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Exact science is useful. The physics of X-rays is exact. Biochemists can trust X-ray 

crystallography because the equations of X-rays are exact. But we rarely trust the 

equations that describe our own experiments and that is for good reason. The equations 

fail so often. 

Biochemists know that the law of mass action we use every day is not exact. The rate 

constants of that law change as conditions change. When we try to use that law, we 

must change parameters, but we do not know how. The law of mass action is not exact 

and not very useful because we cannot transfer it—parameters unchanged—from one 

set of conditions to another. This fact is known to every enzymologist who measures 

rate constants, but sad to say, other scientists often are not aware of this reality. 

High resolution calculations do not guarantee useful results 

Biochemists have tried to make their theories exact by increasing resolution. Our 

models of enzymes include thousands of atoms in cathedrals of structure. The hope has 

been that computing all the atoms of those cathedrals would produce exact 

simulations, if not exact equations. But, as the calculations of molecular dynamics 

reach from atomic to biological scales, we face disappointment once again. Issues of 

scale in time, space, and concentration must be dealt with all at once, in one calibrated 

calculation [13]. Enormous resolution does not guarantee useful biological results.[13, 

46, 53]  

We know very well that most enzyme reactions are controlled biologically by trace 

concentrations, 10
−8

 to 10
−6

 M, of ions like Ca
2+

. All atom simulations are not large 

enough, however, to deal with the 55 M water that dissolves each calcium ion in a 10
−8

 

to 10
−6

 M solution. The atomic resolution of simulations will have limited use if we 

cannot deal with the trace concentrations that control enzymes in health and disease. 

Force fields of molecular dynamics: boundary charges 

Molecular dynamics almost always uses force fields that depend on the coordinates of 

only two atoms at a time, calibrated at infinite dilution, i.e., in distilled water. But no 

two body force field can deal with electric charges that depend on the location of all 

charges in the system, like polarization charges at the boundaries of systems or at 

interfaces within the system. The electric force field is defined by the Poisson 

equation. Dependence on the location of all charges, including boundary charges, is 

displayed explicitly in the general solution of Poisson’s equation, see Jackson [32], 

Section 1.10, specifically eq. (1.36) and eq. (1.42). Boundary charges cannot be 

neglected in biological problems because they include polarization charges near lipid 

membranes. Charge at lipid membranes defines the electrical potential of cells and is 

responsible for the electrical function of nerve and muscle, and all other cells, for that 

matter. Neglecting boundary charges in force fields means ignoring electrical 

properties of cells.  



September 2, 2014  3 

 

Polarization force fields that ignore macroscopic boundary charges — no matter how 

sophisticated their derivation from quantum theory — cannot deal with the natural 

function of nerve cells as long as they depend on the coordinates of only two atoms at 

a time. 

Force fields of molecular dynamics: calibration 

Molecular dynamics uses force fields almost always calibrated at infinite dilution, in 

distilled water. That may be reasonable for the atoms inside a protein, away from 

mobile ions, but such a calibration must fail, in my view, for side chains of a protein 

that mix with mobile ions or for the mobile ions near and around proteins in bulk 

solution. When mobile ions are involved, screening/shielding is involved, as a general 

principle of physics.[8] Screening always depends on the concentration of ions, and (in 

nonideal cases) depends on the size and type of ions as well because ‘everything’ 

interacts with everything else in non-ideal solutions.[15, 16] Thus, force fields 

calibrated in distilled water will fail when dealing with concentrated solutions derived 

from seawater.  

Seawater and the solutions of biological systems are nothing like distilled water. In 

fact, distilled water is lethal for nearly all cells and most proteins. Molecular dynamics 

computed with force fields calibrated in distilled water will have certain errors when 

computing proteins in physiological solutions. 

Exact equations must use the mathematics of multiscale interactions, not the 

mathematics of ideal solutions  

Biology occurs in modified seawater and changes in ion concentration change the 

reactions of most enzymes. An exact version of biochemistry must deal with ions. 

I argue here that exact equations have not been possible because interactions in salt 

solutions that require multiscale analysis. Many types of interactions occur in ionic 

mixtures like seawater. All the ions in seawater are linked globally by electrostatic 

forces in flow, as we shall see later. Many are linked by steric interactions as well. 

