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Abstract A macroscopic model to describe the dynamics
of ion transport in ion channels is the Poisson–Nernst–
Planck (PNP) equations. In this paper, we develop a finite-
difference method for solving PNP equations, second-order
accurate in both space and time. We use the physical param-
eters specifically suited toward the modeling of ion chan-
nels. We present a simple iterative scheme to solve the sys-
tem of nonlinear equations resulting from discretizing the
equations implicitly in time, which is demonstrated to con-
verge in a few iterations. We place emphasis on ensuring
numerical methods to have the same physical properties that
the PNP equations themselves also possess, namely conser-
vation of total ions, correct rates of energy dissipation, and
positivity of the ion concentrations. We describe in detail an
approach to derive a finite-difference method that preserves
the total concentration of ions exactly in time. In addition,
we find a set of sufficient conditions on the step sizes of the
numerical method that assure positivity of the ion concen-
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trations. Further, we illustrate that, using realistic values of
the physical parameters, the conservation property is criti-
cal in obtaining correct numerical solutions over long time
scales.
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1 Introduction

The Poisson–Nernst–Planck (PNP) equations describe the
diffusion of ions under the effect of an electric field that
is itself caused by those same ions. The system is created
by coupling the Nernst–Planck equation (which describes
the diffusion of ions under the effect of an electric poten-
tial) with the Poisson equation (which relates charge den-
sity with electric potential). This system of equations has
found much use in the modeling of semiconductors [24]. Al-
though the Poisson–Nernst–Planck equations were applied
to model membrane transport for longer than they have been
employed to model semiconductors [30], the use of the sys-
tem to model the behavior of the internal mechanics of these
transport processes is much more recent [8].

The system of PNP equations and its related models have
been the subject of much study and numerical simulation.
A recent advancement in this field was the application of
energy variational analysis and density functional theory to
modify the PNP system to accommodate various phenom-
ena exhibited by biological ion channels. See [32] and the
references therein.

The computer simulations of the Poisson–Nernst–Planck
models are able to capture the transient, dynamical behav-
ior of the system, and the numerical schemes employed are
quite varied. Cagni et al. (2007) [3] discretized the PNP in
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two dimensions using a second-order accurate finite differ-
ence method with central differencing in space and Crank–
Nicolson scheme in time, and simulated an ion channel
subjected to time-dependent perturbations. Nanninga (2008)
[27] studied a nerve impulse using a similar finite difference
scheme as in [3] but in three dimensions, notable in that it di-
rectly included gating and selectivity into the model. Lopre-
ore et al. (2008) [23] developed a finite-volume-based tech-
nique to solve PNP in three dimensions, which decomposes
the domain using a dual Delaunay–Voronoi mesh. Neuen
(2010) [28] developed a semi-implicit finite element-based
scheme to simulate three-dimensional, multi-scale extended
PNP. Gardner and Jones (2011) [10] simulated a potassium
channel modelled with PNP in two dimensions using a finite
difference method with TR-BDF2 time integration. Much of
the numerical schemes in [10] is based on the previous work
[11], a one-dimensional model of the same channel. Hyon
et al. (2011) [19] presented another finite element method
with back-Euler method in time to investigate the effects of
finite size of the ions by modifying the PNP via introduc-
ing a repulsive potential energy into the total energy. Horng
et al. (2012) [17] applied the multiblock Chebyshev pseu-
dospectral method and the method of lines to solve a one-
dimensional modified PNP modeling the finite-sizeness of
the ions via a local model.

One of the characteristics of the nonlinear PNP equations
is that its overall behavior is very sensitive to the boundary
conditions [13]. This presents a challenge for accurate and
efficient numerical simulations, as generally the boundary
conditions will have to be discretized and approximated. In
this paper, we shall investigate the effects of discretization
error on the Poisson–Nernst–Planck equations, in particular
discretization of the boundary conditions and the equations
at the boundaries. We will demonstrate that the conserva-
tion properties of the numerical methods could be critical in
obtaining the long-time behavior of the solutions.

To our knowledge, relatively few studies describe numer-
ical methods such as finite difference method, finite element
method, finite volume method and many others for solv-
ing partial differential equations (PDEs), which preserve
the physical quantities underlying the PDEs exactly at the
discrete level. Fisher et al. (2012) [9] developed finite dif-
ference methods for solving the Euler equations and the
Burgers equation that relied on using specific split forms
of the equations to preserve the discrete energy dynamics.
Hof and Veldman (2012) [16] developed finite volume dis-
cretizations for the 1D and 2D Euler equations, as well as
the 1D and 2D Shallow Water equations, which conserved
the dynamics of mass, momentum and energy of the sys-
tems. For the incompressible Navier–Stokes equations, the
papers [14, 15, 20, 25, 26, 31] presented finite difference
discretizations on uniform or nonuniform grids that preserve
part or all of discrete mass, momentum, and kinetic energy.

Li and Vu-Quoc (1995) [22] developed a finite difference
method for solving the nonlinear Klein–Gordon equation
which preserved the total discrete energy. Qiao et al. (2011)
[29] showed unconditionally energy stable finite difference
schemes for the dynamics of the molecular beam epitaxy,
which preserves the energy decay rate exactly at the discrete
level. Zhang and Qiao (2012) [33] proposed a finite differ-
ence scheme that is mass-conservative and preserves energy
decay rate precisely for the Cahn–Hilliard equation. Celle-
doni et al. (2012) [4] developed a general method of dis-
cretizing partial differential equations that preserved the to-
tal energy exactly, based on the average vector field method.
Chiu et al. (2012) [5] developed a general meshfree scheme
for solving partial differential equations characterized by
conservation of the discrete energy, and they demonstrated
its effectiveness by solving the 1D and 2D inviscid advec-
tion equations.

