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Abstract

Experiments measuring currents through single protein channels show unstable currents.
Channels switch between ’open’ or ’closed’ states in a spontaneous stochastic process called
gating. Currents are either (nearly) zero or at a definite level, characteristic of each type
of protein, independent of time, once the channel is open. The steady state Poisson-Nernst-
Planck equations with steric effects (PNP-steric equations) describe steady current through
the open channel quite well, in a wide variety of conditions. Here we study the existence
of multiple solutions of steady state PNP-steric equations to see if they themselves, without
modification or augmentation, can describe two levels of current. We prove that there are two
steady state solutions of PNP-steric equations for (a) three types of ion species (two types of
cations and one type of anion) with a positive constant permanent charge, and (b) four types
of ion species (two types of cations and their counter-ions) with a constant permanent charge
but no sign condition. The excess currents (due to steric effects) associated with these two
steady state solutions are derived and expressed as two distinct formulas. Our results indicate
that PNP-steric equations may become a useful model to study spontaneous gating of ion
channels. Spontaneous gating is thought to involve small structural changes in the channel
protein that perhaps produce large changes in the profiles of free energy that determine ion
flow. Gating is known to be modulated by external structures. Both can be included in future
extensions of our present analysis.
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1 Introduction

The Poisson-Nernst-Planck (PNP) equations, a well-known model of ion transport, play a
crucial role in the study of many physical and biological phenomena (cf. [3, 4, 7, 8, 12, 14, 16, 17,
31, 38, 39, 43, 47]). Such an important model can be represented by

∂ci
∂t +∇ · JPNPi = 0, i = 1, · · · , N ,

−JPNPi = Di

(
∇ci + zie

kBT
ci∇φ

)
,

−∇ · (ε∇φ) = ρ0 +
N∑
i=1

zieci

(1.1)

where N is the number of ion species, ci is the distribution function, JPNPi is the flux density, Di

is the diffusion constant, and zi is the valence of the ith ion species, respectively. Besides, φ is the
electrostatic potential, ε is the dielectric constant, ρ0 is the permanent (fixed) charge density of
the system, kB is the Boltzmann constant, T is the absolute temperature and e is the elementary
charge. Due to ionic sizes, steric repulsion may appear in crowded ions of several biological systems
like DNAs, ribosomes and ion channels. When ions are crowded in a narrow channel, the PNP
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equations become unreliable because the ion-size effect becomes important, but the PNP equations
represent ions as point particles without size (cf. [1, 5, 20, 21, 27, 32, 35, 45]).

To include ion size effects, Eisenberg and Liu modified PNP equations into a complicated system
of differential-integral equations with singular integrals that simulate successfully the selectivity of
important types of calcium and sodium ion channels (cf. [29]). However, the singular integrals form
an extremely singular kernel because of the Lennard-Jones (LJ) potential. Numerical efficiency
and theoretical analysis disappear when forced to deal with such singularities (cf. [19, 30]). To
simplify the model, we truncate the (spatial) frequency range of the LJ potential, find a simpler
energy functional from the leading order terms of the energy expansion with suitable scales. We
derive the Poisson-Nernst-Planck equations with steric effects called PNP-steric equations (cf. [36])

∂ci
∂t

+∇ · Ji = 0, i = 1, · · · , N , (1.2)

−∇ · (ε∇φ) = ρ0 +

N∑
i=1

zieci , (1.3)

where flux Ji is

Ji = −Di∇ci −
Dici
kBT

zie∇φ−
Dici
kBT

N∑
j=1

gij∇cj , (1.4)

and gij = gji ∼ εij(ai + aj)
12

is a nonnegative constant depending on ion radii ai, aj and the
energy coupling constant εij of the i-th and j-th species ions, respectively (cf. [26]). Note that
equations (1.2)-(1.4) can be regarded as a system of reaction-diffusion equations with nonlinear
cross-diffusion terms being similar to [9]. Amazingly, these equations are an effective model to
simulate the selectivity of ion channels (cf. [26]).

Comparing (1.4) with JPNPi in (1.1), the excess flux Jexi = Ji − JPNPi due to steric effects of
ion species i is

−Jexi =
1

kBT
Dici∇µexi and µexi =

N∑
j=1

gijcj

where µexi =
N∑
j=1

gijcj is the excess chemical potential of ion species i due to steric effects. Conse-

quently, the excess current Iex =
N∑
i=1

zieJ
ex
i due to steric effects becomes

Iex = −
N∑

i,j=1

zi e

kBT
Di gij ci∇cj . (1.5)

We shall use the formula (1.5) to calculate the excess currents for multiple solutions of the 1D
steady-state PNP-steric equations. We are motivated by the hope–but cannot dare expect–that one
solution will correspond to a closed state and the other to an open state, as found in experiments [15]
and in simulations [33]. Of course, the current measured through the open state corresponds to
the total current, not just the excess currents.

The existence of multiple steady (equilibrium) states is important to study transitions between
such states which may be related to the gating (switching between open and closed states) and
selectivity of ion channels. Multiple steady states can be investigated by finding multiple solutions
of the 1D steady-state PNP equations for two types of ion species with three regions of piecewise
constant permanent charge under the assumption that the Debye number is large [16]. More general
theorems related to multiple solutions of the 1D steady-state PNP equations involving multiple
types of ions with multiple regions of piecewise constant permanent charge are discussed in [37].
With only a constant permanent charge, there is only a unique solution of the 1D steady-state PNP
equations for multiple types of ions [39, 46]. Instead of the 1D steady-state PNP equations, here
we study multiple solutions of the 1D steady-state PNP-steric equations with spatially constant
permanent charges.
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For simplicity, we consider domain as a 1D interval (−1, 1) for (1.2)-(1.4) and set Ji = 0,
i = 1, · · · , N to get the steady-state PNP-steric equations. Then by (1.4),

d

dx

ln ci +
zie

kBT
φ+

1

kBT

N∑
j=1

gijcj

 = 0 for x ∈ (−1, 1) , i = 1, · · · , N ,

which can be satisfied if

ln ci +
zie

kBT
φ+

1

kBT

N∑
j=1

gijcj = 0 for i = 1, · · · , N , (1.6)

holds true. Let φ̃ = e
kBT

φ and g̃ij = 1
kBT

gij for i, j = 1, · · · , N . Then (1.3) and (1.6) can be
transformed into

ln ci + ziφ̃+

N∑
j=1

g̃ijcj = 0 for i = 1, · · · , N, (1.7)

and

− ε̃φ̃xx = ρ̃0 +

N∑
i=1

zici for x ∈ (−1, 1) , (1.8)

where ε̃ = kBT
e2 ε and ρ̃0 = 1

eρ0. For notational convenience, we may remove tilde (∼) and denote
(1.7) and (1.8) as

ln ci + ziφ+

N∑
j=1

gijcj = 0 for i = 1, · · · , N, (1.9)

and

− εφxx = ρ0 +

N∑
i=1

zici for x ∈ (−1, 1) . (1.10)

Equations like (1.9) have been used to interpret bioelectric phenomena in many papers since they
were adopted by Hodgkin, Huxley, and Cole (cf. [13, 28]). Here we consider the following boundary
condition given by

φ(1) + ηεφ
′(1) = φ0(1) and φ(−1)− ηεφ′(−1) = φ0(−1) , (1.11)

where φ0(1), φ0(−1) are constants and ηε is a non-negative constant. Here φ0 (±1) and φ (±1) are
the extrachannel and intrachannel electrostatic potentials at the channel boundaries, respectively.
The coefficient ηε ∼ ε0

εm
is governed by the ratio of ε0 the dielectric constant of the electrolyte

solution and εm the dielectric constant of the membrane (cf [48]). Note that (1.11) is of the Robin
boundary condition if ηε > 0; and of the Dirichlet boundary condition if ηε = 0. The Robin
boundary condition includes polarization (e.g. dielectric) charges in the bath and/or electrodes
which the Dirichlet boundary condition does not. Such charges, induced by and dependent on
the electric field play a prominent role in the art of real experiments, because they are important
determinants of the background noise and stability of high speed recordings. The theoretical
reasons for these practical realities have not been investigated to the best of our knowledge.

As N = 2, the existence, uniqueness and the solution’s asymptotic behavior of (1.9)-(1.11)
are investigated under non-symmetry breaking condition 0 ≤ g12 = g21 ≤

√
g11g22 which implies

that solution (c1, c2) of (1.9) is uniquely determined by φ (cf. [34]). Hence (1.9) and (1.10) can
be reduced to a single differential equation of φ. However, as the symmetry breaking condition
g12 = g21 >

√
g11g22 holds true, solution (c1, c2) of (1.9) may not be uniquely determined by φ. In

Section 2, we introduce new variables ξ,Σ and transform (1.9) into a quadratic polynomial which
can be solved precisely to get explicit formulas and represent two branches of solution curves.
Using these explicit formulas, we can then define biological conductance (for that condition) as the
biologists do and perform the comparison using formulas like (1.12)-(1.15). Note that the symbol g
is used for conductance (units siemens) in biology and this is not equivalent to our gij . In this paper,
we want to study multiple solutions of (1.9)-(1.11) for the cases of N = 3, 4, and g12 = g21, g34 = g43

sufficiently large such that symmetry breaking condition g12 = g21 >
√
g11g22, g34 = g43 >

√
g33g44

holds true.
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1.1 Main Results

System (1.9) can be regarded as a coupled system of algebraic equations. Because gij = 0 for
i, j = 1, · · · , N , a solution of system (1.9) can be expressed as ci = e−ziφ for i = 1, · · · , N . However,
it seems impossible to solve system (1.9) explicitly for the general case of gij > 0 for i, j = 1, · · · , N .
To overcome such difficulty, we may set N = 2, z2 = −z1 = q ≥ 1, g11 = g22 = g > 0, and
introduce new variables ξ = c1c2 and Σ = c1 + c2. Then (1.9) can be transformed into a quadratic
polynomial that can be solved explicitly (see Section 2). For g12 = g21 = z large (see Theorem 2.4
in Section 2), system (1.9) has two branches of solutions (c1, c2) = (c1 (ΣA1

(φ)) , c2 (ΣA1
(φ))) and

(c1, c2) = (c1 (ΣB1
(φ)) , c2 (ΣB1

(φ))) such that (c1−c2)◦ΣA1
: [−φA,c,∞)→ R and (c1−c2)◦ΣB1

:
(−∞, φA,c] → R are monotone increasing functions to φ, where φA,c > 0 is a constant, ΣA1 and
ΣB1 are two functions satisfying

(c1 − c2) ◦ ΣA1(−φA,c) = (c1 − c2)(Σc) > 0 ,

(c1 − c2) ◦ ΣB1(φA,c) = −(c1 − c2)(Σc) < 0 ,

lim
φ→∞

(c1 − c2) ◦ ΣA1
(φ) =∞ and lim

φ→−∞
(c1 − c2) ◦ ΣB1

(φ) = −∞ .

Here ◦ denotes the function (c1− c2) acting on the function ΣA1
(φ), i.e., the function composition

and gc is the positive constant defined in Proposition 2.2. Besides, φA,c satisfies φA,c → +∞ and
(c1 − c2)(Σc)→ 0 as z → +∞ and g > 0 is fixed. Hence (1.9) and (1.10) can be decomposed into
two differential equations like (3.6) and (3.7) but they can not have uniformly bounded solutions
to ε > 0 (see Lemma 4.5). This fact motivates us to add one extra species c3 and assume that
N = 3, g12 = g21 = z is sufficiently large, g11 = g22 = g > 0, z2 = −z1 = q ≥ 1, z3 > 0,
gi3 = g3i = 0, i = 1, 2, 3 (which implies c3 = e−z3φ). Then (1.9) and (1.10) may be reduced to two
differential equations (3.6) and (3.7) having uniformly bounded solutions, respectively. This may
provide multiple solutions of (1.9)-(1.11).