Some are linked by orbital delocalization of electrons shared with water or other 

molecules, i.e., chemical bonds.  

Exact theories in biochemistry must use the mathematics of interactions but that 

mathematics is not widely known because it has only recently been discovered. 

Interactions are not small effects  

Most biological ionic solutions, like seawater, are far too concentrated to behave like 

ideal fluids or electrolyte. They are, in fact, complex (not simple) fluids.[15, 16] 

The free energy per mole (the experimental quantity called the activity of an ion, 

extensively measured in the literature [37, 39, 51, 71]) is the simplest property of an 

electrolyte. It is important to emphasize that activity is an experimental measurement 
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not a theoretical construct. Physical chemists for many decades measured the activity 

of electrolyte solutions of a wide range of composition and concentration and showed 

that different methods gave similar results.[1, 10, 26, 29, 37, 52, 54, 71] 

Activity plays a role something like height in a gravitational field and voltage in an 

electric circuit. In seawater, the activity of the bio-ions Na
+
, K

+
, Cl

−
 and Ca

2+
 does not 

vary linearly with concentration (as in an ideal fluid) or even with the square root of 

concentration (as in extremely dilute solutions of NaCl).[21, 38-40]  

Interactions and non-ideality are not small effects in mixed ionic solutions like 

seawater. Interactions and non-ideality can dominate in biological systems, because 

ions are highly concentrated where they are most important, in and near active sites 

[35], ion channels, binding proteins and nucleic acids, near the ‘working’ electrodes of 

electrochemical cells, at charged boundaries in general. There, concentrations are often 

more than 5 molal and solution properties there are dominated by interactions.[15, 16] 

The activity of one ion depends on the individual concentration of every other ion. 

‘Everything’ interacts with everything else. Some of the interactions, usually called 

‘allosteric’ and attributed to enzymes and proteins, as structural or ensemble properties 

[7, 11, 28, 49], may in fact arise in the highly concentrated solutions in and near active 

sites of proteins. 

Mathematics of interactions 

The mathematics of interactions has been understood for a very long time when the 

systems involved are conservative and do not involve friction. Hamiltonians and 

variational calculus are the language of high-energy physicists when they build their 

bright X-ray sources.  

Hamiltonians have not been used in most biological systems because biology occurs in 

condensed phases where friction is always present. Until recently, no one knew how to 

use Hamiltonians in systems with friction. Friction accompanies all ionic movement 

and conformation changes in biology because atomic collisions occur on a 10
-16

 sec 

time scale in solutions containing little empty space— that is why solutions are called 

‘condensed phases’ — and only three or four collisions are enough to convert 

deterministic motion into the random motion we call heat.[6] 

Theory of complex fluids 

Recently, mathematicians have developed a theory of complex fluids that generalizes 

Hamiltonians into an energetic variational calculus dealing with friction. The theory 

has had striking successes. 

Variational methods deal successfully with liquid crystals, polymeric fluids, colloids, 

suspensions and electrorheological fluids.[4, 5, 31, 58, 69, 70]. Variational methods 

describe solid balls in liquids; deformable electrolyte droplets that fission and fuse [55, 
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69]; and suspensions of ellipsoids, including the interfacial properties of these complex 

mixtures, such as surface tension and the Marangoni effects of ‘oil on water’ and ‘tears 

of wine’.[25, 64, 69, 70] Variational methods allow the reformulation and 

understanding of problems involving interactions of considerable complexity [18, 65, 

67, 68], some of which have resisted analysis for a long time. It is a little early to say 

the theory of complex fluids provides exact equations in general, but the theory 

certainly provides a productive pathway towards that goal.  

The perspective offered by the variational calculus — see the tutorial presentations 

based on the lectures of Chun Liu [18, 24, 66] — is striking even if its results are 

immature. Complex fluids must be analyzed by variational methods because 

everything interacts with everything else. If those interactions are not addressed with 

mathematics, the interactions are bewildering and the results cannot be analyzed. A 

mathematics designed to handle interactions is needed to produce exact equations. 