It is also rare for numerical schemes to preserve posi-
tivity for nonlinear advection-diffusion equations like PNP,
which do not have a maximum principle. The work on this
topic is well summarized by Hundsdorfer and Verwer[18].
Bolley and Crouzeix [2] developed much of the theory, es-
tablishing that linear single-step and multi-step methods of
second-order or higher in time cannot preserve positivity un-
conditionally, and obtaining necessary and sufficient condi-
tions for positivity preservation for certain classes of numer-
ical methods.

The paper is organized as follows. We start by defin-
ing and simplifying the equations we are working with, in
Sect. 2, including the introduction of the quantities that shall
be preserved by our numerical schemes: the total concen-
tration of each ion species in Sect. 2.1 and the energy dis-
sipation law in Sect. 2.2. We then describe our numerical
schemes in Sect. 3, which presents an approach to conserve
the total ion concentrations exactly, preserve positivity of the
ion concentrations, and approximate the energy dissipation
law closely. Finally, we shall discuss the results of simulat-
ing the system using our numerical schemes in Sect. 4.

2 Governing equations

Consider the PNP equations [8, 11]

∂ci

∂t
= ∇ ·

{
Di

[
∇ci + zie

kBT
ci∇φ

]}
, (1)

i = 1,2, . . . ,N,

∇ · (ε∇φ) = −
(

ρ0 +
N∑

i=1

zieci

)
, (2)

where ci is the ion density for the i-th species, Di is the
diffusion constant, zi is the valence, e is the unit charge,
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kB is the Boltzmann constant, T is the absolute temperature,
ε is the permittivity, φ is the electrostatic potential, ρ0 is the
permanent (fixed) charge density of the system, and N is
the number of ion species [19]. The equations are valid in a
bounded domain Ω with boundary ∂Ω and for time t ≥ 0.

In this work, we shall use the no-flux boundary condition
for Eq. (1). This may correspond to modeling the interior
conditions of a channel that is in an occluded state, with
closed gates at either end. Simulations of channels such as
the KirBac1.1 channel in such a state have been conducted
in the past [6]. We shall use the Robin boundary condition
for the Poisson equation, which models the effects of mak-
ing the source of the potential across the channel partially
removed from the ends of the channel. The formula for the
boundary conditions are

Di

[
∇ci + zie

kBT
∇ciφ

]
· n = 0, i = 1,2, . . . ,N, (3a)

(φ − φ±) + η
∂φ

∂n
= 0, (3b)

for points on the boundary x ∈ ∂Ω .
For some situations, such as a generic potassium chan-

nel separating potassium and chloride ion baths, the experi-
mental data can be well-approximated by a one-dimensional
model [11]. In one dimension, Eqs. (1) and (2) are simplified
as

∂ci

∂t
= ∂

∂x

[
Di

(
∂ci

∂x
+ zie

kBT
ci

∂φ

∂x

)]
(4)

∂

∂x

(
ε
∂φ

∂x

)
= −

(
ρ0 +

∑
i

zieci

)
, (5)

for −L ≤ x ≤ L and t ≥ 0, where L is the half of the length
of the ion channel. The corresponding boundary conditions
are

Di

(
∂ci

∂x
+ zie

kBT
ci

∂φ

∂x

)
= 0,

(φ − φ±) ± η
∂φ

∂x
= 0, for x = −L,L.

(6)

2.1 Total concentration

The total concentration per ion species is given by

ci,tot (t) =
∫ L

−L

ci(x, t)dx, i = 1,2, . . . ,N. (7)

Due to the no-flux boundary conditions (6), the total con-
centration of each ion species is constant in time. This can
be verified easily by differentiating (7) with respect to time,
then applying the convection-diffusion equation (4) and no
flux boundary condition (6).

One of the metrics we can use to evaluate different nu-
merical schemes is therefore to measure how well the total
concentration is conserved in numerical simulation. Ensur-
ing that the total concentration for each species ci,tot is con-
stant will be the idea behind the schemes presented in this
work. As will be seen in Sect. 4, the preservation of the con-
servation property is crucial for producing correct numerical
results over long time scales.

2.2 Energy dissipation

The governing equations (4) and (5) for the transport of ions
can be derived from the energy of the system using vari-
ational principles. Similar to [19], the total energy for our
specific system is defined by

E =
∫ L

−L

[
kBT

N∑
i=1

ci log
ci

ci,0
+ 1

2

(
ρ0 +

N∑
i=1

zieci

)
φ

]
dx

+ ε

2η

(
φ+φ(L) + φ−φ(−L)

)
, (8)

where ci,0 are constants called “reference concentrations”.
Using the Poisson equation (5), the total energy can be writ-
ten as

E =
∫ L

−L

[
kBT

N∑
i=1

ci log
ci

ci,0
+ ε

2

(
∂φ

∂x

)2
]

dx

+ ε

2η

(
φ2(L) + φ2(−L)

)
, (9)

where the last term is the contribution of the electric energy
from the boundaries. The total energy E satisfies the energy
dissipation property

dE

dt
= −

∫ L

−L

N∑
i=1

Di

kBT
ci

∣∣∣∣∂μi

∂x

∣∣∣∣
2

dx, (10)

where μi is the chemical potential of i’th ion species defined
by the variational derivative of the energy with respect to the
concentration ci

μi = δE

δci

= kBT

(
log

ci

ci,0
+ 1

)
+ zieφ. (11)