Natural biological solutions always contain at least three species (sodium, potassium, and
chloride, and usually calcium). Experiments are often done, however, with just two species (say
sodium chloride) along with traces of hydrogen ion, and perhaps other contaminants. Gating occurs
in simplified unnatural situations and so we hope to study mathematical solutions in corresponding
situations in a separate paper.

Now we state the main result of this paper as follows:

Theorem 1.1. Let N = 3, z2 = −z1 = q ≥ 1, z3 > 0 and ρ0 > 0 be a constant. Assume that
g11 = g22 = g > 0 is fixed and gi3 = g3i = 0 for i = 1, 2, 3. Then as g12 = g21 = z > 0 is
sufficiently large, the system of equations (1.9)-(1.11) has two uniformly bounded (to ε) solutions
φAε and φBε such that φAε (x) → φA1,0 and φBε (x) → φB1,0 for x ∈ (−1, 1) as ε → 0, where φA1,0

and φB1,0 are two distinct constants.

In most of the ”cation” (e.g., sodium, potassium, and calcium) channels, ρ0 is a negative number.
There are regions (’rings’) of negative charge and some channels (sodium channel DEKA) have
a ring of positive charge as well. Here we assume the positive sign of ρ0 which may produce the
values φA1,0 and φB1,0 (see Figure 4 in Section 3.1), and the proof of Theorem 1.1 is given in
Section 3.1.

To remove the sign condition on ρ0, we may consider four ion species composed of two cations
and counterions (like the mixture of Na+,Ca+2,Cl− and CO−2

3 ) and study multiple solutions of
(1.9)-(1.11) with N = 4, z2 = −z1 = q1 ≥ 1, z4 = −z3 = q2 ≥ 1, g11 = g22 = g > 0, and
g33 = g44 = g̃ > 0. Using the assumption gij = gji = 0 for i = 1, 2 and j = 3, 4, we may decompose
system (1.9) with N = 4 into two independent systems having the same form as (1.9) with N = 2.
Hence Theorem 2.4 (in Section 2) implies that as g12 = g21 = z and g34 = g43 = z̃ > 0 sufficiently
large, system (1.9) has four branches of solutions

(c1, c2) = (c1 (ΣA1
(φ)) , c2 (ΣA1

(φ))) , (c1, c2) = (c1 (ΣB1
(φ)) , c2 (ΣB1

(φ))) ,

(c3, c4) = (c3 (ΣM1
(φ)) , c4 (ΣM1

(φ))) , (c3, c4) = (c3 (ΣN1
(φ)) , c4 (ΣN1

(φ))) ,

such that (c1 − c2) ◦ ΣA1
: [−φA,c,∞) → R, (c1 − c2) ◦ ΣB1

: (−∞, φA,c] → R, (c3 − c4) ◦ ΣN1
:

[−φM,c,∞) → R and (c3 − c4) ◦ ΣM1
: (−∞, φM,c] → R, are monotone increasing functions of φ,
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where φA,c, φM,c > 0 are constants, ΣA1 , ΣB1 , ΣM1 and ΣN1 are functions satisfying

(c1 − c2) ◦ ΣA1(−φA,c) , (c3 − c4) ◦ ΣN1(−φM,c) > 0 ,

(c1 − c2) ◦ ΣB1(φA,c) , (c3 − c4) ◦ ΣM1(φM,c) < 0 ,

lim
φ→∞

(c1 − c2) ◦ ΣA1(φ) = lim
φ→∞

(c3 − c4) ◦ ΣN1(φ) =∞ ,

lim
φ→−∞

(c1 − c2) ◦ ΣB1
(φ) = lim

φ→−∞
(c3 − c4) ◦ ΣM1

(φ) = −∞ .

Here ◦ denotes function composition. Moreover, φA,c, φM,c → +∞ and (c1−c2)◦ΣA1
(−φA,c), (c1−

c2) ◦ΣB1(φA,c), (c3 − c4) ◦ΣM1(φM,c) and (c3 − c4) ◦ΣN1(−φM,c) tend to zero as z, z̃ → +∞ and
g, g̃ > 0 are fixed.

Without loss of generality, we may assume φM,c < φA,c. Then the graphs of functions (c1 −
c2)◦ΣA1

and (c4−c3)◦ΣM1
may intersect at φ = φA1,0 as z and z̃ sufficiently large (see Figure 5 in

Section 3.2). Similarly, the graphs of functions (c1− c2) ◦ΣB1
and (c4− c3) ◦ΣN1

may intersect at
φ = φB1,0 as z and z̃ sufficiently large. Hence (1.9) and (1.10) may be reduced to two differential
equations with the same forms as (3.6) and (3.7) having uniformly bounded solutions, respectively.
This may provide the following result for multiple solutions of (1.9)-(1.11).

Theorem 1.2. Let N = 4, z2 = −z1 = q1 ≥ 1, z4 = −z3 = q2 ≥ 1 and ρ0 6= 0 be a constant.
Assume that g11 = g22 = g > 0, g33 = g44 = g̃ > 0 are fixed and gij = gji = 0 for i = 1, 2
and j = 3, 4. Then as g12 = g21 = z > 0 and g34 = g43 = z̃ > 0 are sufficiently large, the
system of equations (1.9)-(1.11) has two uniformly bounded (to ε) solutions φAε and φBε such that
φAε (x) → φA1,0 and φBε (x) → φB1,0 for x ∈ (−1, 1) as ε → 0, where φA1,0 and φB1,0 are two
distinct constants.

The proof of Theorem 1.2 is given in Section 3.2.
For solutions φAε and φBε , the corresponding excess currents defined in (1.5) may be denoted

as IexA and IexB , respectively. Under the same hypotheses of Theorem 1.1 for three ion species, we
may use the new variable Σ to derive the following formulas (see Section 5.1):∫ x2

x1

IexA dx

= q e

∫ ΣA2

ΣA1

D2 −D1

2

{
(1− q)− q

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

−q e
∫ ΣA2

ΣA1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q)Σ− q gΣ2 + (g + z) [2− q (g − z) Σ] e−(g+z)Σ

}
dΣ ,

(1.12)
and ∫ x2

x1

IexB dx

= q e

∫ ΣB2

ΣB1

D2 −D1

2

{
(1− q)− q

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

+q e

∫ ΣB2

ΣB1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q)Σ− q gΣ2 + (g + z) [2− q (g − z) Σ] e−(g+z)Σ

}
dΣ ,

(1.13)
for −1 < x1 < x2 < 1, where ΣAj = ΣA1

(
φAε (xj)

)
and ΣBj = ΣB1

(
φBε (xj)

)
for j = 1, 2. From

(1.12) and (1.13), it is clear that the difference between IexA and IexB which may give various ion
flows related to currents observed in channels as they switch (i.e., gate) from one level of current
to another.

The method of Section 5.1 can be generalized to four ion species with the same hypotheses of
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Theorem 1.2. As for (1.12) and (1.13), we may derive (see Section 5.2)∫ x2

x1

IexA,Mdx =

∫ x2

x1

IexA + IexM dx

= q1 e

∫ ΣA2

ΣA1

D2 −D1

2

{
(1− q1)− q1

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

−q1 e

∫ ΣA2

ΣA1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q1)Σ− q1 gΣ2 + (g + z) [2− q1 (g − z) Σ] e−(g+z)Σ

}
dΣ

+q2 e

∫ ΣM2

ΣM1

D4 −D3

2

{
(1− q2)− q2

[
g̃Σ +

(
g̃2 − z̃2

)
e−(g̃+z̃)Σ

]}
dΣ

−q2 e

∫ ΣM2

ΣM1

D3 +D4

2
√

Σ2 − 4e−(g̃+z̃)Σ

{
(1− q2)Σ− q2 g̃Σ2 + (g̃ + z̃) [2− q2 (g̃ − z̃) Σ] e−(g̃+z̃)Σ

}
dΣ ,

(1.14)
and∫ x2

x1

IexB,Ndx =

∫ x2

x1

IexB + IexN dx

= q1 e

∫ ΣB2

ΣB1

D2 −D1

2

{
(1− q1)− q1

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

+q1 e

∫ ΣB2

ΣB1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q1)Σ− q1 gΣ2 + (g + z) [2− q1 (g − z) Σ] e−(g+z)Σ

}
dΣ

+q2 e

∫ ΣN2

ΣN1

D4 −D3

2

{
(1− q2)− q2

[
g̃Σ +

(
g̃2 − z̃2

)
e−(g̃+z̃)Σ

]}
dΣ

+q2 e

∫ ΣN2

ΣN1

D3 +D4

2
√

Σ2 − 4e−(g̃+z̃)Σ

{
(1− q2)Σ− q2 g̃Σ2 + (g̃ + z̃) [2− q2 (g̃ − z̃) Σ] e−(g̃+z̃)Σ

}
dΣ ,

(1.15)
where ΣAj = ΣA1

(
φAε (xj)

)
, ΣMj = ΣM1

(
φAε (xj)

)
, ΣBj = ΣB1

(
φBε (xj)

)
, and ΣNj = ΣN1

(
φBε (xj)

)
for j = 1, 2. The difference between IexA,M and IexB,N may also give various ion flows related to
currents observed in channels as they switch (i.e., gate) from one level of current to another.

The rest of this paper is organized as follows: We may solve system (1.9) of algebraic equations
with N = 2, z2 = −z1 = q ≥ 1 and g11 = g22 > 0 in Section 2. Theorem 1.1 and 1.2 are proven in
Section 3. The proofs of Lemma 4.1 and 4.5 are given in Section 4, and formulas (1.12)-(1.15) are
derived in Section 5.

2 Solutions of (1.9) with N = 2, z2 = −z1 = q ≥ 1 and g11 = g22

In this section, we study equation (1.9) with N = 2, z2 = −z1 = q ≥ 1 and g11 = g22 = g which
can be denoted as follows:

(ln c1 − q φ) + (g c1 + z c2) = 0 , (2.1)

(ln c2 + q φ) + (g c2 + z c1) = 0 , (2.2)

where z = g12 and g = g11 = g22 are positive constants. Physically, gij ∼ εij (ai + aj)
12

, where
ai is the ion radius of i-th ion species with concentration ci, and εij > 0 is the energy coupling
constant between i-th and j-th ion species for i = 1, 2. Note that (2.1) and (2.2) are formulated
as a system of algebraic equations. We want to solve these equations and get solutions for (c1, c2)
as a function of φ. Adding (2.1) and (2.2), we get

ln (c1c2) + (g + z) (c1 + c2) = 0 . (2.3)
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Now we introduce new variables as follows:

ξ = c1c2 and Σ = c1 + c2.

Multiplying σ by c1 , we get a quadratic polynomial of c1 as follows:

Σc1 = c21 + ξ

which gives c1 =
Σ±
√

Σ2−4ξ

2 and hence by c1c2 = ξ, (c1, c2) can be expressed as

(c1, c2) =

(
Σ+
√

Σ2−4ξ

2 ,
Σ−
√

Σ2−4ξ

2

)
,

or

(c1, c2) =

(
Σ−
√

Σ2−4ξ

2 ,
Σ+
√

Σ2−4ξ

2

)
,

(2.4)

for Σ ≥ 2
√
ξ > 0. Moreover, (2.3) can be transformed into ln ξ = − (g + z) Σ i.e.