Otherwise, interactions vary in so many ways that fixed parameters cannot deal with 

them [34, 37, 41, 50, 57, 71], even at infinite dilution.[30] 

Flow of charge requires global interactions and correlations 

The flow of charge at one location interacts with the flow everywhere else. Kirchoff’s 

current law ensures correlation of charge movement everywhere, with a correlation 

coefficient something like 0.999 999 999 999 999 999. The correlations produced by 

Kirchoff’s current law are global. Changes in flow at distant locations changes the 

flow everywhere.  

Just consider what happens when you ‘pull the plug’ on an electronic device. Flow of 

charge into the plug ceases and atomic scale flows stop in the junctions and boundary 

layers of transistors. Flow on atomic scale is controlled by flows from the plug meters 

away. The electronic device depends on flow. The vital functions of our computers die 

without flow from the plug. 

Life at equilibrium is usually death 

Life also depends on flow. Flow must be dealt with consistently in biochemistry, 

because life does not occur without flow. Life at equilibrium is usually death. Flows of 

electricity are accompanied by charge imbalances that can produce large effects 

throughout a system. The equations of electricity are sensitive. 

The equations of electricity are global, like Kirchoff’s current law. The electric field in 

ionic solutions of living systems links everything with everything else. Exact equations 

must be consistent equations in which all the variables satisfy all the equations and 

boundary conditions in all conditions.[19, 20]  

. 
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An exact version of biochemistry must satisfy the equations of electricity, 

including global correlations of Kirchoff’s current law 

The electrical forces and potentials must be computed from all charges present and 

their flows — in solution, in proteins and nucleic acids and macromolecules in 

general, in layers near lipid membranes and boundaries — because those electric 

forces can change qualitatively and quantitatively when net charge changes a little bit, 

anywhere. See the unforgettable third paragraph (p.1-1 of [23]) of “Feynman’s 

Lectures…, Mainly Electromagnetism…”) that describes how a tiny imbalance of 

charge is enough to lift “the entire earth.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Charge is an Abstraction, with different physics in different systems 
 

Continuity of Current is Exact, no matter what carries current!  
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Charge is an abstraction: the physical nature of current is diverse  

The global dependence of the electric field is glimpsed in the cartoons of Kirchoff’s 

current law used in computational electronics. Kirchoff’s law and Maxwell’s exact 

equations of electricity are inseparable.[2, 3, 27] Charge is the central subject of 

Maxwell’s theory. Kirchoff’s current law is really a statement of conservation of 

charge, including displacement charge, the abstraction and discovery of Maxwell that 

is his key contribution to understanding electromagnetic radiation, including light.  

Charge is abstract. Charge changes physical nature as it flows through a circuit (see 

figure). It is ions in salt water; it is electrons in a vacuum tube; it is quasi-particles in a 

semiconductor; it is diverse in batteries–because of complex electrochemical reactions 

at electrodes; and it is nothing much in a vacuum capacitor (i.e., displacement current 

[27, 32]).  

The flow of current is exactly the same in every element in a series circuit, although 

the physical nature of that current is strikingly diverse. 

Mass Action is about mass conservation, not charge  

Most of biochemistry describes flow by the law of mass action. The law of mass action 

is about mass conservation. It is not about charge conservation. The laws of electricity 

guarantee that the current will be the same for all reactions in series. The law of mass 

action does not.  

The global nature of electric flow prevents the law of mass action from being exact. 

The law of mass action — with rate constants that are constant — does not know about 

charge. Its rate constants do not depend on charge in a way that guarantees Kirchoff’s 

current law. (If you want to prove this for yourself, write the mass action equations for 

flux in different reactions and try to derive Kirchoff’s current law as we do in the 

equation inset below.) 

I believe the law of mass action must be consistent with Kirchoff’s current law if 

biochemistry is to be an exact science. 

How do we make changes? 

How can we fix this problem and make biochemistry an exact science? How can we 

remake our laws so they deal well with interacting systems and electric charge? I do 

not know a general answer, but I know where to look for help.  

