one way to introduce the Fermi dis-
tribution and none is as well determined as a full field theory
model of an ion channel, using the Poisson-Fermi differential
equation15 or other field theories and models.6, 11, 29, 30 We use
a simple approach to explore what can be done with algebra
alone. We are motivated by curiosity and also by the realistic
knowledge that thousands of experimental biologists study-
ing channels everyday are far more likely to use an approach
that depends on algebra than one that depends on differential
equations, let alone variational theory. Our goal is to develop
methods that experimental scientists can use to analyze the
data they measure everyday without depending on theoretical
methods and colleagues they have difficulty evaluating or un-
derstanding. Since a great deal of useful chemistry has been
done using algebraic properties of statistical distributions, be-
fore ordinary or partial differential equations could be actually
solved, we have some hope of success.

Our first question is the following. Can we find an
analytical—not simulation—method that can directly connect
the bath condition Eq. (1) to the properties (e.g., concentration
or location) of binding ions? We avoid all atom simulations
because of the difficulties they have in dealing with the bio-
logical range of calcium concentrations. Biological concen-
trations of Ca2+ are often 10−8-10−6 M and all atom simula-
tions are not yet large enough to deal with the 55 M water that
dissolves each calcium ion in a 10−8-10−6 M Ca2+ solution.57

The experimental properties we choose as our starting point
(the midpoint of a binding curve (1)) are of the type used by

experimental biophysicists and biochemists for generations to
characterize binding.

At first glance, it seems unlikely that experimental data
concerning macroscopic concentrations could be used to de-
termine atomic scale properties in the channel. After all, the
binding ion is millions of Angstroms away from the location
where these bath concentrations are measured. But the com-
bination of the all-spheres model and the Fermi distribution
does in fact allow one to determine some atomic properties of
the binding site, as we shall see.

The potential function φ(r) for ions in or near a channel
provides a tool to establish such a connection, where r is a
space variable. By including specifically the excluded volume
effect of water molecules and interstitial voids between all
particles, we extend the Fermi like distribution of Ref. 15 to

Ci(r) = CB
i exp(−βiφ(r) + S trc(r)) (2)

that describes the concentration of particles of type i in an
electrolyte solution with arbitrary K species of ions and the
last species (K + 1) of water molecules at any location r in the
solvent domain �s. The concentration function is determined
by the bulk concentration CB

i (constant), the electrostatic po-
tential φ(r), and the “steric” potential

S trc(r) = ln
1 − ∑K+1

j=1 vjCj (r)

1 − ∑K+1
j=1 vjC

B
j

(3)

that in turn depends on all concentration functions Cj (r).
Here, β i = qi/(kBT), qi = zie, zi is the valence of the particle,
kB is the Boltzmann constant, T is the absolute temperature,
and vi = 4πa3

i /3 is the volume of the particle with radius ai.
Note qK+1 = βK+1 = 0 and the steric potential is a scalar func-
tion that corresponds to a steric force field just as the electric
potential φ corresponds to the electric force field. The empty
space (void) between particles is expressed by the void frac-
tion function �(r) = 1 − ∑K+1

j=1 vjCj (r).
The Fermi distribution function is derived from the con-

figuration entropy of hard-sphere ions and water and can be
shown15 to satisfy the saturation condition Cj (r) ≤ 1/vj for
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all different sizes of particles, for all points r in the domain,
even at infinitely large potential φ(r). The steric potential
(3) approximates the effects of Lennard-Jones potentials be-
tween all pairs of particles in a mean-field sense. The zero
steric potential S trc(r) = 0 corresponds to the zero Lennard-
Jones potential of all particles at the bulk condition, which
yields the constant void fraction �B = 1 − ∑K+1

j=1 vjC
B
j .