ξ = e−(g+z)Σ. (2.5)

Hence the solution (c1, c2) of (2.1) and (2.2) may be described by two curves A and B parameterized
by the total concentration Σ and denoted as

A =

{
(c1, c2) =

(
Σ +
√

Σ2 − 4e−(g+z)Σ

2
,

Σ−
√

Σ2 − 4e−(g+z)Σ

2

)
: Σ ≥ Σz > 0

}
, (2.6)

and

B =

{
(c1, c2) =

(
Σ−
√

Σ2 − 4e−(g+z)Σ

2
,

Σ +
√

Σ2 − 4e−(g+z)Σ

2

)
: Σ ≥ Σz > 0

}
. (2.7)

Here Σz > 0 a critical total concentration is the unique positive solution of Σ2 = 4e−(g+z)Σ such
that concentrations c1 and c2 are equal to 1

2Σz as the total concentration Σ = Σz. Then

c1 − c2 =

{ √
Σ2 − 4e−(g+z)Σ on A,

−
√

Σ2 − 4e−(g+z)Σ on B.
(2.8)

Take (2.6) and (2.7) into (2.1), and let φA = φ on curve A, and φB = φ on curve B, respectively.
Then 

q φA(Σ) = ln
[

1
2

(
Σ +
√

Σ2 − 4e−(g+z)Σ
)]

+ g+z
2 Σ + g−z

2

√
Σ2 − 4e−(g+z)Σ ,

q φB(Σ) = ln
[

1
2

(
Σ−
√

Σ2 − 4e−(g+z)Σ
)]

+ g+z
2 Σ + z−g

2

√
Σ2 − 4e−(g+z)Σ ,

(2.9)

for Σ ≥ Σz. Consequently,
φA + φB = 0 , (2.10)

q
dφA
dΣ

=
(1 + gΣ)e(g+z)Σ + g2 − z2

e(g+z)Σ
√

Σ2 − 4e−(g+z)Σ
, (2.11)

and

q
dφB
dΣ

= − (1 + gΣ)e(g+z)Σ + g2 − z2

e(g+z)Σ
√

Σ2 − 4e−(g+z)Σ
, (2.12)

when the total concentration Σ is larger than Σz. Note that curve A and B are joined only at
a single point (c1, c2) =

(
1
2Σz,

1
2Σz

)
which is located only at Σ = Σz. Moreover, φA (Σz) =

φB (Σz) = 0 and (c1 − c2) (Σz) = 0.
Suppose 0 < z ≤ g. Then φA and φB can be regarded as one variable φ and c1−c2 may become

a strictly monotone increasing function of φ. The result is stated as follows:
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Proposition 2.1. Suppose 0 < z ≤ g. Then Σ = Σ(φ) can be a single-valued function of φ with
domain being the entire space R and range [Σz,∞) such that Σ(0) = Σz, φA(Σ(φ)) = φ if φ ≥ 0 ,

φB(Σ(φ)) = φ if φ ≤ 0 ,
(2.13)

and c1 − c2 = (c1 − c2) (Σ (φ)) is a strictly monotone increasing function of φ from −∞ to ∞.

Proof. Suppose 0 < z ≤ g. Then by (2.11) and (2.12), we have

d

dΣ
φA (Σ) > 0 and

d

dΣ
φB (Σ) < 0 for Σ ≥ Σz . (2.14)

Here we have used 0 < z ≤ g. Thus φA(Σ) > 0 and φB(Σ) < 0 for Σ > Σz. Besides, the range of
φA is [0,∞) and the range of φB is (−∞, 0]. Note that φA(Σz) = φB(Σz) = 0. We may combine
φA and φB as one variable φ (see Figure 1) defined as follows: φ = φA(Σ) ≥ 0 on A ,

φ = φB(Σ) ≤ 0 on B .

Figure 1: θ = (Σz, 0) in (Σ, φ) coordinates

Hence by (2.14) and inverse function theorem, Σ can be denoted as Σ = Σ(φ) and become a single-
valued function of φ with domain being the entire space R and range [Σz,∞) such that Σ(0) = Σz
and (2.13) hold true. The derivative of Σ with respect to φ is

dΣ

dφ
=

1
dφ
dΣ

=


q
e(g+z)Σ

√
Σ2−4e−(g+z)Σ

(1+gΣ)e(g+z)Σ+g2−z2 if φ ≥ 0 ,

−q e
(g+z)Σ

√
Σ2−4e−(g+z)Σ

(1+gΣ)e(g+z)Σ+g2−z2 if φ ≤ 0 .

(2.15)

Moreover, c1 − c2 = (c1 − c2)(Σ(φ)) is also a function of φ. Note that Σ(0) = Σz, Σ′(0) = 0 and
(c1 − c2) (Σ (0)) = (c1 − c2) (Σz) = 0. Then (2.8) and (2.15) imply

d

dφ
(c1 − c2) =

d

dΣ
(c1 − c2)

dΣ

dφ
= q

Σe(g+z)Σ + 2 (g + z)

(1 + gΣ) e(g+z)Σ + g2 − z2
> 0 for φ ∈ R.

Therefore, c1 − c2 is strictly monotone increasing to φ and we complete the proof.

When z = g12 is increased, for example when the ion is divalent like calcium, the profiles of φA
and φB may lose monotonicity and become oscillatory. It is well known in experiments that calcium
has profound and complex effects on the current voltage relations of channels (cf. [2, 22]). Suppose

z >
√

1 + g2 > 0. Then z2 − g2 > 1 and there exists a unique Σc > 0 (because (1 + gΣ) e(g+z)Σ is
strictly monotone increasing to Σ > 0) depending on Σz such that

(1 + gΣc)e
(g+z)Σc + g2 − z2 = 0.
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Note that dφA
dΣ (Σc) = dφB

dΣ (Σc) = 0 if Σc > Σz > 0. We shall prove that Σc may be located in the
domain of φA and φB i.e. Σc > Σz > 0 if z is sufficiently large (see Proposition 2.2). By (2.11)
and (2.12), dφA

dΣ < 0 on (Σz,Σc),
dφA
dΣ > 0 on (Σc,∞), dφB

dΣ > 0 on (Σz,Σc),
dφB
dΣ < 0 on (Σc,∞).

Then Σc is a unique (global) minimal point of φA and a unique (global) maximal point of φB ,
respectively (see Figure 2). Moreover, by (2.10),

φA,c ≡ −φA (Σc) = − min
Σ>Σz

φA (Σ) = max
Σ>Σz

φB (Σ) = φB (Σc) > 0 . (2.16)

Figure 2: θ = (Σz, 0) in (Σ, φ) coordinates

By Figure 2, the inverse image of function φA consists of two functions ΣA1
: (−φA,c,∞)→ (Σc,∞)

and ΣA2 : [−φA,c, 0] → [Σz,Σc] such that
dΣA1

dφ > 0 on (−φA,c,∞) and
dΣA2

dφ < 0 on (−φA,c, 0)

(see Figure 3).

Figure 3: θ′ = (0,Σz)

Moreover, by (2.11),

dΣA1

dφ
= q

e(g+z)ΣA1

√
Σ2
A1
− 4e−(g+z)ΣA1

(1 + gΣA1
)e(g+z)ΣA1 + g2 − z2

> 0 for φ > −φA,c , (2.17)

and

dΣA2

dφ
= q

e(g+z)ΣA2

√
Σ2
A2
− 4e−(g+z)ΣA2

(1 + gΣA2
)e(g+z)ΣA2 + g2 − z2

< 0 for − φA,c < φ < 0 .

Similarly, the inverse image of function φB consists of another two functions ΣB1 : (−∞, φA,c)→
(Σc,∞) and ΣB2

: [0, φA,c]→ [Σz,Σc] such that
dΣB1

dφ < 0 on (−∞, φA,c) and
dΣB2

dφ > 0 on (0, φA,c).

Moreover, by (2.12),

dΣB1

dφ
= −q

e(g+z)ΣB1

√
Σ2
B1
− 4e−(g+z)ΣB1

(1 + gΣB1
)e(g+z)ΣB1 + g2 − z2

< 0 for φ < φA,c , (2.18)
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and

dΣB2

dφ
= −q

e(g+z)ΣB2

√
Σ2
B2
− 4e−(g+z)ΣB2

(1 + gΣB2)e(g+z)ΣB2 + g2 − z2
> 0 for 0 < φ < φA,c .

Thus by (2.8), we may consider two functions of (c1 − c2) ◦ ΣA1
and (c1 − c2) ◦ ΣB1

as follows:

(c1 − c2)(ΣA1
(φ)) =

√
Σ2
A1
− 4e−(g+z)ΣA1 for φ ≥ −φA,c , (2.19)

and

(c1 − c2)(ΣB1(φ)) = −
√

Σ2
B1
− 4e−(g+z)ΣB1 for φ ≤ φA,c . (2.20)

Note that (c1− c2)(ΣA1
(·)) and (c1− c2)(ΣB1

(·)) are continuous functions on [−φA,c, φA,c]. More-
over, by (2.17)-(2.20), we have

d

dφ
(c1 − c2)(ΣA1

(φ)) = q
e(g+z)ΣA1 [ΣA1

+ 2(g + z)e−(g+z)ΣA1 ]

(1 + gΣA1
)e(g+z)ΣA1 + g2 − z2

> 0 for φ > −φA,c , (2.21)

and

d

dφ
(c1 − c2)(ΣB1(φ)) = q

e(g+z)ΣB1 [ΣB1 + 2(g + z)e−(g+z)ΣB1 ]

(1 + gΣB1)e(g+z)ΣB1 + g2 − z2
> 0 for φ < φA,c . (2.22)

Here we have used (2.38) and (2.39). Consequently, (c1 − c2)(ΣA1(·)) and (c1 − c2)(ΣB1(·)) are
smooth functions on (−φA,c, φA,c). Since (c1− c2)(ΣA1(·)) and (c1− c2)(ΣB1(·)) are strictly mono-
tone increasing to φ (see (2.21) and (2.22)), then we may use (2.8) to get

(c1 − c2)(ΣA1
(φ)) ≥ (c1 − c2)(ΣA1

(−φA,c)) =
√

Σ2
c − 4e−(g+z)Σc > 0 , (2.23)

(c1 − c2)(ΣB1
(φ)) ≤ (c1 − c2)(ΣB1

(φA,c)) = −
√

Σ2
c − 4e−(g+z)Σc < 0 , (2.24)

for φ ∈ (−φA,c, φA,c).
Now we claim that if z is sufficiently large, then Σc > Σz > 0 i.e. Σc is located in the domain

of φA and φB as follows:

Proposition 2.2. Let

gc = inf{z >
√

1 + g2 : there exists Σc,z > Σz > 0 such that (1 + gΣc,z)e
(g+z)Σc,z + g2 − z2 = 0} ,

(2.25)

where Σz > 0 is the unique solution of Σ = 2e−
1
2 (g+z)Σ for z > 0. Then for z > gc, there exists a

unique Σc = Σc,z > Σz depending on z such that (1 + gΣc)e
(g+z)Σc + g2 − z2 = 0. Conversely, for

0 < z < gc, no such Σc exists and (1 + gΣ)e(g+z)Σ + g2 − z2 > 0 for Σ ≥ Σz > 0.