Physicists for years have used consistent analysis of flow and diffusion of charges to 

design transistors for devices.[22, 33, 44, 47, 56, 59-63] Those devices have increased 

in capability by billions in the 55 years since 1959 — more precisely by 1.5
55

 = 4.8 × 

10
9
 [45, 48] — and that striking success may have something to do with the exact laws 

that those devices follow.  
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I believe biochemistry can add to its own substantial successes of the past 60 years by 

trying to make its laws exact. If global spatial dependence on the electric field is built 

into a new version of the law of mass action, along with the interactions found in 

nonideal solutions, we surely will do better than we have done in understanding how 

enzymes, channels and nucleic acids do their work. 

Consistent treatments will not be easy 

Giving up inconsistent treatments will be like giving up part of our intellectual 

heritage. We can no longer take the easy ways out. We can no longer look the other 

way when rate constants vary.  

When studying allosteric interactions, we must use activities, that account for 

interactions among ions, not concentrations, which are appropriate only for ideal 

infinitely dilute solutions, because reactants and products are usually concentrated near 

active and allosteric sites.  

We must learn to deal with fluctuating electric fields in our treatments of Brownian 

motion of ions so that results will not seem so anomalous.[12, 17] We can no longer 

compute fluctuating concentrations of charge and assume electric fields do not 

fluctuate. 

We must incorporate boundary conditions and finite size ions into the law of mass 

action. Algebra and ordinary differential equations must give way to field theories, 

partial differential equations and variational calculus.[18, 24, 66] 

We have begun that process for rate models of ionic channels [14] as I grew out of my 

original prejudice against such models.[9] (Stochastic analysis was responsible for that 

growth, more than anything else, reviewed in [14]. Applications to conduction in 

calcium channels are in [36, 43]. A specific example showing important consequences 

of long range coupling is in [42] but even there the work has just begun.)  

We must even incorporate spatial inhomogeneities and electric fields into our 

treatments of covalent chemical reactions in ionic solution, because those spatial 

inhomogeneities are likely to produce very large local concentrations lasting long 

enough so many reactions occur at concentrations quite different from the average 

reactions in a spatially uniform system.  

We cannot just calculate models with higher and higher resolution. We must calibrate 

our simulations.[46, 53] We must compute consistently with the electric field, on all 

scales, with theories appropriate for each scale.[13]  

Mathematics is now available 

Mathematics is finally available to deal with diffusion and electric fields in a 

consistent way, and the theory of complex fluids and simulations of computational 

electronics have shown that mathematics can describe complex fluids and devices 

(nearly) exactly. Now let’s try that mathematics on the classical problems of 

biochemistry to see if we can construct a consistent theory of reactions that is exact 

and useful.  
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Analysis  

 

Consider the nonequilibrium situation, for a reaction where reactants and products are at 

different locations  

 

*

*

f f

bb

k k

kk
X Y Z    (1) 

The flux of reactants (in a unit cross sectional area) is 

        * *;XY f b YZ f bJ k X k Y J k Y k Z      (2) 

where forward and backward rate constants are defined by subscripts with an asterisk for the 

right hand reaction, and brackets    denote number density, i.e., concentration. 

The flow of electric charge (in a unit cross sectional area) is current given by 

        * *;XY X f Y b YZ Y f Z bI Fz k X Fz k Y I Fz k Y Fz k Z          (3) 

where F  is Faraday’s constant; , ,X Y Zz z z  are the charges on one molecule of the reactants 

and products. These currents are obviously not always equal even though Kirchoff’s current 

law says they must be equal under all conditions. Algebra shows they can be equal only under 

special conditions: 

 

       * *

if and only if

XY YZ

X f Y b Y f Z b

I I

z k X z k Y z k Y z k Z



  

?

?

  (4) 

Of course, experiments can be done under conditions that approximate the special condition 

of eq. (4), Then the law of mass action and Kirchoff’s current law will be in approximate 

agreement under those conditions.  

It may be possible to find a functional for rate constants which reconciles mass action with 

the electric field, but of course that functional must include ions throughout the system, as 

well as interactions of all sorts including with distant induced charge on lipid membranes and 

other boundaries.  

We seek a global version of mass action that automatically satisfies Kirchoff’s current law 

under all conditions. 
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