The classical Boltzmann distribution appears if all particles
are treated as volumeless points, i.e., vi = 0. Then, an infi-
nite concentration occurs in some crowded conditions—e.g.,
close to charged surfaces—an impossible result. This result
represents an unbounded flaw in the classical Boltzmann ap-
proach when applied to ionic solutions in crowded condi-
tions. It should be emphasized that ionic solutions are often
crowded where they are most important, near working elec-
trodes, and in and near ionic channels, binding proteins, en-
zyme active sites, and nucleic acids. The unbounded flaw is
documented in a large literature5, 15, 23–25, 58–60 even though the
flaw has not yet spread into the textbook literature, as far as
we know, or into the general knowledge of many biologists12

or mathematicians.61

Following classical statistical mechanics,26 we use the
Fermi distribution (2) to link the probabilistic quantities of
ions in the binding site to concentrations CB

i in the baths, i.e.,{
P1 = vbC

B
1 exp(−β1φA + S trc)

P2 = vbC
B
2 exp(−β2φA + S trc)

, (4)

where P1 and P2 are given, vb is an unknown variable volume
(due to the unknown void volume enclosing the ion) of the
binding site, φA is an average potential in the binding site,
and A is any point on the surface of the site. P1 means that a
Na+ can be found in vb with the probability of P1 when the
ion possesses an energy (−β1φA + S trc)kBT = −E1 under a
given bath condition CB

1 and CB
2 , where E1 is a state energy,

for example, the energy well in Ref. 62. By (3), the steric
potential in the binding site

S trc = ln
vb − v1P1 − v2P2

vb�
B

(5)

establishes a relation between S trc and vb. Note that the en-
ergy well E1 consists of not only the electrostatic energy
β1φAkBT but also the steric energy −S trckBT . The steric en-
ergy is related to the vacancy diffusion mechanism63 that re-
sults from the fluctuations of protein side chains caused by
thermal agitation and polarization forces from the binding ion.
The steric energy was not included in the classical rate theory
used to study ion channel selectivity and permeation.62, 63 The
changes in structure and steric energy that occur when ion
composition or concentrations are changed in the baths are
also not included in classical rate theories, with unfortunate
consequences.2, 7

The properties of binding sites in channels are typi-
cally summarized by the conditions necessary to produce half
block63 following the age old practice of enzymologists.65

For the half-blockage experimental condition CB
1 = 32 mM

and CB
2 = 0.9 μM, we follow convention and assume rela-

tive occupancies of a filled channel, P1 = 0.5 and P2 = 0.5,
and thereby obtain φA = −10.478 kBT/e, S trc = −1.8, and vb

= 4.3 Å3. The value S trc = −1.8 is dimensionless leading
to the water density C4 = CB

4 exp (−1.8) = 5 M with CB
4

= 55.5 M and the probability P4 = 0.06 in the binding site.
The void fraction in the binding site is � = 0.04 indicat-

ing that a small volume of empty space surrounds the binding
ion in mean-field sense. It is important to include the void vol-
ume both to make our treatment fully consistent and to deal
with the possibility that the void volume might vary with con-
ditions. Remember the volume is an output of models like
these.3 These results were obtained by Eqs. (4) and (5) with
the binding volume vb. From Fig. 1, the filter region is larger
than the binding volume. Fig. 3 is a simplified 2D sketch of
a cylindrical filter with radius of the binding site and length
L = 4.47 Å, which contains the binding site. We investigate
the half blockage conditions in the whole filter (not just the
binding site) by setting φA = −10.478 kBT/e, P1 = 0.5, and
P2 = 0.5 in the filter and changing the binding volume vb

to the filter volume vf in (4). In that case, the steric energy
is S trc = −3 and the Na+ and Ca2+ concentrations C1 = C2
= 59 M in the filter.

FIG. 3. Definition of the cylindrical filter contained in the solvent domain �s with length L and radius of the binding site.
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FIG. 4. A 2D sketch of the binding site with radius a2 and a neighboring
O1/2−. The distance between the centers of the binding site and any O1/2−
ion is denoted by DCa

O .

The selectivity filter is crowded. It is nearly filled by the
large concentration of ions—59 M—but these do not overfill
the space available. In this treatment using a Fermi like dis-
tribution, the filter does not suffer from the unbounded error
found in treatments using the classical Boltzmann distribu-
tion. Both ionic species satisfy the saturation condition (e.g.,
C2 ≤ CMax

2 = 1
v2

= 408.6 M) while they embody the strong

binding and selectivity that allow the real L-type calcium
channel to function selectively in the heart.