Proof. Firstly, we claim that gc is well-defined. For any z > 0, we may define a function fz = fz(Σ)
by

fz(Σ) = (1 + gΣ)e(g+z)Σ + g2 − z2 for Σ > 0 . (2.26)

Then it is obvious that fz(+∞) =∞,

f ′z(Σ) = [g + (1 + gΣ)(g + z)]e(g+z)Σ > 0 for Σ, z > 0 , (2.27)

and fz(0) = 1 + g2 − z2 < 0 if z >
√

1 + g2. Hence there exists a unique Σc,z > 0 such that
fz(Σc,z) = 0. Let Σ///z > 0 be the unique solution of

Σz = 2e−
1
2 (g+z)Σz for z > 0 . (2.28)

Now we prove Σc,z > Σz as z sufficiently large. By (2.28), Σz is decreasing to z (differentiate

(2.28) to z) and z = −
(
g + 2 ln Σz−ln 4

Σz

)
. Thus Σz → 0 as z →∞ and

fz(Σz) = (1 + gΣz)e
(g+z)Σz + g2 − z2

= [4(1 + gΣz) + (g2 − z2)Σ2
z]/Σ

2
z by (2.28)

= [4(1 + gΣz)− 2gΣz(2 ln Σz − ln 4)− (2 ln Σz − ln 4)2]/Σ2
z → −∞ as z →∞ ,
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and then fz(Σz) < 0 as z sufficiently large. Since fz(Σc,z) = 0 and fz(Σz) < 0 as z sufficiently
large, then by (2.27), we have Σc,z > Σz as z sufficiently large. Consequently, the set

Z = {z >
√

1 + g2 : ∃Σc,z > Σz > 0 such that fz(Σc,z) = 0} (2.29)

= {z >
√

1 + g2 : fz(Σz) < 0}

is nonempty and the value gc = inf
z∈Z

z (defined in (2.25)) is well-defined. Note that the existence of

Σc,z with fz(Σc,z) = 0 is guaranteed due to z >
√

1 + g2, so (2.27) implies Σc,z > Σz if fz(Σz) < 0
holds true.

To complete the proof of Proposition 2.2, we need the following result:
Claim 1. Suppose fz0(Σz0) = 0 and Σz0 > 0 for some z0 >

√
1 + g2. Then there exist zl, zr >√

1 + g2 and zl < z0 < zr such that fz(Σz) > 0 for z ∈ (zl, z0) and fz(Σz) < 0 for z ∈ (z0, zr).

Proof. By (2.26) and (2.28),

f (Σz) =
4 (1 + gΣz)

Σ2
z

+ g2 − z2 . (2.30)

Then fz0(Σz0) = 0 gives

4
1 + gΣz0

Σ2
z0

= z2
0 − g2 ,

and Σz0 satisfies (z2
0 − g2)Σ2

z0 − 4gΣz0 − 4 = 0 having solutions as Σz0 = 2
z0−g and Σz0 = − 2

z0+g .
Hence due to Σz0 > 0,

Σz0 =
2

z0 − g
. (2.31)

Note that z0 >
√

1 + g2 > ±g. Differentiating (2.28) and (2.30) to z, we have

d

dz
fz(Σz) =− 4

2 + gΣz
Σ3
z

dΣz
dz
− 2z ,

dΣz
dz

=
−Σ2

z

(g + z)Σz + 2
.

Thus by (2.31), we obtain
d

dz
fz(Σz)|z=z0 = −z0 − g < 0 . (2.32)

Therefore, by (2.32), we may complete the proof of Claim 1.

It is obvious that

fz(Σ) > 0 for Σ > 0 and 0 < z ≤
√

1 + g2 . (2.33)

Now we want to prove that
Z = (gc,∞) , (2.34)

where gc = inf
z∈Z

z. Due to the continuity of fz, (2.29) implies that the set Z is open. Suppose the set

Z has two components. Then without loss of generality, we may assume that there exists za > gc
such that Z = (gc, za) ∪ (za,∞). Hence fza(Σza) = 0 and fz(Σz) < 0 for z ∈ (gc, za) ∪ (za,∞).
However, Claim 1 implies that fz(Σz) > 0 for z ∈ (zl, za) which contradicts to fz(Σz) < 0 for
z ∈ (gc, za). Thus the proof of (2.34) is done. On the other hand, Claim 1 also implies that

fz(Σz) > 0 for 0 < z < gc . (2.35)

Otherwise, by (2.33), there exists zb ∈ (
√

1 + g2, gc) such that fzb(Σzb) = 0. Then as for (2.32), we
have d

dz fz(Σz)|z=zb = −zb−g < 0 and hence there exists zc ∈ (zb, gc) such that fzc(Σzc) < 0 which
contradicts to (2.34). Therefore, by (2.27) and (2.35), we complete the proof of Proposition 2.2.
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Remark 2.3.

(i) The proof of Proposition 2.2 shows that fz(Σz) > 0 for 0 < z < gc and fz(Σz) < 0 for
z > gc (see (2.34) and (2.35)). Hence by the continuity of fz, fgc(Σgc) = 0.

(ii) By (2.27) and (2.35), we have

fz(Σ) = (1 + gΣ)e(g+z)Σ + g2 − z2 > 0 for Σ ≥ Σz and 0 < z < gc . (2.36)

(iii) By (2.26), fz (Σz) > 0 as z =
√

1 + g2 but fgc(Σgc) = 0. Hence Remark 2.3 (i) implies

gc >
√

1 + g2.

Suppose 0 < z < gc. Then (2.36) gives fz(Σ) > 0 for Σ ≥ Σz. Hence by (2.11) and (2.12),
dφA
dΣ > 0 and dφB

dΣ < 0 for Σ ≥ Σz which gives φA(Σ) > φA(Σz) = 0 = φB(Σz) > φB(Σ) for
Σ > Σz. Thus as for Proposition 2.1, Σ = Σ(φ) can be a single-valued function of φ with domain
as the entire space R and range [Σz,∞) such that Σ(0) = Σz and c1 − c2 is strictly monotone
increasing to φ. Moreover, Σ→∞ as φ→ ±∞ and (c1 − c2)(Σ(φ))→ ±∞ as φ→ ±∞.

Suppose z > gc > 0. Then Proposition 2.2 gives that there exists a unique Σc ∈ (Σz,∞) such
that

(1 + gΣc)e
(g+z)Σc + g2 − z2 = 0 , (2.37)

which implies
(1 + gΣ)e(g+z)Σ + g2 − z2 > 0, for Σ > Σc , (2.38)

and
(1 + gΣ)e(g+z)Σ + g2 − z2 < 0, for Σz ≤ Σ < Σc , (2.39)

By (2.9) and (2.11), we have dφA
dΣ > 0 for Σ > Σc;

dφA
dΣ < 0 for Σz < Σ < Σc, and φA tends to +∞

as Σ goes to +∞. Hence Σc is the unique minimum point of φA. Since Σ2
z = 4e−(g+z)Σz , then

φA(Σz) = 0 which implies −φA,c = φA(Σc) < 0. Since Σc satisfies (1 + gΣc)e
(g+z)Σc = z2 − g2

i.e. Σc + ln(1+gΣc)
g+z =

ln(z2−g2)
g+z , then Σc must tend to zero as z goes to infinity. Note that g > 0 is

a fixed constant. Consequently, − ln
[

1
2

(
Σc +

√
Σ2
c − 4e−(g+z)Σc

)]
→ +∞ as z → +∞, and then

q φA,c = q φA(Σc)

= − ln

[
1

2

(
Σc +

√
Σ2
c − 4e−(g+z)Σc

)]
+
g + z

2
Σc +

g − z
2

√
Σ2
c − 4e−(g+z)Σc

= − ln

[
1

2

(
Σc +

√
Σ2
c − 4e−(g+z)Σc

)]
+
g

2

(
Σc +

√
Σ2
c − 4e−(g+z)Σc

)
+
z

2

(
Σc −

√
Σ2
c − 4e−(g+z)Σc

)
≥ − ln

[
1

2

(
Σc +

√
Σ2
c − 4e−(g+z)Σc

)]
→ +∞

as z → +∞. Thus φA,c → +∞ as z → +∞ and g > 0 is fixed. Besides, since e−(g+z)Σc =
(1 + gΣc)/(z

2 − g2) and Σc → 0 as z →∞, then by (2.8), we have (c1 − c2)(Σc)→ 0 as z → +∞
and g > 0 is fixed. Therefore, we may summarize the above results as follows:

Theorem 2.4.

(i) Suppose 0 < z < gc. Then (c1−c2)◦Σ is a monotone increasing function to φ ∈ R satisfying
(c1 − c2)(Σ(φ))→ ±∞ as φ→ ±∞, respectively.

(ii) Suppose z > gc. Then there are two functions ΣA1
and ΣB1

such that (c1 − c2) ◦ ΣA1
:

[−φA,c,∞)→ R and (c1 − c2) ◦ ΣB1
: (−∞, φA,c]→ R are monotone increasing functions of

φ, where φA,c satisfies φA,c → +∞ and (c1 − c2)(Σc) → 0 as z → +∞ and g > 0 is fixed.
Moreover,

(c1 − c2) ◦ ΣA1(−φA,c) = (c1 − c2)(Σc) > 0 ,

(c1 − c2) ◦ ΣB1(φA,c) = −(c1 − c2)(Σc) < 0 ,

lim
φ→∞

(c1 − c2) ◦ ΣA1(φ) =∞ and lim
φ→−∞

(c1 − c2) ◦ ΣB1(φ) = −∞ .

Here ◦ denotes function composition and gc is the positive constant defined in Proposition 2.2.
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3 Proof of Theorem 1.1 and 1.2

3.1 Proof of Theorem 1.1

In this section, we study multiple solutions of the system of equations (1.9)-(1.11) with N = 3 and
the following assumptions:

ρ0 > 0, gi3 = g3i = 0 for i = 1, 2, 3 . (3.1)

Then we may get solutions of (1.9) by solving

ln ci + ziφ+

2∑
j=1

gijcj = 0 for i = 1, 2 , (3.2)

and let
c3 = e−z3φ . (3.3)

Note that (3.2) is same as (1.9) with N = 2. Assume

z2 = −z1 = q ≥ 1 , g11 = g22 > 0 and g12 > gc > 0 , (3.4)

where gc > 0 is a sufficiently large constant defined in Proposition 2.2. We shall use (3.4) and set
ρ0 > 0 in order to apply Theorem 2.4 (ii) (in Section 2) and Lemma 4.1 (in Section 4) for the proof
of Theorem 1.1 which gives multiple solutions of (1.9)-(1.11) with N = 3 and ρ0 > 0.

By Theorem 2.4 (ii), equation (3.2) has multiple solutions

(c1, c2) = (c1 (ΣA1
(φ)) , c2 (ΣA1

(φ))) and (c1, c2) = (c1 (ΣB1
(φ)) , c2 (ΣB1

(φ))) (3.5)

such that fA1(φ) = q (c1− c2) (ΣA1(φ)) and fB1(φ) = q (c1− c2) (ΣB1(φ)) are monotone increasing
to φ but the values of fA1

and fB1
are away from zero (see Figure 4). By Lemma 4.5, it is impossible

to get uniformly bounded solution by solving either εφ′′(x) = fA1
(φ(x)) or εφ′′(x) = fB1

(φ(x)) for
x ∈ (−1, 1). This motivates us to develop Lemma 4.1 (in Section 4), and use (3.3) to transform
(1.10) into the following equations:

εφ′′(x) = fA(φ(x)) for x ∈ (−1, 1) , (3.6)

and
εφ′′(x) = fB(φ(x)) for x ∈ (−1, 1) , (3.7)

where
fA(φ) = q (c1 − c2) (ΣA1

(φ))− z3e
−z3φ + ρ0 ,

and
fB(φ) = q (c1 − c2) (ΣB1

(φ))− z3e
−z3φ + ρ0 .