The energy dissipation law (10) can be derived by taking the
time derivative of the total energy (8) and applying integra-
tion by parts, Eqs. (4)–(5) and the boundary condition (6):

dE

dt
=

∫ L

−L

kBT
∑

i

(
log

ci

ci,0
+ 1

)
∂ci

∂t
dx

+
∫ L

−L

[
1

2

∑
i

zie
∂ci

∂t
φ + 1

2

(
ρ0 +

∑
i

zieci

)
∂φ

∂t

]
dx
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+ ∂

∂t

[
ε

2η

(
φ+φ(L) + φ−φ(−L)

)]

= −
∫ L

−L

∑
i

Di

kBT
ci

∣∣∣∣∂μi

∂x

∣∣∣∣
2

dx

− 1

2
ε

(
∂φ

∂x

∂φ

∂t
− ∂2φ

∂x∂t
φ

)∣∣∣∣
L

−L

+ ∂

∂t

[
ε

2η

(
φ+φ(L) + φ−φ(−L)

)]
. (12)

The rate of energy decay (10) can be obtained by using the
boundary condition (6) to show the last two terms on the
RHS of (12) cancel each other.

2.3 Parameters and nondimensionalization

We specify the units and the parameters using the approx-
imate values corresponding to the KcsA potassium chan-
nel [7]. In our 1D model, the cylindrical channel takes a
diameter of 10 Å and a length of 120 Å. We shall as-
sume no permanent charges or selectivity for the purposes
of this simulation. We consider the case of two ion species,
i.e. N = 2, with the initial concentration for each ion be-
ing 2 molar, resulting in an initial number density (num-

ber of ions per unit volume) of 1.2044 × 10−3 ions/Å
3
.

The combination of the parameters kBT /e is approximately
0.025 V, assuming the temperature is T = 298 K. The per-
mittivity ε = εrε0 is determined by the value of the vacuum
ε0 = 8.854187817 × 10−12 F/m and the relative permittiv-
ity εr (78.5 for water).

The values of the diffusion coefficients Di depend on
both the ion species and the channel. The only net effect
of different diffusion constants is the rate of evolution of the
system. Typical values for the diffusion coefficients for ion
species in a channel are around 109 Å2/s [12]. We will select
both diffusion coefficients to be equal to each other, causing
them to take a value of one after nondimensionalization.

The parameter η, as a component of the Robin bound-
ary condition (3b), is an aggregate of multiple physical con-
stants and is highly dependent on the properties of the sur-
rounding membrane. modeling the experimental setup as an
electrical circuit shows that the quantity Aεl/η, where A is
the area of the membrane and εl is the permittivity of the
membrane, has units of capacitance and is related to charge
storage. The most significant charge storage contributing to
Aεl/η is in fact the membrane capacitance, so we may sur-
mise that the primary contributor to η is the membrane ca-
pacitance. If a very high capacitance to ground is present,
η is approximated by the appealing formula η = Aεl/C,
where C is the capacitance of the membrane, however re-
alistically η is much smaller than that. In this work, we shall
take η = 2.78 × 10−3 Å for our numerical simulations, but

will also examine the effects of η over a range from 10−5 Å
to 60 Å. Changing the value of η might correspond to adding
a parallel capacitance in experiment.

Define the dimensionless variables and parameters c′
i =

ci/c0, x′ = x/L, t ′ = t/(L2/D0), D′
i = Di/D0, φ′ = φ/φ0,

and ρ′
0 = ρ0/(ec0) where c0 is the average of the initial

charge concentration, L is the half of the channel length
or computational domain, D0 is a typical diffusion coeffi-
cient, φ0 is a characteristic value of the electrostatic poten-
tial such as the boundary value. Then, non-dimensionalizing
the Nernst–Planck equation (4), we obtain

∂c′
i

∂t ′
= ∂

∂x′

{
D′

i

[
∂c′

i

∂x′ + χ1

(
zic

′
i

∂φ′

∂x′

)]}
, (13)

where χ1 := eφ0/kBT . From the above, the dimensionless
parameter χ1 ≈ 3.1, if φ0 = 0.08 V. The nondimensional-
ized Poisson equation (5) is given by

∂

∂x′

(
ε′ ∂φ′

∂x′

)
= −χ2

(
ρ′

0 +
∑

i

zic
′
i

)
, (14)

where χ2 := ec0L
2

φ0εt
. Here, the dimensionless parameter ε′ is

defined as ε′ := ε/εt where εt is the characteristic permit-
tivity chosen to be the value for water: εt = 6.950537436 ×
10−20 F/Å. The non-dimensional parameter χ2 is approxi-
mately 125.4 with these values. The corresponding dimen-
sionless boundary conditions are

D′
i

[
∂c′

i

∂x′ + χ1

(
zic

′
i

∂φ′

∂x′

)]
= 0,

(
φ′ − φ′±

) + η′ ∂φ′

∂n
= 0, for x = −1,1,

(15)

where η′ := η/L.
We drop the primes when we present our numerical meth-

ods for clarity.

3 Numerical methods

We present a method for deriving numerical schemes that
would conserve total concentration of each ion species
exactly if computations were performed without round-
off errors. We will illustrate the method by describing a
mass-conservative scheme (i.e. preserving ion concentra-
tion exactly) for solving the nonlinear systems of PDEs
(13) and (14). The extension of the method to the multi-
dimensional case is straightforward. This scheme uses the
trapezoidal rule and the second-order backward differen-
tiation formula (TR-BDF2) in time and the second-order
central differencing in space. The TR-BDF2 scheme is im-
plicit in time, resulting in a system of nonlinear equations
after discretization. Instead of using the Newton–Raphson
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method for solving the large nonlinear systems at each time
step, we present a simple iterative scheme which is easy to
implement and can solve the systems efficiently.