The model and procedure used here allow estimation of
the distance between the binding ion and structural oxygens
(i.e., half charged oxygen atoms of the glutamate side chains)
of the all-spheres model. If a Ca2+ is located at the binding
site, the binding distance dCa

O between any pair of Ca2+ and
O1/2 − is estimated by the binding formula

e

4πεf ε0

8∑
j=1

(
z O1/2−

|cj − A| + P1zNa+

aNa+
+ P2zCa2+

aCa2+

)
= φA, (6)

with P1 = 0, P2 = 1, and φA = −10.478, where ε0 is the
vacuum permittivity, εf is a dielectric constant in the filter
that is called the relative permittivity in physical chemistry,64

zO1/2− = −1/2, zCa2+ = 2, and |cj − A| is the distance between
A and the center of the jth O1/2 − as shown in Fig. 4. The dis-
tance |cj − A| depends only on dCa

O which is unknown and
unique due to symmetry.

Solving (6) exactly with εf = 1 yields dCa
O = 2.24 Å.

Again, this number is only as precise as the experimental data
cited in (1) and so estimates of distances directly reflect uncer-
tainties in measurement, as well as uncertainties in our theory.
We present these results to show that the model and method
easily allow the determination of locations. We do not believe
that these are the actual locations of ions, because we do not
have evidence that the Lipkind-Fozzard model describes a real
channel. It is striking to us that the Fermi distribution allows
us to map macroscopic binding data directly into spacing of
binding sites in the all-spheres model using minimal structural

information. When the binding site is occupied by a Na+, i.e.,
P1 = 1 and P2 = 0, the binding distance changes name to
dNa

O and we get dNa
O = 4.527 Å. The location of O 1/2 − is

very different from that when calcium occupies the filter. The
charge (valence) difference between Ca2+ and Na+ dramat-
ically changes the binding distance from dNa

O = 4.527 Å to
dCa

O = 2.24 Å (remember that the diameter of calcium and
sodium are nearly the same). This change in distance goes
along with and is, in some sense, the cause of (part of) the
36,000-fold selectivity of the filter and the steric effect.

This change in structure reflects the flexibility of four glu-
tamate side chains that allows and reflects a change of pore
radius of about 2.3 Å. Our figure of 2.3 Å is surprisingly
(and gratifyingly) close to the value of 2 Å found by Bar-
reiro et al.51 using molecular dynamics simulations. We iden-
tify the radius of O1/2 − as the covalent radius aO1/2− = 0.7 Å
so that the distance dCa

O = 2.24 Å is slightly larger than
aCa2+ + aO1/2− = 1.69 Å (see Fig. 4). The effects of changes
in structure with concentrations in the bath were considered
as soon as the all-spheres model was introduced.3

We choose the filter dielectric constant εf = 1 for this
simple molecular model. For a real protein structure, the
chelating ions and molecules forming the binding site are
charged and move in response to changes in the (local) elec-
tric field. They are polarization charges. Moreover, the num-
ber of charged atoms in and around the selectivity filter of
the real protein is certainly more than eight. These charges all
interact. That is to say, the movement of any one charge is
changed by the charges and movement of the other charges.
Thus, it is difficult if not impossible to compute the polariza-
tion and the (effective) dielectric response in this model, start-
ing with a real structure. Rather, we must choose a value of
the effective dielectric constant and view it as a measure of the
(effective, more or less) “Born solvation energy” needed to
move a permeating or binding ion from the bulk to the binding
site. Consequently, the filter dielectric constant in this mean-
field model can only be chosen empirically to reflect the Born
solvation energy.

The binding experiments33 used a fixed CB
Na+ = CB

1 = 32
mM and various Ca2+ bath concentrations CB

Ca2+ = CB
2 that

imply different probabilities P1 and P2 of Na+ or Ca2+ occu-
pying the filter. The probabilities P1 and P2 are determined by
the following equation:

P1

P2

= 1 − P2

P2

= exp(φA)
C B

1

CB
2

, (7)

where φA = −10.478 was obtained from the case of equal
probability. The probability ratio thus deviates from unity as
C B

Ca2+ is varied along the horizontal axis of the binding curve
from its midpoint value CB

Ca2+ = 0.9 μM as shown in Fig. 5,
where the concentration of CaCl2 is changed from 10−8 to
10−2 M while the concentration of NaCl is maintained at
32 mM in the baths. This figure clearly indicates that the
probability of finding a Ca2+ in the filter is nearly zero when
[CaCl2] = 10−8 M, the value in the cytoplasm of relaxed
muscle which is not activated for contraction. At [CaCl2]
= 10−5 M, the probability of finding a calcium ion in the filter
dramatically increases to 0.85. The probability computed by
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FIG. 5. Binding curves. The Na+ and Ca2+ binding curves are comparable with Monte Carlo results21 and show the probability change of a Na+ or Ca2+ ion
in the filter as the concentration of CaCl2 from 10−8 M to 10−2 M is added to the fixed [NaCl] = 32 mM in the baths.

the Monte Carlo method21 is 0.84 (estimated from Fig. 6(c)
in Ref. 21). The probability of 0.5 for [CaCl2] = 0.9 μM also
agrees with that of Monte Carlo simulations.