We may denote fA and fB as follows: fA (φ) = fA1
(φ) − fc3 (φ) and fB (φ) = fB1

(φ) − fc3 (φ),
where fA1

(φ) = q (c1 − c2) (ΣA1
(φ)), fB1

(φ) = q (c1 − c2) (ΣB1
(φ)), and fc3(φ) = z3e

−z3φ − ρ0.
Let ρ0 > 0. Then Theorem 2.4 (ii) (in Section 2) implies that as g12 = z ≥ gρ0

> gc > 0 (gρ0
is

a large constant depending on ρ0), both functions fA1 and fB1 intersect with the function fc3 at
φA1,0 and φB1,0, respectively (see Figure 4). Note that the assumption ρ0 > 0 is necessary for the
existence of φA1,0 and φB1,0. Moreover, fA = fA1

− fc3 and fB = fB1
− fc3 satisfy

Figure 4: Figures of fA1
, fB1

and fc3
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(1) fA : [−φA,c,∞) → R is smooth and strictly monotone increasing, −φA,c < 0, fA(−φA,c) <
0, fA(∞) > 0 and fA(φA1,0) = 0 for some φA1,0 > −φA,c.

(2) fB : (−∞, φA,c] → R is smooth and strictly monotone increasing, φA,c > 0, fB(φA,c) >
0, fB(−∞) < 0 and fB(φB1,0) = 0 for some φB1,0 < φA,c.

Hence by Lemma 4.1, we may get uniformly bounded solutions φAε and φBε of (3.6) and (3.7),
respectively. Moreover, φAε (x) → φA1,0 and φBε (x) → φB1,0 for x ∈ (−1, 1) as ε → 0. Therefore,
we complete the proof of Theorem 1.1.

3.2 Proof of Theorem 1.2

Let N = 4, z2 = −z1 = q1 ≥ 1 and z4 = −z3 = q2 ≥ 1. Assume g11 = g22 = g > 0,
g33 = g44 = g̃ > 0 and gij = gji = 0 for i = 1, 2 and j = 3, 4. Then (1.9) may be represented as

ln ci + ziφ+

2∑
j=1

gijcj = 0 for i = 1, 2, (3.8)

and

ln ci + ziφ+

4∑
j=3

gijcj = 0 for i = 3, 4 . (3.9)

Note that both (3.8) and (3.9) have the same form as (3.2) with (3.4) which can be solved explicitly.
As for Theorem 2.4 in Section 2, both (3.8) and (3.9) have two branches of solutions, respectively.
We may denote these solutions as follows:

(c1, c2) = (c1 (ΣA1
(φ)) , c2 (ΣA1

(φ))) ,

(c1, c2) = (c1 (ΣB1
(φ)) , c2 (ΣB1

(φ))) ,

(c3, c4) = (c3 (ΣM1
(φ)) , c4 (ΣM1

(φ))) ,

(c3, c4) = (c3 (ΣN1
(φ)) , c4 (ΣN1

(φ))) ,

such that (c1 − c2) ◦ ΣA1
: [−φA,c,∞) → R, (c1 − c2) ◦ ΣB1

: (−∞, φA,c] → R, (c3 − c4) ◦ ΣN1
:

[−φM,c,∞) → R and (c3 − c4) ◦ ΣM1
: (−∞, φM,c] → R, are monotone increasing functions of φ,

where φA,c, φM,c > 0 are constants, ΣA1
, ΣB1

, ΣM1
and ΣN1

are functions satisfying

(c1 − c2) ◦ ΣA1
(−φA,c) , (c3 − c4) ◦ ΣN1

(−φM,c) > 0 ,

(c1 − c2) ◦ ΣB1
(φA,c) , (c3 − c4) ◦ ΣM1

(φM,c) < 0 ,

lim
φ→∞

(c1 − c2) ◦ ΣA1
(φ) = lim

φ→∞
(c3 − c4) ◦ ΣN1

(φ) =∞ ,

lim
φ→−∞

(c1 − c2) ◦ ΣB1
(φ) = lim

φ→−∞
(c3 − c4) ◦ ΣM1

(φ) = −∞ .

Here ◦ denotes function composition. Moreover, Theorem 2.4 gives φA,c, φM,c → +∞ and (c1 −
c2) ◦ ΣA1

(−φA,c), (c1 − c2) ◦ ΣB1
(φA,c), (c3 − c4) ◦ ΣM1

(φM,c) and (c3 − c4) ◦ ΣN1
(−φM,c) tend to

zero as z, z̃ → +∞ and g, g̃ > 0 are fixed.
Without loss of generality, we may assume φM,c < φA,c. Fix ρ0 ∈ R arbitrarily. Then as for

(3.2), we may solve (3.8) and get functions fA1(φ) = q1 (c1−c2) (ΣA1(φ))−ρ0 and fB1(φ) = q1 (c1−
c2) (ΣB1(φ))−ρ0 which are sketched in Figure 5 (up to a shift by ρ0), provided that g12 = g21 = z >
0 is sufficiently large. Similarly, we may solve (3.9) and get functions fM1

(φ) = q2 (c4−c3) (ΣM1
(φ))

and fN1
(φ) = q2 (c4 − c3) (ΣN1

(φ)) as g34 = g43 = z̃ > 0 sufficiently large (see Figure 5). Because
function q2(c3 − c4) ◦ ΣM1

is negative and increasing to φ, function q2(c4 − c3) ◦ ΣM1
becomes

positive and decreasing to φ. On the other hand, function q1(c1 − c2) ◦ ΣA1 − ρ0 is positive and
increasing to φ. This implies that as z and z̃ sufficiently large, functions q1(c1 − c2) ◦ ΣA1 − ρ0

and q2(c3 − c4) ◦ ΣM1
may intersect at φ = φA1,0. Similarly, functions q1 (c1 − c2) ◦ ΣB1

− ρ0 and
q2 (c4− c3) ◦ΣN1

may intersect at φ = φB1,0 as z and z̃ sufficiently large. Generically, values φA1,0
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and φB1,0 can be different by choosing z and z̃ suitably e.g. z and z̃ sufficiently large.

Figure 5: Figures of fA1 , fB1 , fM1 and fN1

Let fA = fA1 − fM1 and fB = fB1 − fN1 . Then

fA (φ) = q1(c1 − c2) (ΣA1
(φ)) + q2(c3 − c4) (ΣM1

(φ))− ρ0 ,

and
fB (φ) = q1(c1 − c2) (ΣB1(φ)) + q2(c3 − c4) (ΣN1(φ))− ρ0 ,

satisfy

(1) fA : [−φA,c, φM,c]→ R is smooth and strictly monotone increasing, −φA,c < 0, fA(−φA,c) <
0, fA(φM,c) > 0 and fA(φA1,0) = 0 for some φA1,0 > −φA,c.

(2) fB : [−φM,c, φA,c] → R is smooth and strictly monotone increasing, φA,c > 0, fB(φA,c) >
0, fB(−φM,c) < 0 and fB(φB1,0) = 0 for some φB1,0 < φA,c.

Moreover, equation (1.10) can be expressed as εφxx = fA (φ) and εφxx = fB (φ) for x ∈ (−1, 1)
which have the same forms as equations (3.6) and (3.7), respectively. Therefore by Lemma 4.1, we
may complete the proof of Theorem 1.2.

4 Uniformly bounded solutions

In this section, we consider the equation

εφ′′(x) = f(φ(x)) for x ∈ (−1, 1) , (4.1)

with the Robin boundary condition

φ(1) + ηεφ
′(1) = φ0(1) and φ(−1)− ηεφ′(−1) = φ0(−1) , (4.2)

where φ0(1), φ0(−1) are constants and ηε is a non-negative constant. Note that the solution φε of
(4.1)-(4.2) may depend on the parameter ε. For notational convenience, we omit ε and denote φ
as the solution of (4.1)-(4.2). To get uniform boundedness of φ, we assume the function f satisfies
one of the following conditions:

(F1) f : [A,M ] → R is smooth and strictly monotone increasing, A < 0, f(A) < 0, 0 < M ≤
∞, f(M) > 0 and f(φA) = 0 for some A < φA < M .

(F2) f : [−M,B]→ R is is smooth and strictly monotone increasing, B > 0, f(B) > 0, 0 < M ≤
∞, f(−M) < 0 and f(φB) = 0 for some −M < φB < B.

Then we have

Lemma 4.1. Assume the function f satisfies either (F1) or (F2), and the constants A ≤ φ0(−1),
φ0(1) ≤ M as (F1) holds, and −M ≤ φ0(−1), φ0(1) ≤ B as (F2) holds. Let c = φA if (F1)
holds, and c = φB if (F2) holds. Let φ be a nonconstant solution of (4.1) with the Robin boundary
condition (4.2). Then
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(i) If φ0(1), φ0(−1) > c, then there exists x1 ∈ (−1, 1) such that φ′(x1) = 0, φ(x1) > c, and φ
is strictly monotone decreasing in (−1, x1) and increasing in (x1, 1).

(ii) If φ0(1), φ0(−1) < c, then there exists x2 ∈ (−1, 1) such that φ′(x2) = 0, φ(x2) < c, and φ
is strictly monotone increasing in (−1, x2) and decreasing in (x2, 1).

(iii) If φ0(1) ≥ c ≥ φ0(−1), then φ is monotone increasing in (−1, 1).

(iv) If φ0(1) ≤ c ≤ φ0(−1), then φ is monotone decreasing in (−1, 1).

(v) min{φ0(−1), φ0(1), 0} ≤ φ(x) ≤ max{φ0(−1), φ0(1), 0} for x ∈ (−1, 1).

(vi) φ(x)→ c as ε→ 0+, where c = φA if (F1) holds, and c = φB if (F2) holds.

(vii) If lim
ε→0+

ε

2η2
ε

= γ > 0 and φ0 (±1) 6= c, then the solution φ has boundary layers at x = ±1.

Proof. Without loss of generality, we may assume the function f satisfying (F1). Replacing φ by
φ+ c, we may assume c = 0 and f(0) = 0 in the whole proof for notational convenience. Since the
domain of the function f is only [A,M ], then we firstly extend it smoothly to the entire real line
R in order to use the standard direct method to get the existence of solution φ. Hence we may
temporarily assume the function f as a smooth and strictly monotone increasing function on R.
Actually, such an assumption can be ignored because of (4.5).

To prove Lemma 4.1, we need the following Proposition:

Proposition 4.2.

(a) If xa ∈ (−1, 1) is a local minimum point of φ, then φ(xa) > 0, φ is monotone decreasing in
(−1, xa) and increasing in (xa, 1).

(b) If xb ∈ (−1, 1) is a local maximum point of φ, then φ(xb) < 0, φ is monotone increasing in
(−1, xb) and decreasing in (xb, 1).