3.1 Discretization in time

For time-stepping, we shall use a slight modification of
the scheme described in [1], which combines the trape-
zoidal rule with the second-order backward differentiation
formula.
(1) TR step:

c
n+γ,k+1
i − γ

�tn

2
f

(
c
n+γ,k+1
i , φn+γ,k

)

= cn
i + γ

�tn

2
f

(
cn
i , φn

)
, i = 1,2,

∂

∂x

(
ε
∂φn+γ,k+1

∂x

)
= −χ2

(
ρ0 +

2∑
i=1

zic
n+γ,k+1
i

)
,

(16)

for k = 0,1,2, . . . .
(2) BDF2 step:

c
n+1,l+1
i − 1 − γ

2 − γ
�tnf

(
c
n+1,l+1
i , φn+1,l

)

= 1

γ (2 − γ )
c
n+γ

i − (1 − γ )2

γ (2 − γ )
cn
i , i = 1,2,

∂

∂x

(
ε
∂φn+1,l+1

∂x

)
= −χ2

(
ρ0 +

2∑
i=1

zic
n+1,l+1
i

)
,

(17)

for l = 0,1,2, . . . , where f (ci, φ) is defined as the right-
hand side of (13)

f (ci, φ) = ∂

∂x

{
Di

[
∂ci

∂x
+ χ1

(
zici

∂φ

∂x

)]}
. (18)

We take γ = 2 − √
2, which minimizes the local truncation

error [11].
Removing the inner iterations, corresponding to the in-

dices k in (16) and l in (17), Eqs. (16) and (17) is the TR-
BDF2 scheme requiring a nonlinear solver for the two sys-
tems of nonlinear equations: (16) for (cn+γ ,φn+γ ) at the
grid points and (17) for (cn+1, φn+1). With the inner itera-
tions, Eqs. (16) and (17) provide a simple iterative scheme
for solving the systems of nonlinear equations. For instance,
at k-th iteration, we update the array cn+γ,k+1 at the grid
points by solving the first equation of (16) which is a tri-
diagonal system after the spatial discretization, since the val-
ues of φn+γ,k are known at k-th iteration; then, we update
φn+γ,k+1 using the second equation of (16). We perform
the inner iterations until convergence and, as shown later,
choosing two inner iterations k = 2 and l = 2 would be suf-
ficient. As for initial guesses at the n-th time step, we choose

φn+γ,0 = φn for (16) and φn+1,0 = φn+γ,k+1 for (17) with k

corresponding to the last inner iteration at the previous inner
iteration. As shall be seen in Sect. 4, without any such inner
iterations (k = l = 0), one could only attain first-order accu-
racy in time; on the other hand, with just one inner iteration
(k = l = 1), one can attain second-order accuracy in time. In
other words, the simple iterative scheme is very effective in
solving the systems of nonlinear equations.

3.2 Discretization in space

Next, we provide the discrete equations for the spatial dif-
ferential operators in Eqs. (16) and (17). Let’s divide the
dimensionless interval [−1,1] to J subintervals, xj = −1 +
j�x, where �x = 2/J and j = 0,1, · · · , J . We denote the
numerical values of g(x, t) at (xj , tn) by gn

j and g(x) at xj

by gj . We present the standard second-order central differ-
encing schemes for the spatial differential operators here to
facilitate the description of the mass-conservative scheme
which depends on the details of the discretization at the in-
terior grid points (1 ≤ j ≤ J − 1).

The ion diffusion term in Eq. (13) is discretized as

∂

∂x

(
Di

∂ci

∂x

)
(xj )

≈
D

i,j+ 1
2
cj+1 − (D

i,j+ 1
2
+ D

i,j− 1
2
)ci,j + D

i,j− 1
2
ci,j−1

(�x)2
.

(19)

The term driven by the electrostatic potential gradient in
Eq. (13) is given by

∂

∂x

(
Dici

∂φ

∂x

)
(xj )

≈ Di,j+1ci,j+1(φj+2 − φj ) − Di,j−1ci,j−1(φj − φi,j−2)

4(�x)2
.

(20)

The Laplacian in the Poisson equation (14) is approximated
by

∂

∂x

(
ε
∂φ

∂x

)
(xj )

≈ 1

(�x)2

[
ε
j+ 1

2
φj+1 − (ε

j+ 1
2
+ ε

j− 1
2
)φj + ε

j− 1
2
φj−1

]
.

(21)

The fully discretized form of (18) can be expressed as the
matrix form Fi(φ)ci , where the nonzero entries of the tridi-
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agonal matrix Fi(φ) are given by

Fi(φ)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
�x2 (D

i,j− 1
2
− χ1ziDi,j−1

φj −φj−2
4 )

for k = j − 1

− 1
�x2 (D

i,j+ 1
2
+ D

i,j− 1
2
)

for k = j

1
�x2 (D

i,j+ 1
2
+ χ1ziDi,j+1

φj+2−φj

4 )

for k = j + 1

(22)

and the vector ci = (ci,0, ci,1, · · · , ci,J )T denotes the un-
known concentration at the grid points for the i-th ion
species.

We can then write the fully discretized system as
(1) TR step:

(
I − γ

�tn

2
Fi

(
φn+γ

))
c
n+γ

i

=
(

I + γ
�tn

2
Fi

(
φn

))
cn
i , for i = 1,2,

Gφn+γ = −
(

ρ0L
2

φ0εt

+ χ2

2∑
i=1

zic
n+γ

i

)
,

(23)

(2) BDF2 step:

(
I − 1 − γ

2 − γ
�tnFi

(
φn+1))cn+1

i

= 1

γ (2 − γ )
c
n+γ

i − (1 − γ )2

γ (2 − γ )
cn
i , i = 1,2,

Gφn+1 = −
(

ρ0L
2

φ0εt

+ χ2

2∑
i=1

zic
n+1
i

)
,

(24)

where Gφ provides the matrix form of the right-hand side
of (21).