Note that the binding curves are obtained by fixing φA in
Eqs. (6) and (7) as CB

2 is varied. Moreover, the flexibility of
glutamate side chains with varying CB

2 is also deduced from
this fixed φA. From Eq. (4), we observe that all P1, P2, vb, and
S trc and other physical properties derived from these variables
change with varying CB

2 . In effect, the changes of protein lo-
cations, binding probabilities, binding volume, binding ener-
gies, and others are all lumped into the changing steric energy
S trc via Eqs. (4) and (5) while the electrostatic potential φA is
fixed in the binding site. Keeping φA fixed is equivalent to as-
suming that the relation (7) between the probability and bath
concentration ratios is linear. More accurate models than this
linear model may be needed if it fails to give accurate results
for other physical properties or other systems.

It is important to note that the total energy of each ion
also changes with varying CB

2 since the steric energy changes.
The fixed electrical potential corresponds to the dissociation
constant of a Ca2+ “bound” in an energy well in classical rate
theory.62 In a certain sense, our approach replaces the fixed
electrical potential of rate theory with the variable steric po-
tential of a consistent Fermi based theory. As mentioned in
Ref. 62, the main limitation of the rate theory is that it does
not invoke any physical distances, shape of pores, or location
of atoms of protein structures, let alone varying bath condi-
tions.

Our Fermi analysis improves the rate theory by showing
that (i) Ca2+ energy wells E2 = (β2φA − S trc)kBT vary with
bath concentrations CB

Na+ and CB
Ca 2+ (via S trc in Eqs. (4) and

(5)); energy wells are not constant; (ii) the protein structure
(Eq. (6)) is an “evolutionary” consequence of a required po-
tential energy φA to bind a Ca2+ in a site under certain phys-
iological conditions on CB

Ca2+ and others; and (iii) the steric
energy S trc is used to lump the steric effects of excluded vol-

umes of all ions and water molecules (Eq. (3)) and empty
spaces between particles created by Lennard-Jones type (the
void fraction function �(r)) and electrostatic forces (Eq. (6)).

C. Poisson-Fermi model

All numerical results obtained so far by algebra alone
agree with those of published molecular models50, 51 or Monte
Carlo analysis.21 The next question is how to extend the po-
tential function from the filter to the bath—from a single ion
to numerous particles.

It is impractical (and unwise57) to treat all ions explicitly
in the bath because they are numerous and their crowding ef-
fect is much less intense than that in the filter region. In the
bulk solvent region, we compute the potential function φ(r)
by solving the Poisson-Fermi equation15, 25, 66, 67

εs

(
l2
c∇2 − 1

) ∇2φ(r) =
K+1∑
i=1

qiCi(r) = ρ(r) (8)

together with Eqs. (2) and (3), where lc is a correlation
length,66, 67 εs = εwε0 in the bath or εfε0 in the filter, εw
= 78.5 is the relative permittivity of water, and ρ is the
charge density. The fourth-order Poisson-Fermi equation re-
duces to the classical Poisson-Boltzmann equation when lc
= S trc(r) = 0. If lc �= 0, the dielectric operator ε̂ = εs(1 −
l2
c∇2) approximates the permittivity of the bulk solvent and

the linear response of correlated ions.67 The dielectric func-
tion ε̃(r) = εs/(1 + η/ρ) is a further approximation of ε̂ and
is found by transforming (8) to two second-order equations{

εs

(
l2
c∇2 − 1

)

(r) = ρ(r)

∇2φ(r) = 
(r)
(9)

and introducing a density like variable 
 that yields a polar-
ization charge density η = −εs
 − ρ using Maxwell’s first
equation.15, 25 The binding potential φA is used as a Dirichlet
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type condition for the potential function φ(r) in the filter do-
main while φ(r) = 0 on the extracellular and intracellular
sides of the boundary and ∇φ(r) · n = 0 on the other sides
and on the remaining solvent boundary ∂�s, where n is an
outward unit vector. An iterative process of solving equa-
tions in (9) and evaluating (2) and (3) is repeated until self-
consistent φ(r) and Ci(r) are reached within a tolerable error
bound.25