The proof of Proposition 4.2 (b) is quite similar to that of Proposition 4.2 (a) so we only
state the proof of Proposition 4.2 (a) as follows: Suppose xa ∈ (−1, 1) is a local minimum point
of φ. Then φ′(xa) = 0 and φ′′(xa) ≥ 0. If φ′′(xa) = 0, then the equation εφ′′ = f(φ) gives
f(φ(xa)) = εφ′′(xa) = 0 which implies φ(xa) = 0 and then by the uniqueness of ordinary differential
equations and φ(xa) = φ′(xa) = 0, we have φ ≡ 0 which contradicts to φ is nonconstant. Hence
φ′′(xa) > 0 and f(φ(xa)) = εφ′′(xa) > 0 i.e. φ(xa) > 0. Now we prove that φ is decreasing in
(−1, xa) and increasing in (xa, 1). Suppose not. Then there exists xc ∈ (−1, 1) and xc 6= xa such
that xc is a local maximum point of φ i.e. φ′(xc) = 0, φ′′(xc) ≤ 0 and φ(xc) > φ(x1) > 0 but
εφ′′(xc) = f(φ(xc)) > 0 which contradicts to φ′′(xc) ≤ 0. Therefore, we may complete the proof
of Proposition 4.2.

For the proof Lemma 4.1 (i), we need

Claim 1. Assume φ0(1), φ0(−1) > 0. Then φ(−1), φ(1) > 0, φ′(−1) < 0 and φ′(1) > 0.
We may prove Claim 1 by contradiction. Suppose one of the following cases holds:
Case I. φ(−1) > 0 and φ′(−1) ≥ 0.
Case II. φ(−1) ≤ 0.

For the Case I, we may use φ(−1) > 0 and the continuity of φ to obtain that as x ∈ (−1, 1)
sufficiently close to −1, φ(x) > 0 and εφ′′(x) = f(φ(x)) > 0 which implies lim

x→−1+
εφ′′(x) =

f(φ(−1)) > 0. Since φ′(−1) ≥ 0 and lim
x→−1+

φ′′(x) > 0, then φ is monotone increasing in (−1,−1+

δ0), where δ0 > 0 is a constant. Now we may show that φ is monotone increasing in (−1, 1)
by contradiction. Suppose φ has a local maximum point at x0 ∈ (−1, 1) such that φ′(x0) = 0,
φ′′(x0) ≤ 0 and φ is monotone increasing in (−1, x0). However, εφ′′(x0) = f(φ(x0)) ≥ f(φ(−1)) >
0 contradicts to φ′′(x0) ≤ 0. Hence φ is monotone increasing in (−1, 1) which provides φ′′(x) =
1
εf(φ(x)) ≥ 1

εf(φ(−1)) i.e. φ′′(x) ≥ 1
εf(φ(−1)) for x ∈ (−1, 1). Integrating the inequality from

−1 to x, we have φ′(x) − φ′(−1) ≥ 1
εf(φ(−1))(x + 1) i.e. φ′(x) ≥ φ′(−1) + 1

εf(φ(−1))(x + 1) for
x ∈ (−1, 1) which implies

φ(1)− φ(−1) =

∫ 1

−1

φ′(x) dx ≥
∫ 1

−1

[
φ′(−1) +

1

ε
f(φ(−1))(x+ 1)

]
dx = 2

[
φ′(−1) +

1

ε
f(φ(−1))

]
,
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i.e. φ(1) ≥ φ(−1)+2
[
φ′(−1) + 1

εf(φ(−1))
]
≥ 2

εf(φ(−1)). On the other hand, the Robin boundary
condition (4.2) gives φ0(1) = φ(1) + ηεφ

′(1) ≥ φ(1) and φ(−1) = φ0(−1) + ηεφ
′(−1) ≥ φ0(−1) > 0

since φ is monotone increasing in (−1, 1). Thus

φ0(1) ≥ φ(1) ≥ 2

ε
f(φ(−1)) ≥ 2

ε
f(φ0(−1)) ,

which contradicts to the hypothesis that φ0(1), φ0(−1) are independent to ε.
For the Case II, we first use the Robin boundary condition (4.2) to get ηεφ

′(−1) = φ(−1) −
φ0(−1) ≤ −φ0(−1) < 0 which implies ηε > 0 and φ′(−1) < 0. Then φ(x) < 0 for x ∈ (−1,−1+ δ1)
and φ is monotone decreasing in (−1,−1 + δ1), where δ1 > 0 is a constant. Hence φ is negative
and monotone decreasing in (−1, 1). Otherwise, there exists x3 ∈ (−1, 1) a local minimum point
of φ such that φ(x3) < 0 and φ′′(x3) ≥ 0 but φ′′(x3) = 1

εf(φ(x3)) < 0 which contradicts to
φ′′(x3) ≥ 0. Such a contradiction shows that φ is negative and monotone decreasing in (−1, 1).
However, 0 > φ(1) = φ0(1) − ηεφ′(1) ≥ φ0(1) contradicts to φ0(1) > 0. Notice that both Case I
and II produce contradiction. Similarly, the condition φ(1) > 0 and φ′(1) ≤ 0 and the other
condition φ(1) ≤ 0 also result in contradiction, respectively. Therefore, we may complete the proof
of Claim I.

By Claim I, there exists x1 ∈ (−1, 1) a local minimum point of φ, and then by Proposi-
tion 4.2 (a), we may complete the proof of Lemma 4.1 (i). On the other hand, we may also use
the similar argument of Claim I to prove that there exists x2 ∈ (−1, 1) a local maximum point of
φ. Hence by Proposition 4.2 (b), we complete the proof of Lemma 4.1 (ii).

Now we prove Lemma 4.1 (iii) by contradiction. Suppose φ is not monotone increasing. By
Proposition 4.2, it is sufficient to consider two cases as follows: φ(−1) < 0 and φ(−1) > 0. If
φ(−1) < 0, then Proposition 4.2 implies that there exists x2 ∈ (−1, 1) a maximum point of φ
such that φ(x2) < 0, φ is monotone increasing in (−1, x2) and decreasing in (x2, 1) so φ′(1) ≤ 0.
However, the boundary condition φ(1) + ηεφ

′(1) = φ0(1) and φ′(1) ≤ 0 give φ0(1) ≤ φ0(1) −
ηεφ
′(1) = φ(1) ≤ φ(x2) < 0 which contradicts to φ0(1) ≥ c = 0. On the other hand, if φ(−1) > 0,

then Proposition 4.2 implies that there exists x1 ∈ (−1, 1) a minimum point of φ such that
φ(x1) > 0, φ is monotone decreasing in (−1, x1) and increasing in (x1, 1) so φ′(−1) ≤ 0. However,
the boundary condition φ(−1) − ηεφ

′(−1) = φ0(−1) and φ′(−1) ≤ 0 give φ0(−1) = φ(−1) −
ηεφ
′(−1) ≥ φ(−1) > 0 which contradicts to φ0(−1) ≤ c = 0. Therefore, we complete the proof of

Lemma 4.1 (iii). Similar argument of Lemma 4.1 (iii) can be applied to prove Lemma 4.1 (iv) and
we omit the detail here.

Using Lemma 4.1 (i)-(iv), we may prove min{φ0(−1), φ0(1), 0} ≤ φ(x) ≤ max{φ0(−1), φ0(1), 0}
for x ∈ (−1, 1). The proof is stated as follows: By Lemma 4.1 (i) and the boundary condition (4.2),
we have φ(−1) = φ0(−1)+ηεφ

′(−1) ≤ φ0(−1), φ(1) = φ0(1)−ηεφ′(1) ≤ φ0(1) and c = 0 < φ(x1) ≤
φ(x) ≤ max{φ(1), φ(−1)} ≤ max{φ0(1), φ0(−1)} for x ∈ (−1, 1). Similarly, Lemma 4.1 (ii) and the
boundary condition (4.2) imply φ(−1) = φ0(−1) + ηεφ

′(−1) ≥ φ0(−1), φ(1) = φ0(1) − ηεφ′(1) ≥
φ0(1) and c = 0 > φ(x2) ≥ φ(x) ≥ min{φ(1), φ(−1)} ≥ min{φ0(1), φ0(−1)} for x ∈ (−1, 1). On
the other hand, we may apply Lemma 4.1 (iii) and the boundary condition (4.2) to get φ(−1) =
φ0(−1) + ηεφ

′(−1) ≥ φ0(−1), φ(1) = φ0(1) − ηεφ′(1) ≤ φ0(1) and φ0(−1) ≤ φ(−1) ≤ φ(x) ≤
φ(1) ≤ φ0(1) for x ∈ (−1, 1). Similarly, Lemma 4.1 (iv) and the boundary condition (4.2) give
φ(−1) = φ0(−1) + ηεφ

′(−1) ≤ φ0(−1), φ(1) = φ0(1) − ηεφ′(1) ≥ φ0(1) and φ0(−1) ≥ φ(−1) ≥
φ(x) ≥ φ(1) ≥ φ0(1) for x ∈ (−1, 1). Hence we complete the proof of Lemma 4.1 (v) i.e.

min{φ0(−1), φ0(1), 0} ≤ φ(x) ≤ max{φ0(−1), φ0(1), 0} for x ∈ (−1, 1) . (4.3)

Let A0 = min{φ0(−1), φ0(1), 0} and A1 = max{φ0(−1), φ0(1), 0}. Then (4.3) implies

‖φ‖L∞ ≤ A2 = max{−A0, A1} . (4.4)

Since A ≤ φ0(−1), φ0(1) ≤M and A < 0, then (4.3) gives

φ(x) ∈ [A0, A1] ⊂ [A,M ] for x ∈ (−1, 1) , (4.5)

i.e. each value of φ(x) must be contained in the original domain of the function f . Thus we may
neglect the extension of the function f and regard φ as a well-defined solution of equation (4.1)
with boundary condition (4.2).
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Now we claim that φ(x)→ 0 as ε→ 0+ for x ∈ (−1, 1). To prove this, we remark that

ε

2
(φ2)′′(x) = ε(φφ′′ + (φ′)2)(x) ≥ εφφ′′(x) = φ(x) f(φ(x)) = φ(x)

∫ φ(x)

0

f ′(s) ds ≥ α0φ
2(x) ,

for x ∈ (−1, 1), where α0 = minz∈[A0,A1] f
′(z) > 0 is a constant coming from the strictly monotone

increasing of f . Note that if φ(x) < 0, then

φ(x)

∫ φ(x)

0

f ′(s) ds = (−φ(x))

∫ 0

φ(x)

f ′(s) ds ≥ (−φ(x))

∫ 0

φ(x)

α0 ds = α0φ
2(x) .