3.3 Discretization of boundary condition

We shall implement the boundary conditions using two dif-
ferent schemes. The first scheme is obtained by applying
standard finite differencing to the boundary conditions, and
the second is obtained by requiring the conservation of ions
within the channel. As shown later, it is critical to preserve
the ion concentrations for accurate numerical solutions.

3.3.1 Standard implementation

Applying the forward differencing to the right-hand side of
the Nernst–Planck equation (13) at the left boundary and
using the no-flux boundary condition in (15), we obtain

∂

∂x

{
Di

[
∂ci

∂x
+ χ1

(
zici

∂φ

∂x

)]}
(−L)

≈ Di,1[ ci,2−ci,0
2�x

+ χ1zici,1
φ2−φ0
2�x

] − 0

�x

= Di,1
ci,2 − ci,0 + χ1zici,1(φ2 − φ0)

2(�x)2
. (25)

It is similar at the right boundary. We implement the Robin
boundary condition in (15) with the second-order central
differencing using ghost grid points as

(φ0 − φ−) − η
φ1 − φ−1

2�x
= 0, or

φ−1 = φ1 − 2�x

η
(φ0 − φ−),

(26)

and similarly φJ+1 = φJ−1 − 2�x
η

(φJ − φ+).

3.3.2 Conservative scheme: TR step

The no-flux boundary condition in (15) implies that the to-
tal concentration of each ion species is constant throughout
time. Thus, we discretize the equations by requiring the nu-
merical value of the total concentration be conserved exactly
in time.

First, we approximate the total concentration ci,tot (tn)

defined in Eq. (7) using the trapezoidal rule as follows

cn
i,tot =

J−1∑
j=1

cn
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2

(
cn
i,0 + cn

i,J
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(27)

Let us examine the change of the total concentration in the
TR step (23).
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This summation has a telescoping effect where most of the
interior terms cancel each other and we are left with
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We can achieve the conservation of the total concentra-
tion c

n+γ

i,tot = cn
i,tot , if we discretize the Nernst–Planck equa-

tion (13) at the left boundary as
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and at the right boundary as
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It is important to point out that Eq. (30) can be seen as
discretizing equation (13) using a first-order finite difference
with grid size �x/2 and using the no-flux boundary condi-
tion (15). Equation (30) can be rewritten as
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3.3.3 Conservative scheme: BDF2 step

We can rewrite Eq. (24) in such a way that the numerical
value of the derivative of the total concentration becomes
a linear combination of the result from the TR step and the

right hand side of Eq. (13) evaluated at the n+1th time step.
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As with the TR step, almost all of the interior terms can-
cel in a telescoping sum, and we can require the exact con-
servation of the total concentration cn+1

i,tot = c
n+γ

i,tot in order to
obtain the discretization of the Nernst–Planck equation (13)
at the boundaries for the BDF2 step:
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Equation (34) can be seen as discretizing only the term
f (cn+1

i,j ) in Eq. (24) using forward difference with grid size
�x/2 and using the no-flux boundary condition in (15).
Equation (35) can be viewed similarly at the right bound-
ary.

3.4 Positivity-preserving conditions

The ion concentrations governed by the PNP equations are
always positive or non-negative at any point in space and for

all times. The numerical solution to (23) and (24) does not
necessarily guarantee to preserve positivity property of the
solution. In this section, we derive a set of conditions, (44a)
and (44b), on the time and space step sizes to ensure that the
solution be always non-negative at every point.

First, by factoring and simplifying, we combine the TR
step (23) and BDF2 step (24) into the following compact
form(
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where the matrices F are defined in (22). Here and in this
section, we have dropped the subscript i for convenience of
presentation. We can analyze this in steps to find the con-
ditions under which the system is positivity-preserving. We
assume the gradient of the potential, | ∂φ

∂x
|, is bounded. Con-

sequently, we denote the bound for its finite difference ap-
proximations by
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Lemma 1 All matrix equations of the form (I −kF (φ))c∗ =
c̃ preserve positivity for any k > 0, where F is defined
in (22), i.e., c∗ > 0 (all elements of c∗ are positive) provided
that c̃ > 0.

Proof This is a consequence of Lemma I.7.4 of [18]. If we
can show that the conditions (I.7.14) and (I.7.15) of [18]
are satisfied, then the positivity is preserved. Consider the
forward Euler scheme

c∗∗ = (
I + kF (φ)

)
c̃. (38)

First, we show that c∗∗ is conditionally positive given all
entries of c̃ are positive (c̃j > 0 ∀j ), i.e.,
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where

Dmax = max
i,j

Di,j , Dmin = min
i,j

Di,j (41)

are the maximum and the minimum of the diffusion coeffi-
cients respectively. In order to guarantee the terms involving
cj+1, cj−1 be positive, we impose
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and
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to be true for all i, j . We can thus guarantee positivity by
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− Dmaxχ1Dφ

2�x
≥ 0, i.e. �x ≤ 2Dmin

Dmaxχ1Dφ

, (43)

where Dφ , Dmax and Dmin are defined in (37) and (41) re-
spectively. Therefore, if we assume the system of equations
(I − kF (φ))c∗ = c̃ is solvable, by Lemma I.7.4 of [18], we
have proved that c∗ is positive for any k > 0. �

With Lemma 1, we are ready to show the positivity-
preserving property of our scheme (36) as follows. First,
similar to the proof of Lemma 1, one can show that the right-
hand side (36), denoted by cn,∗, preserves positivity if the
following conditions are satisfied

�t

�x2
≤ 2 − γ
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and

�x ≤ 2Dmin
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. (44b)

Next, the matrix equation (36)
(
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�tF
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= cn,∗ (45)

is equivalent to the following two equations of the form in
Lemma 1(

I − γ�t

2
F

(
φn+γ

))
cn,∗∗ = cn,∗, (46a)

(
I − 1 − γ

2 − γ
�tF

(
φn+1))cn+1 = cn,∗∗. (46b)

Finally, applying Lemma 1 to each of the Eqs. (46a)
and (46b), we have shown that, if the conditions (44a)
and (44b) are satisfied, our numerical scheme (36) is
positivity-preserving.