The electrostatic potential φ(r) depends on all species
of ions in (8) (via the concentration functions Ci(r)) and the
screening effect of water molecules (via the correlation length
lc and the fourth order differential operator ∇2∇2). The con-
centration functions Ci(r) in turn computes the steric potential
S trc(r) via (3) that includes all sizes and valences of ions and
water. The concentration functions Ci(r) are then re-evaluated
via (2) for solving (9) in the next iteration. “Everything” in-
teracts with everything else in crowded systems like this. In-
teractions are produced by crowding of the ions themselves,
water molecules, and side chains of the protein, as well as
by allosteric properties and conformation of the surrounding
protein.

We do not need to solve the Poisson equation in the pro-
tein region that contains the singular charges of 8 O1/2− since
the effect of these charges on potentials has been included in
Eq. (6). Analysis is simplified significantly from our previous
work.25 We do not have to deal with the delta functions; we
do not have any potential jump conditions on the interface (a
molecular surface) between the bulk solvent and molecular re-
gions. The absence of jump conditions facilitates a more accu-
rate approximation of (9) by, for instance, the finite difference
method because numerical methods for handling the jump
conditions across molecular surfaces with cusps or with a sin-
gular Poisson equation are subtle, complex, and thus prone to
error.25, 68

Figs. 6–9 are the profiles of Na+ concentration
C1(r), Ca2+ concentration C2(r), Ca2+ energy well E2(r)

= (β2φ(r) − S trc(r))kBT , and dielectric function ε̃(r), respec-
tively, obtained by (9) using numerical methods developed in
Ref. 25 for various Ca2+ bath conditions ranging from 10 −7

to 10−2 M and the fixed CB
Na+ = CB

1 = 32 mM. Note that the
most sensitive range is 10−7-10−5 M, where Na+ and Ca2+

probabilities vary steeply as shown in Fig. 5 so as C1(r) and
C2(r) profiles shown in Figs. 6 and 7. From Fig. 8, we observe
that Ca2+ energy wells change rapidly in the range 10−6-10−2

M, where the depth of the energy well is significantly de-
creased by increasing Ca2+ ions and the conductance of the
channel changes dramatically from allowing Na+ to flow, to
blocking Ca2+, and then to allowing Ca2+ to flow as shown
in the experiments (Fig. 11 in Ref. 33). The change of Ca2+

energy wells with varying CB
2 is due mainly to the change of

the steric potential S trckBT , which is equivalent to the change
of the binding distance from dNa

O to dCa
O in Eq. (6). In the

filter region, the steric potential S trckBT = −2.4, −3, −4.8 ,
−7, −9.3, and −11.6 kBT for CB

Ca2+ = 10−7, 10−6, 10−5, 10−4,
10−3, and 10−2 M, respectively. Although the electrostatic and
steric potentials are intimately connected to each other and to
the bath condition via Eqs. (4) and (6), our analysis shows that
channel selectivity and permeation are in fact critically deter-
mined by the steric effect that is not included in the classical
rate theory of energy profiles.62, 63

The theoretical selectivity of Ca2+ ions in the L-type cal-
cium channel is very sensitive to bath concentrations of Ca2+

in the micro-molar range, just as is seen experimentally in
Ref. 33. The signature phenomenon of L-type calcium chan-
nels emerges naturally from the Poisson-Fermi analysis of the
all-spheres model. Trace concentrations of Ca2+ ions produce
a sensitive midpoint block even in the presence of 36,000×
more Na+ ions.

The dielectric coefficient ε̃(r) is found to vary from
εw = 78.5 in the baths to εf = 2 in the filter as shown in Fig. 9.
This variation of is a by-product—an output—of the Fermi
distribution analysis (4) and the Poisson-Fermi differential

FIG. 6. The averaged concentration C1(r) profiles at each cross section along the pore axis for various C B
2 ranging from 10−7 M to 10−2 M. All the following

figures are obtained with the same averaging method and the same range of CB
2 .
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FIG. 7. The averaged concentration C2(r) profiles.

equation (8) when the correlation length is chosen to be lc
= 2a2 = 1.98 Å.67 We see that the polarization of water
molecules depends essentially on the divergence of the elec-
tric field, i.e., on ∇ · E(r) = −∇ · ∇φ(r) = −
(r). By in-
specting Figs. 8 and 9, we observe that the dielectric coef-
ficient changes dramatically in the pore region near the filter
(see Fig. 2), where the water molecules are strongly polarized
by the large electric field.