Since ε
2 (φ2)′′(x) ≥ α0φ

2(x) for x ∈ (−1, 1), then by (4.4) and the standard comparison theorem,

we have φ2(x) ≤ A2
2

(
e−(1+x)

√
2α0/ε + e−(1−x)

√
2α0/ε

)
for x ∈ (−1, 1). Therefore, φ(x) → 0 as

ε→ 0+ for x ∈ (−1, 1), and we may complete the proof of Lemma 4.1 (vi).
For the proof of Lemma 4.1 (vii), we firstly multiply the equation (4.1) by φ′. Then we have

ε
2

[
(φ′)2

]′
= εφ′φ′′ = f(φ)φ′ = d

dxF (φ), which implies

ε

2
(φ′(x))2 = F (φ(x)) + Cε , (4.6)

for x ∈ (−1, 1), where F (φ) =

∫ φ

0

f(s) ds and Cε is a constant depending on ε. Now we want

to claim that lim
ε→0+

Cε = 0. By the mean value theorem, there exists xε ∈ (− 1
2 ,

1
2 ) such that

φ( 1
2 ) − φ(− 1

2 ) = φ′(xε). Since φ(x) → 0 as ε → 0+ for x ∈ (−1, 1), then φ( 1
2 ), φ(− 1

2 ) → 0 and
φ′(xε) = φ( 1

2 )−φ(− 1
2 )→ 0 as ε→ 0+. Hence by (4.6), we obtain Cε = ε

2 (φ′(xε))
2−F (φ(xε))→ 0

as ε→ 0+ i.e. lim
ε→0+

Cε = 0. On the other hand, we may put the Robin boundary condition (4.2)

into (4.6) and get ε
2η2
ε

(φ0(1)− φ(1))
2

= F (φ(1))+Cε and ε
2η2
ε

(φ0(−1)− φ(−1))
2

= F (φ(−1))+Cε.

By (4.5) and the continuity of φ, we may assume φ(±1)→ φ∗(±1) as ε→ 0+ (up to a subsequence).
Generically, the values φ∗(1) and φ∗(−1) may not be uniquely determined but here we want to claim

the uniqueness of φ∗(±1) as follows: Suppose lim
ε→0+

ε

2η2
ε

= γ > 0. Then φ∗(1) and φ∗(−1) satisfy

√
γ|φ0(1)−φ∗(1)| =

√
F (φ∗(1)) and

√
γ|φ0(−1)−φ∗(−1)| =

√
F (φ∗(−1)). Notice that the function

F is positive and monotone increasing in (0,M ] and decreasing in [A, 0) because F ′ (φ) = f (φ) > 0
on (0,M) and < 0 on (A, 0). Here we have used the fact that φA = c = 0. By Lemma 4.1 (i)-(iv),
we have

√
γ|φ0(±1) − φ∗(±1)| =

√
γ(φ0(±1) − φ∗(±1)) if φ0(±1) > 0;

√
γ|φ0(±1) − φ∗(±1)| =√

γ(φ∗(±1)− φ0(±1)) if φ0(±1) < 0;
√
γ|φ0(±1)− φ∗(±1)| = ±√γ(φ0(±1)− φ∗(±1)) if φ0(−1) ≤

0 ≤ φ0(1); and
√
γ|φ0(±1) − φ∗(±1)| = ±√γ(φ∗(±1) − φ0(±1)) if φ0(−1) ≥ 0 ≥ φ0(1). Hence

φ∗(±1) can be uniquely determined by the equations
√
γ|φ0(1)−s| =

√
F (s) and

√
γ|φ0(−1)−s| =√

F (s), respectively. The uniqueness of φ∗(±1) implies that the asymptotic limits of boundary
values φ(±1) are lim

ε→0+
φ(±1) = φ∗(±1). One may also remark that φ∗(±1) 6= 0 = c (Otherwise, if

φ∗(±1) = 0,then
√
γ|φ0(1)−φ∗(1)| =

√
F (φ∗(1)),

√
γ|φ0(−1)−φ∗(−1)| =

√
F (φ∗(−1)) and F (0) =

0 imply that φ0 (±1) = 0 = c which contradicts to the assumption φ0 (±1) 6= c.) Consequently, the
solution φ has boundary layers at x = ±1 if γ > 0. Therefore, we have showed Lemma 4.1 (vii)
and completed the proof of Lemma 4.1.

Remark 4.3. The equation (4.1) with the boundary condition (4.2) has a unique solution.

The uniqueness comes from the strictly monotone increasing of the function f . The proof is
sketched as follows: Suppose φ1 and φ2 are solutions of (4.1) and (4.2). We may subtract the
equation of φ1 by that of φ2, and multiply the resulting equation by u = φ1 − φ2 and integrate it

over (−1, 1). Then using integration by part, we have u′(1)u(1)−u′(−1)u(−1)−
∫ 1

−1
(u′(x))2 dx =∫ 1

−1
c(x)u2 dx, where c(x) = f(φ1(x))−f(φ2(x))

φ1(x)−φ2(x) is positive since the function f is strictly monotone

increasing. On the other hand, the Robin boundary condition (4.2) gives u(−1) = ηεu
′(−1),

u(1) = −ηεu′(1) and u′(1)u(1)− u′(−1)u(−1) = −ηε
[
(u′(−1))2 + (u′(1))2

]
. Hence

0 ≤
∫ 1

−1

c(x)u2 dx = −ηε
[
(u′(−1))2 + (u′(1))2

]
−
∫ 1

−1

(u′(x))2 dx ≤ 0
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which implies u ≡ 0 i.e. φ1 ≡ φ2 and the uniqueness proof of φ is complete.

Remark 4.4. The solution φ of the equation (4.1) with the boundary condition (4.2) has linear
stability.

To get the linear stability of the solution φ of the equation (4.1) with the boundary condi-
tion (4.2), we study the eigenvalue problem Lv = λv of the corresponding linearized operator
Lv = −εv′′+ f ′(φ)v with the boundary condition v(±1)±ηεv(±1) = 0. Using integration by part,
it is obvious that

λ

∫ 1

−1

v2 dx =

∫ 1

−1

v Lv dx =

∫ 1

−1

εv′′v dx+

∫ 1

−1

f ′(φ) v2 dx

= ηε
[
(v′(−1))2 + (v′(1))2

]
+

∫ 1

−1

[
ε(v′)2 + f ′(φ)v2

]
dx ≥ µ0

∫ 1

−1

v2 dx , (4.7)

and hence λ ≥ µ0 > 0, where µ0 = mins∈[minφ,maxφ] f
′(s) is a positive constant arising from the

strictly monotone increasing of the function f .
In Lemma 4.1, the existence of zero point φA (or φB) of f is essential. If the function f has

not any zero point like φA (or φB) i.e. the value of f is away from zero, then the equation (4.1)
may not have uniformly bounded solutions {φ}ε>0. Such a result is stated as follows:

Lemma 4.5. Assume f is a function satisfying one of the following conditions:

(a) f : [A,∞)→ R is monotone increasing, A < 0 and f(A) > 0.

(b) f : (−∞, B]→ R is monotone increasing, B > 0 and f(B) < 0.

For each ε > 0, let φ be a solution of the equation (4.1). Then sup
ε>0
‖φ‖L∞ =∞.

Proof. Without loss of generality, we may assume the function f satisfies the condition (a). Now
we prove Lemma 4.5 by contradiction. Suppose {φ}ε>0 is uniformly bounded i.e. sup

ε>0
‖φ‖L∞ <∞.

We divide three cases to complete the proof as follows:

Case I. The solution φ = φ(x) is monotone decreasing to x i.e. φ′(x) ≤ 0 for x ∈ (−1, 1).
Using the equation εφ′′ = f(φ) and the condition (a), we have

−φ′(x) ≥ φ′(1)− φ′(x) =

∫ 1

x

φ′′(τ) dτ

= ε−1

∫ 1

x

f(φ(τ)) dτ

≥ ε−1

∫ 1

x

f(A) dτ = ε−1 f(A)(1− x) , ∀x ∈ (−1, 1) ,

and hence

−2‖φ‖L∞ ≤ φ(1)− φ(−1) =

∫ 1

−1

φ′(x) dx ≤ −ε−1f(A)

∫ 1

−1

(1− x) dx = −2ε−1f(A) ,

i.e. ‖φ‖L∞ ≥ ε−1f(A)→∞ as ε→ 0+ which contradicts to the hypothesis sup
ε>0
‖φ‖L∞ <∞.

Case II. The solution φ = φ(x) is monotone increasing to x i.e. φ′(x) ≥ 0 for x ∈ (−1, 1).
As for the argument of Case I, we obtain

φ′(x) ≥ φ′(x)− φ′(−1) =

∫ x

−1

φ′′(τ) dτ

= ε−1

∫ x

−1

f(φ(τ)) dτ

≥ ε−1

∫ x

−1

f(A) dτ = ε−1 f(A)(1 + x) , ∀x ∈ (−1, 1) ,
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and hence

2‖φ‖L∞ ≥ φ(1)− φ(−1) =

∫ 1

−1

φ′(x) dx ≥ ε−1f(A)

∫ 1

−1

(1 + x) dx = 2ε−1f(A) ,

i.e. ‖φ‖L∞ ≥ ε−1f(A)→∞ as ε→ 0+ which contradicts to the hypothesis sup
ε>0
‖φ‖L∞ <∞.

Case III. The solution φ = φ(x) has a local minimum point at x0 ∈ (−1, 1) such that φ′(x0) = 0
and φ′′(x0) > 0.

Note that since εφ′′ = f(φ) ≥ f(A) > 0, it is impossible to have any local maximum point in
(−1, 1). By the equation εφ′′ = f(φ) and the condition (a), we have

−φ′(x) = φ′(x0)− φ′(x) =

∫ x0

x

φ′′(τ) dτ

= ε−1

∫ x0

x

f(φ(τ)) dτ

≥ ε−1

∫ x0

x

f(A) dτ = ε−1 f(A)(x0 − x) , ∀x ∈ (−1, x0) ,

and hence

−2‖φ‖L∞ ≤ φ(x0)− φ(−1) =

∫ x0

−1

φ′(x) dx ≤ −ε−1f(A)

∫ x0

−1

(x0 − x) dx = −1

2
ε−1f(A)(x0 + 1)2 ,

i.e.
|x0 + 1| ≤ 2ε1/2

√
‖φ‖L∞/f(A) . (4.8)

On the other hand,

φ′(x) = φ′(x)− φ′(x0) =

∫ x

x0

φ′′(τ) dτ

= ε−1

∫ x

x0

f(φ(τ)) dτ

≥ ε−1

∫ x

x0

f(A) dτ = ε−1 f(A)(x− x0) , ∀x ∈ (x0, 1) ,

and hence

2‖φ‖L∞ ≥ φ(1)− φ(x0) =

∫ 1

x0

φ′(x) dx ≥ ε−1f(A)

∫ 1

x0

(x− x0) dx =
1

2
ε−1f(A)(x0 − 1)2 ,

i.e.
|x0 − 1| ≤ 2ε1/2

√
‖φ‖L∞/f(A) . (4.9)

Therefore, as ε > 0 sufficiently small, (4.8) and (4.9) provide a contradiction and we may complete
the proof of Lemma 4.5.

5 Excess currents due to steric effects

Here we want to use solutions φAε and φBε of (1.9)-(1.11) (see Theorem 1.1 and 1.2) to calculate
excess currents (due to steric effects) represented by formula (1.5). By (1.6),

N∑
j=1

gijcj = −kBT ln ci − zieφ ,

and then formula (1.5) becomes

Iex =

N∑
i=1

zieDi

(
∇ci + zici∇φ̃

)
, (5.1)

where φ̃ = e
kBT

φ.
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5.1 Under the same hypotheses of Theorem 1.1

Here we set N = 3, z2 = −z1 = q ≥ 1, z3 > 0, ρ0 > 0, and assume that g11 = g22 = g > 0 is
fixed, g12 = g21 = z > 0 is sufficiently large, and gi3 = g3i = 0 for i = 1, 2, 3. By (3.3), we have

c3 = e−z3φ̃ which implies ∇c3 + z3c3∇φ̃ = 0. Hence (5.1) becomes

Iex =

2∑
i=1

zieDi

(
dci
dx

+ zici
dφ̃

dx

)

= −q eD1

(
dc1
dx
− q c1

dφ̃

dx

)
+ q eD2

(
dc2
dx

+ q c2
dφ̃

dx

)

= q e

[
d

dx
(−D1c1 +D2c2) + q (D1c1 +D2c2)

dφ̃

dx

]
i.e.