4 Numerical results

4.1 Validation and convergence results

To validate the accuracy our numerical method, we com-
pare the steady-state solution from our dynamic simula-
tions of PNP with that of the Poisson–Boltzmann solution
taken from the work [21]. Figure 1 shows that our steady-
state solutions match perfectly with those in [21] for two
sets of parameters: one with η = ε = 2−2 and the other
η = ε = 2−6 while keeping the other parameters constant:
φ− = −1, φ+ = 1, D1 = D2 = 1, χ1 = 1, χ2 = 1

2ε
, and

ρ0 = 0. The maximum difference in φ between the two so-
lutions is less than 5.6 × 10−5. To get the steady-state solu-
tion, we have used the mass-conservative TR-BDF2 method
described in previous sections with 2048 grid points in the
interval [−1,1] as in [21] and the time-step size 10−4. At
time t = 0, the initial profiles for the ion concentrations are
uniform in space. In this case, our time-dependent solution
is close to the steady-state solution for the time t ≥ 2. We
have also verified that our solutions agree with those in [21]
for other sets of parameters as well, although they are not
shown here.

We have also checked the orders of convergence of our
methods. The discretization method described in the previ-
ous section always has O(�x2) convergence in space, re-
gardless whether we have implemented the mass-conserva-
tive difference scheme or not. The order of convergence in
space is computed using the formula log2

|Φ(2�x)−Φ(4�x)|
|Φ(�x)−Φ(2�x)| ,

where Φ(�x) denotes the numerical solution of the poten-
tial φ at the point (x, t) = (0.904,0.02) obtained with the
spatial resolution �x. In this case, the time step size is cho-
sen to be very small �t = 10−6 so that the discretization
error is dominated by that in space.

Fig. 1 Comparing our steady-state solution (the dashed lines) using
TR-BDF2 method with that of the Poisson–Boltzmann equation (the
solid lines) obtained in [21]. The parameters are ε = 2−2,2−6, η = ε,
φ− = −1, φ+ = 1
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Table 1 The numerical order of convergence in time for the mass-
conservative TR-BDF2 method solving the PNP equations in one di-
mension for two ion species. The non-dimensionalized physical pa-
rameters are ε = 1, η = 4.63 × 10−5, φ− = 1, φ+ = −1. The calcula-
tions are performed with �x = 0.002 and the numerical solution of φ

is evaluated at the point (x, t) = (0.904,0.02)

�t 5 × 10−5 2.5 × 10−5 1.25 × 10−5

Order of convergence for
TR-BDF2, no inner loops

1.0016 1.0008 1.0028

Order of convergence for
TR-BDF2, two inner loops

2.2197 2.1779 2.2143

To obtain the numerical orders of convergence in time,
we compute the numerical solutions with three different
time-step sizes �t,2�t and 4�t and then calculate the
numerical order of convergence p by computing the ratio
(Φ(2�t) − Φ(4�t))/(Φ(�t) − Φ(2�t)) at the fixed posi-
tion and time (x, t) = (0.904,0.02). Here, the spatial reso-
lutions in these simulations are kept the same, �x = 0.002.
The numerical convergence results in time are given in Ta-
ble 1. We find that, if one did not perform inner iterations
(k = 0 in (23) and l = 0 in (24)), the convergence of TR-
BDF2 would be first-order in time. If we include at least
one inner iteration (k ≥ 1 and l ≥ 1), then the convergence
becomes second-order as expected.

4.2 Evolution of the distributions of the ions

First, we examine the evolution of the ion concentrations and
the electrostatic potential starting from a uniform ion distri-
bution of two ion species of opposite valence z1 = 1 and
z2 = −1: ci(x,0) = 1, i = 1,2, for −1 ≤ x ≤ 1. The pre-
scribed electrostatic potentials on the left and the right at far-
field are φ− = 1 and φ+ = −1 respectively. The physical pa-
rameters are specified as in Sect. 2.3. In the rest of this work,
unless we specify otherwise, the non-dimensionalized pa-
rameters are chosen as D1 = D2 = 1, χ1 = 3.1, χ2 = 125.4
and η = 4.63 × 10−5, as they were defined in Sect. 2.3. Due
to the symmetries of the initial and boundary conditions, the
parameters and the domain, the profiles for the concentra-
tions of the two ion species at any time are symmetric with
respect to the center of the channel, x = 0.

Figure 2 shows the profiles of the ion concentration with
the valence z2 = −1 and the electrostatic potential at the
times t = 0, 0.01, 0.05, and 1. The Robin boundary condi-
tion (15) for the electrostatic potential drives the ions with
negative charges toward the left boundary and the no-flux
boundary condition (15) for the ions causes those charges to
accumulate at the boundary. In this case, the ion concentra-
tions keep their uniform profile in the bulk of the domain
away from the two ends, while the electrostatic potential
changes from an initially linear profile to one that is essen-
tially constant (zero) except for the sharp gradient at each

Fig. 2 Simulation results using the mass-conservative TR-BDF2
method for ε = 1, η = 4.63 × 10−5, φ− = 1, φ+ = −1. The calcu-
lations were performed with �t = 10−4 and �x = 0.002. (a) The
concentration profiles for the ion species with the valence z2 = −1,
c2(x, t), are plotted at the times t = 0 (the solid line), 0.01 (dashed),
0.05 (dotted) and 1 (dash-dotted). (b) The corresponding time se-
quence of the electrostatic potential φ is plotted

end. We find that the existence of the thin boundary layers
requires high spatial resolution or small �x in the simula-
tion. The numerical results would be far away from the cor-
rect solution if we chose �x > 0.05. These results show the
overall behavior of the system as time elapses.