III. DISCUSSION

A. Discussion of literature

The literature on the all-spheres model is large enough to
be confusing so a discussion seems appropriate and hopefully
helpful.

The all-spheres model has been mostly analyzed at equi-
librium by Monte Carlo simulations, with the important ex-
ception of work on the RyR receptor by Gillespie and his
co-workers.37, 69, 70 They concatenated69—the density func-
tional theory (DFT) of liquids71—and PNP equations—a
useful nickname72 for Poisson-Nernst-Planck,73–76, 83 empha-
sizing the analogy with the drift diffusion equations of semi-
conductors and PNP bipolar transistors—and found that the
concatenation describes the ryanodine RyR channel very
well.70 They use an all-spheres model of the RyR and are able
to predict detailed experimental results before the measure-
ments were made. (It is important to consult the supplemen-
tary material of Ref. 70.)

Unfortunately, DFT-PNP does not naturally encompass
the classical theory77–79 of conductance of bulk solutions

FIG. 8. Ionic energy wells. The averaged Ca2+ energy wells E2(r) = β2φ(r) − Strc(r) show the importance of the steric energy function Strc(r). Our analysis
is the first to include a steric energy function, as far as we know.
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FIG. 9. Dielectric function. The averaged dielectric coefficient ε̃(r) profiles represent the combined effects of the dielectric response of protein atoms, the
screening effect of water molecules, and the correlation effect of crowded ions. Our analysis is the first to compute the dielectric function as an output, as far
as we know. Few if any other analyses include the screening effects of water molecules, the correlation of crowded ions, and the dielectric properties of the
channel protein.

because the ionic atmosphere in DFT-PNP does not change
with gradients of potentials, or flow. The “ionic atmosphere”
of a channel is not likely to vary as much as that of a bulk so-
lution, as long as the structure and distribution of permanent
charge in the channel is unchanged. Hence, DFT-PNP is more
likely to be a good description of a channel than bulk solution.

A number of effects discussed at length in the clas-
sical literature of ionic conductance78 are not included
in DFT-PNP: (i) electrophoretic and (ii) relaxation com-
ponents of conductance; (iii) the spatial variation in di-
electric coefficient;15 (iv) dielectric friction;80, 81 and (v)
dielectrophoresis.82 In channels, dielectrophoresis is likely to
be the most important of these five neglected effects because
it depends on the second (spatial) derivative of potential. The
complex charge distributions in and near ion channels are
likely to produce large second derivatives of potential83 as
shown in Fig. 9. These effects arise automatically (with little
need for physical discussion) in a mathematically consistent
treatment of flow based on variational principles6, 11, 29–31 and
the Poisson-Fermi theory.15

Zhang et al.84 have proposed a simple 1D model of
all-spheres in a cylindrical channel. Their primary param-
eters for investigation were channel length, the concentra-
tion of protein charges (called “doping” in their papers), and
salt concentrations. They show that the barrier energies de-
crease when the doping charge increases. We show a re-
lated phenomenon here. Barrier energies—the energy wells in
Fig. 8—decrease when the Ca2+ bath concentration increases.
Another important feature of their work is the phase tran-
sitions seen under some conditions—e.g., for long enough
channels—as ions of different valence exchange places in
the open channel. The exchange is equivalent to the classi-
cal blockage of the Na+ current by increasing Ca2+ bath con-
centration discussed extensively in the literature and in our
papers.

The Fermi distribution is in fact used extensively in the
classical physiological literature63 to describe two state sys-
tems that are always filled with something or other. There it
is called the “Boltzmann equation” (starting we think with
p. 144 of Ref. 85 and p. 503 of Ref. 86, also see Ref. 87).
In particular, channologists universally use the “Boltzmann
equation” to describe saturating phenomena in voltage depen-
dence of ionic conductance, whether macroscopic or of single
channels. In modern “single channel” language, this is called
the voltage dependence of the number of open channels.87–89

We hope readers from biophysics and physiology are not con-
fused by the different usage of the term here. Our systems
of (always) open channels are quite different from sometimes
open, sometimes closed channels. We use “Boltzmann distri-
bution” as it is used in statistical mechanics26, 90 to describe
phenomena that do not saturate.

B. Application to a known structure

We make a final remark on how to use the simple alge-
braic model (4)-(7) for real protein structures. This model has
been applied to study the binding mechanism of one Ca2+

and three Na+ binding sites in the sodium/calcium exchanger
(NCX) crystallized by Liao et al. in Ref. 32. Detailed analysis
and results of modeling the NCX transporter will be reported
elsewhere. Here, we outline our approach starting with the
structure of NCX provided in the Protein Data Bank91 (PDB
ID: 3v5u) that contains 4591 atoms and four binding ions,
namely, one Ca2+ ion and three Na+ ions (denoted by HET-
ATM in the PDB file) for which the occupancy numbers rang-
ing from 0.54 to 1 are given in the file.

(1) The occupancy number is taken as the probability P1
or P2 for each one of the four binding sites with
the specific bath condition CB

Na+ and CB
Ca2+ given in

Ref. 32 for the PDB file.
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(2) The upper limit of the summation in Eq. (6) is N = 4591
and the filter dielectric constant is chosen as εf = 30 as
an initial estimate of the combined dielectric screening
effect of so many protein atoms. This is a fitting param-
eter that may be adjusted as analysis proceeds to fit data.
Of course, only one value should be used for a whole
set of experiments. The value should not be adjusted as
concentrations, potentials, or compositions change.

(3) The locations cj, j = 1, . . . , N, of all protein atoms given
in the PDB file are used and the corresponding atomic
charges zj are provided by the PDB2PQR software.92 At
each binding site, the binding potential φA is calculated
by Eq. (6) (not by Eq. (4) or (7)) by taking the aver-
aged value at six different points A on the surface of the
binding site with fixed binding distances dNa

O and dCa
O

as provided by the PDB file. Changes, i.e., flexibility, in
the structure, as bath concentrations change is described
by forces, not by locations. That is to say, changes with
concentration and so on are the result of the steric energy
computed (as an output) by our model, not by explicit
changes in the location, at least in this first iteration of
our approach.

(4) We must deal with conditions in which occupancy num-
bers are not available from the PDB file. We think it is
most robust to initially assume that the four different val-
ues of φA from Eq. (6) at the four binding sites are fixed
when the bath conditions CB

1 and CB
2 in (7) are varied

to obtain different probabilities P1 and P2. Of course,
in later iterations of our approach this initial assumption
may be improved.

IV. CONCLUSION

A molecular-continuum model of the Poisson-Fermi the-
ory is proposed to study the binding mechanism in a L-type
calcium channel. Using the explicit molecular data of the
binding ion and the oxygen ions in the glutamate side chains
of the channel protein, we present analytical formulas for con-
structing the potential and concentration functions that con-
nect the experimental data measured in the bath to the very far
away binding site. The flexibility of the glutamate side chains
and the Na+ and Ca2+ binding curves obtained by the pro-
posed Fermi-like distribution over a 106-fold range of Ca2+

concentrations have been shown to agree with those of molec-
ular dynamics or Monte Carlo. The potential, concentration,
and dielectric coefficient profiles from the bath to the bind-
ing site were then obtained as outputs of the algebraic anal-
ysis and the numerical solution of the Poisson-Fermi differ-
ential equation that includes correlation and steric effects of
all ions and water molecules with different sizes and valences
in the channel system. Our analysis seems to be the first that
includes voids and water molecules, albeit crudely. This and
our earlier work is the first to apply a Fermi distribution to is-
sues of permeation and selectivity in calcium channels, as far
as we know. Taking into account the effects of the excluded
volumes of the atoms of the protein, mobile ions, and water
molecules with interstitial voids between particles, the steric
energy improves the classical rate theory in describing the en-
ergy landscape of ions in the channel. The flexibility of pro-

tein structures is described by the steric energy which is an
output of our model. The electrostatic potential of the model
seems to be the evolutionary phenotype, responsible for the
main physical property of the channel, the binding of calcium
ions. Some guidelines of using the algebraic formulas pro-
posed in this paper for modeling real protein structures are
also briefly addressed.
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