4.3 Comparison between mass-conservative and standard
schemes

Next, let us compare the numerical results from a standard
discretization (called as the non-conservative schemes) of
the boundary conditions, (25), with those obtained from the
mass-conservative schemes (30) and (34). Figure 3 shows
the ion concentration profiles and the electrostatic poten-
tial at time t = 1 obtained from both the mass-conservative
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Fig. 3 Comparison between the simulation results from the
mass-conservative and the non-conservative schemes for ε = 1,
η = 4.63 × 10−5, φ− = 1, φ+ = −1, T = 1. The calculations were
performed with �t = 10−4 and �x = 0.002. (a) The ion concentration
profiles of c2 from the mass-conservative method (the solid line) and
the non-conservative method (the dashed line). (b) The corresponding
electrostatic potentials

schemes (the solid lines) and the non-conservative schemes
(the dashed lines). The parameters in the computations are
the same as described in the previous Sect. 4.2. To make fair
comparison, all other aspects are kept same, including the
time-step scheme (TR-BDF2), the discretization scheme for
interior points of the domain, the initial condition, the phys-
ical parameters, the time-step size �t and the space resolu-
tion �x. As shown in Fig. 3(a), the ion concentration from
the non-conservative scheme is substantially lower than that
from the mass-conservative scheme and the variations near
the boundaries are much smaller in the result from the non-
conservative scheme. Furthermore, the electrostatic poten-
tial obtained from the non-conservative scheme, shown in
Fig. 3(b), has a linear profile with non-zero slope in the
middle of the domain and much milder slopes at the bound-

Fig. 4 (a) The total ion concentration for species 2 as a function of
time from the simulations using the mass-conservative (solid) and non–
conservative (dashed) schemes. (b) The relative error in total concen-
tration for both species. The parameters are identical to those in Fig. 3

aries, when compared with that from the mass-conservative
schemes.

Because of the no-flux boundary conditions (3a), the to-
tal concentration of each ion species should be invariant in
time. Figure 4 shows that the mass-conservative scheme pre-
serves the conservation of the ions perfectly (up to the level
of roundoff error) over a long period of time, while the total
number of ions at the time t = 1 obtained from the non-
conservative scheme is reduced to less than half of the orig-
inal amount.

Figure 5(a) shows that the total energy E as a function
of time t for both the conservative and non-conservative
schemes. The total energy obtained from the mass-conserva-
tive scheme approaches the minimum energy state much
faster than that from the non-conservative scheme. More
importantly, in Sect. 2.2, it is shown that the total energy
of the system E defined as (8) satisfies the energy dissipa-
tion law (10). In Fig. 5(b), we plot the rate of change in
energy, dE

dt
, for the mass-conservative (the solid line) and
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Fig. 5 (a) The total energy as a function of time from the simulations
using the mass-conservative (solid) and non-conservative (dashed)
schemes. (b) The rate of change in energy, dE

dt
, obtained from the

graph (a) and the right-hand side of Eq. (10). The solid and the dotted
lines correspond to the left-hand side of Eq. (10) for the mass-conser-
vative and the non-conservative schemes respectively. The dashed and
the dash-dotted lines correspond to the right-hand side of Eq. (10) for
the mass-conservative and the non-conservative schemes respectively.
The parameters are identical to those in Fig. 3

the non-conservative schemes (the dotted line) obtained by
using a second-order finite difference based on the numer-
ical result E(t) shown in Fig. 5(a). In the same graph, we
also plot the expected dissipation rate given by the right-
hand side of (10), computed using the second-order central
differencing and trapezoidal rule and shown by the dashed
line for the conservative scheme and the dash-dotted line
for the non-conservative scheme in Fig. 5(b). It shows that
the numerical result from the conservative scheme (the solid
line) agrees with the energy dissipation law (the dashed line)
very well. In contrast, the corresponding results for the non-
conservative scheme show that the energy dissipation law is
not satisfied after a short period of time. This is due to the
fact that the total concentration from the non-conservative
scheme displays very poor performance in conserving the

Fig. 6 The maximum rate of change in ion concentrations as a func-
tion of time for the non-conservative (the dashed line) and conservative
(the solid line) schemes. The parameters are identical to those in Fig. 3

total concentrations. The results show that the discretization
of the boundary conditions have profound impact on satis-
fying the physical properties: the energy dissipation law and
the conservation of the total number of ions.

In addition to energy decay, we compute the maximum
rate of change in the concentrations of the species over
the domain, i.e. maxi,−1≤x≤1 | ∂ci

∂t
|. It is notable from the

time derivative of concentration shown in Fig. 6 that the
numerical results from the conservative numerical scheme
steadily approach the equilibrium in time. On the other hand,
the non-conservative scheme is approaching a steady state
much faster initially, but, later in time, the non-conservative
scheme’s behavior changes and it does not appear to reach
a steady state. This result emphasizes the necessity of the
conservative numerical scheme for long-time simulation.

4.4 Effect of parameters

The size of the difference in the results from conserva-
tive and non-conservative schemes depends on the non-

dimensional parameter χ2 = ec0L
2

φ0εt
. For the physical model

of the ion transportations, the value of χ2 can be arbitrarily
large, depending on the values of average ion concentration
c0 and the applied electrostatic potential φ0 at the bound-
aries. Consequently, it is important to pay attention to the
size of the dimensionless parameter χ2. In Fig. 3, we have
shown that, for χ2 = 125.4, the results of non-conservative
schemes are far away from the correct results. Figure 7(a)
and (c) show the profiles of the electrostatic potential φ

at a fixed time t = 1 from both the conservative and the
non-conservative schemes with two more different values of
χ2 = 31.35 and 501.6, while keeping all other parameters
the same as those for Fig. 3. At t = 1, the system has reached
the steady state, shown by the constant values for the conser-
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Fig. 7 Comparison between the simulation results from the mass-
conservative and the non-conservative schemes for different values of
the non-dimensional parameter χ2. (a) The electric potential for the
conservative and non-conservative schemes using χ2 = 31.35. (b) The
total energy for the conservative and non-conservative schemes using

χ2 = 31.35. (c) The electric potential for the conservative and non-
conservative schemes using χ2 = 501.60. (d) The total energy for the
conservative and non-conservative schemes using χ2 = 501.60. The
calculations were performed with �t = 10−4 and �x = 0.001. The
other parameters are identical to those in Fig. 3

vative scheme in the energy plots of Fig. 7(b) and (d). Com-
paring the graphs of potential in Figs. 3(a), (c) and 7, we find
that the value of χ2 primarily affects the width of the bound-
ary layer, with larger χ2 resulting in thinner boundary lay-
ers. A thinner boundary layer transitions much more sharply
near the boundaries, and thus requires more computational
grid points in the region and more truthful discretization of
the boundary conditions. This causes the differences in elec-
trostatic potential profiles and the energy dissipation in time
(shown by Fig. 7(b) and (d)) between the conservative and
non-conservative schemes to be greater as one increases χ2.
A thinner boundary layer also affects performance with re-
gard to the energy dissipation law, which is not shown here
in plots. Larger χ2 leads to a larger discrepancy between the
decay rate of the total energy (the left-hand side of Eq. 10)
and the energy dissipation rate (the right-hand side of the
law Eq. 10), and this discrepancy gets worse faster for the
non-conservative scheme than for the conservative scheme.

Finally, we examine the effect of the parameter η in the
Robin boundary condition (3b) on the numerical results. As
noted in Sect. 4.1, the steady state changes dramatically if
the relative values of the physical parameters η and ε are
changed. In order to determine the effect of η itself on the
results, we have tested a range of non-dimensionalized val-
ues for η ranging from 10−6 to 1, while holding ε at its con-
stant non-dimensionalized value of 1. We find that, when
η increases from 10−6 to 0.001, the concentration profiles
at the steady state do not change much, having a maximum
relative difference of only 10−4, but this property does not
generalized to larger η. We also find that the discretization
error, especially for the non-conservative scheme, is signifi-
cantly affected by the value of η. For large values of η, say
η > 0.1, the growth of the discretization error of the non-
conservative scheme is rather slow, and consequently the
concentration and electric potential profiles obtained from
the non-conservative scheme are close to those obtained by
the mass-conservative schemes. An example of this prop-
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Fig. 8 Comparison between the simulation results from the mass-
conservative and the non-conservative schemes for η = 0.5. The other
parameters are identical to those in Fig. 3. (a) The ion concentration

of species 2 at the non-dimensionalized time T = 1. (b) The electric
potential at the non-dimensionalized time T = 1. (c) The total energy
as it varies in time

erty is shown in Fig. 8. It appears that, for η = 0.5, the to-
tal energy from the non-conservative scheme decreases lin-
early in time after an initial sharp drop, becoming negative
at later time. On the other hand, the conservative scheme
reaches a steady state very quickly and does not deviate
from it. For small values of η such as those shown in Fig. 3,
both the conservation property of the total concentrations
and the energy dissipation law deteriorate at a fast pace for
the non-conservative scheme, and the difference between
the results from the conservative and the non-conservative
schemes grows bigger as η gets smaller.

5 Conclusion

The primary objective of this work is to investigate the ef-
fects of conservation property of discretization schemes on
the numerical results. We have shown that, with regard to

the PNP equations, whether a numerical method preserves
the mass conservation could have a critical impact on the
behavior of the system, especially the steady state results.
We have provided a discretization scheme that preserves the
mass conservation exactly (excluding the round-off errors)
and the energy dissipation law well for long-time simula-
tion.

Our method is implicit in time and second-order accurate
in both space and time. We have verified that approximat-
ing the fully implicit solution is necessary for second-order
convergence in time. Further, we find that one can avoid us-
ing Newton-type nonlinear solvers by performing a simple
iterative scheme.

Further, we have derived the conditions on the proposed
numerical scheme under which it will preserve the positivity
of the concentrations.

In this work, we have simulated the equations with realis-
tic physical parameters, particularly investigating the effect
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of the non-dimensional parameters χ2 in the Poisson equa-
tion and η in the Robin boundary condition for the electro-
static potential. We find that the mass-conserving scheme is
more robust to changes in parameters, especially changes to
the value of η.

Although this work makes good progress in constructing
an accurate method for solving the Poisson–Nernst–Planck
equations numerically, there are many challenges remaining.
First, one of them is to account for the finite size of the ions
as its effect is enormous considering the narrow width of the
ion channels [17, 19]. Second, for most ion channels, the
appropriate boundary conditions are Dirichlet-type. We will
investigate the possibility to preserve the energy dissipation
law exactly instead of the mass and study the effect of the
conservation on long-term behavior of the simulation. Third,
we would like to include distributions of permanent charges
for studying selectivity of ion channels.
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