Iex = q e

[
d

dx
(−D1c1 +D2c2) + q (D1c1 +D2c2)

dφ̃

dx

]
(5.2)

Using c1 = c1−c2
2 + c1+c2

2 and c2 = c1+c2
2 − c1−c2

2 , formula (5.2) can be expressed as

1
q e I

ex = d
dx

[
D2−D1

2 (c1 + c2)− D1+D2

2 (c1 − c2)
]

+q
[
D1+D2

2 (c1 + c2)− D2−D1

2 (c1 − c2)
]
dφ̃
dx

(5.3)

Note that c1 + c2 = Σ and c1 − c2 =

{ √
Σ2 − 4e−(g+z)Σ on A,

−
√

Σ2 − 4e−(g+z)Σ on B.
(see (2.8) in Section 2).

As for (3.5)-(3.7), we may set
(

Σ, φ̃
)

=
(

ΣA1

(
φ̃
)
, φAε (x)

)
and

(
Σ, φ̃

)
=
(

ΣB1

(
φ̃
)
, φBε (x)

)
,

respectively. Then along c1 + c2 = Σ = ΣA1 and c1 − c2 =
√

Σ2
A1
− 4e−(g+z)ΣA1 , we may use

(2.17), (2.21) and Chain Rule to get

d
dx (c1 + c2) = d

dxΣA1

(
φAε (x)

)
=

dΣA1

dφ

(
φAε (x)

) dφAε
dx (x)

=

√
Σ2
A1

(φAε (x))−4e
−(g+z)ΣA1

(φAε (x))

1+gΣA1
(φAε (x))+(g2−z2)e

−(g+z)ΣA1
(φAε (x))

dφAε
dx (x) ,

and
d
dx (c1 − c2) = d

dx (c1 − c2)
(
ΣA1

(
φAε (x)

))
= d

dφ (c1 − c2)
(
ΣA1

(
φAε (x)

)) dφAε
dx (x)

=
ΣA1(φAε (x))+2(g+z)e

−(g+z)ΣA1(φAε (x))

1+gΣA1
(φAε (x))+(g2−z2)e

−(g+z)ΣA1
(φAε (x))

dφAε
dx (x) .

For simplicity, we may set Σ̂A1
= ΣA1

(
φAε (x)

)
and denote d

dx (c1 ± c2) as follows:

d

dx
(c1 + c2) =

√
Σ̂2
A1
− 4e−(g+z)Σ̂A1

1 + gΣ̂A1
+ (g2 − z2) e−(g+z)Σ̂A1

dφAε
dx

(x) ,

and
d

dx
(c1 − c2) =

Σ̂A1 + 2(g + z)e−(g+z)Σ̂A1

1 + gΣ̂A1
+ (g2 − z2)e−(g+z)Σ̂A1

dφAε
dx

(x) .

Consequently, by setting IexA = Iex along A1, (5.3) becomes

1
q eI

ex
A =

D2−D1
2

√
Σ̂2
A1
−4e

−(g+z)Σ̂A1−D1+D2
2

[
Σ̂A1

+2(g+z)e
−(g+z)Σ̂A1

]
1+gΣ̂A1

+(g2−z2)e
−(g+z)Σ̂A1

dφAε
dx (x)

+q

[
D1+D2

2 Σ̂A1 − D2−D1

2

√
Σ̂2
A1
− 4e−(g+z)Σ̂A1

]
dφAε
dx (x)

(5.4)



- 22 -

Similarly, along c1 + c2 = Σ = ΣB1

(
φ̃
)

, c1− c2 = −
√

Σ2
B1
− 4e−(g+z)ΣB1 and φ̃ = φBε (x), we may

set Iex = IexB , and use (2.18) and (2.22) to get

1
q eI

ex
B =

D1−D2
2

√
Σ̂2
B1
−4e

−(g+z)Σ̂B1−D1+D2
2

[
Σ̂B1

+2(g+z)e
−(g+z)Σ̂B1

]
1+gΣ̂B1

+(g2−z2)e
−(g+z)Σ̂B1

dφBε
dx (x)

+q

[
D1+D2

2 Σ̂B1
− D1−D2

2

√
Σ̂2
B1
− 4e−(g+z)Σ̂B1

]
dφBε
dx (x)

(5.5)

where Σ̂B1 = ΣB1

(
φBε (x)

)
.

Equation (5.4) and (5.5) can be denoted as

IexA = q e iA

(
Σ̂A1

) dφAε
dx

(x) , (5.6)

and

IexB = q e iB

(
Σ̂B1

) dφBε
dx

(x) , (5.7)

where

iA (Σ) =
D2−D1

2

√
Σ2−4e−(g+z)Σ−D1+D2

2 [Σ+2(g+z)e−(g+z)Σ]
1+gΣ+(g2−z2)e−(g+z)Σ ,

+q
[
D1+D2

2 Σ− D2−D1

2

√
Σ2 − 4e−(g+z)Σ

] (5.8)

and

iB (Σ) =
D1−D2

2

√
Σ2−4e−(g+z)Σ−D1+D2

2 [Σ+2(g+z)e−(g+z)Σ]
1+gΣ+(g2−z2)e−(g+z)Σ .

+q
[
D1+D2

2 Σ− D1−D2

2

√
Σ2 − 4e−(g+z)Σ

] (5.9)

Without loss of generality, φAε can be assumed as a monotone increasing function. Such an as-
sumption can be fulfilled by setting φ0(−1) < φ0(1) and using Lemma 4.1 (iii). Integrating IexA
from x1 to x2, we have∫ x2

x1

IexA dx = e

∫ x2

x1

iA
(
ΣA1

(
φAε (x)

))dφAε
dx

dx = e

∫ φA2

φA1

iA (ΣA1
(φ))dφ , (5.10)

for −1 < x1 < x2 < 1, where φ1 ≤ φ2 and φAj = φAε (xj) , j = 1, 2. Setting Σ = ΣA1
and using

change of variables, Inverse Function Theorem and (2.17), we have

dφ =
dφ

dΣ
dΣ =

1
dΣ
dφ

dΣ =
1 + gΣ +

(
g2 − z2

)
e−(g+z)Σ

√
Σ2 − 4e−(g+z)Σ

dΣ .

Then by (5.8), we get

iA (Σ) dφ = iA (Σ)
1 + gΣ +

(
g2 − z2

)
e−(g+z)Σ

√
Σ2 − 4e−(g+z)Σ

dΣ

=
D2 −D1

2

{
(1− q)− q

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

− D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

[
(1− q)Σ + 2 (g + z) e−(g+z)Σ − q gΣ2 − q

(
g2 − z2

)
Σe−(g+z)Σ

]
dΣ
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Hence (5.10) becomes∫ x2

x1

IexA dx = q e

∫ φA2

φA1

iA (ΣA1
(φ))dφ

= q e

∫ ΣA2

ΣA1

D2 −D1

2

{
(1− q)− q

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

−q e
∫ ΣA2

ΣA1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q)Σ− q gΣ2 + (g + z) [2− q (g − z) Σ] e−(g+z)Σ

}
dΣ ,

(5.11)
where ΣAj = ΣA1

(
φAj
)

and φAj =
(
φAε (xj)

)
for j = 1, 2. Similarly, we may set Σ = ΣB1

and use
change of variables, Inverse Function Theorem and (2.18) to get

dφ =
dφ

dΣ
dΣ =

1
dΣ
dφ

dΣ = −
1 + gΣ +

(
g2 − z2

)
e−(g+z)Σ

√
Σ2 − 4e−(g+z)Σ

dΣ .

Then as for (5.11), we may use (5.9) to derive∫ x2

x1

IexB dx = q e

∫ φB2

φB1

iB (ΣB1
(φ)) dφ

= q e

∫ ΣB2

ΣB1

D2 −D1

2

{
(1− q)− q

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

+q e

∫ ΣB2

ΣB1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q)Σ− q gΣ2 + (g + z) [2− q (g − z) Σ] e−(g+z)Σ

}
dΣ ,

(5.12)
where ΣBj = ΣB1

(
φBj
)

and φBj = φBε (xj) for j = 1, 2. Therefore, we complete the proof of (1.12)
and (1.13).

5.2 Under the same hypotheses of Theorem 1.2

Here we set N = 4, z2 = −z1 = q1 ≥ 1, z4 = −z3 = q2 ≥ 1, ρ0 6= 0, and assume that
g11 = g22 = g > 0, g33 = g44 = g̃ > 0 are fixed, g12 = g21 = z > 0, g34 = g43 = z̃ > 0
are sufficiently large, and gij = gji = 0 for i = 1, 2 and j = 3, 4. As for Section 3.2, these
hypotheses imply that (1.9) can be decomposed into two independent equations (3.8) and (3.9)
which have the same form as (3.2) with (3.4). Solving equations (3.8) and (3.9), we may get
(c1, c2) (with branches A1, B1) and (c3, c4) (with branches M1, N1) as functions of φ, respectively.

By (5.1), the excess currents of (c1, c2) and (c3, c4) can be represented as
2∑
i=1

zieDi

(
dci
dx + zici

dφ̃
dx

)
and

4∑
i=3

zieDi

(
dci
dx + zici

dφ̃
dx

)
which can be calculated by the same method as Section 5.1. We may

denote the total excess current as IexA,M = IexA + IexM , where IexA and IexM are the excess currents
along branches A1 for (c1, c2) and M1 for (c3, c4), respectively. Then as for (5.4), we have

1
q1 e

IexA =
D2−D1

2

√
Σ̂2
A1
−4e

−(g+z)Σ̂A1−D1+D2
2

[
Σ̂A1

+2(g+z)e
−(g+z)Σ̂A1

]
1+gΣ̂A1

+(g2−z2)e
−(g+z)Σ̂A1

dφAε
dx (x)

+q1

[
D1+D2

2 Σ̂A1
− D2−D1

2

√
Σ̂2
A1
− 4e−(g+z)Σ̂A1

]
dφAε
dx (x)

(5.13)
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and

1
q2 e

IexM =
D4−D3

2

√
Σ̂2
M1
−4e

−(g̃+z̃)Σ̂M1−D3+D4
2

[
Σ̂M1

+2(g̃+z̃)e
−(g̃+z̃)Σ̂M1

]
1+g̃Σ̂M1

+(g̃2−z̃2)e
−(g̃+z̃)Σ̂M1

dφAε
dx (x)

+q2

[
D3+D4

2 Σ̂M1
− D4−D3

2

√
Σ̂2
M1
− 4e−(g̃+z̃)Σ̂M1

]
dφAε
dx (x)

(5.14)

Similarly, another total excess current can be denoted as IexB,N = IexB + IexN , where IexB and IexN are
the excess currents along branches B1 for (c1, c2) and N1 for (c3, c4), respectively. As for (5.5), we
have

1
q1 e

IexB =
D1−D2

2

√
Σ̂2
B1
−4e

−(g+z)Σ̂B1−D1+D2
2

[
Σ̂B1

+2(g+z)e
−(g+z)Σ̂B1

]
1+gΣ̂B1

+(g2−z2)e
−(g+z)Σ̂B1

dφBε
dx (x)

+q1

[
D1+D2

2 Σ̂B1
− D1−D2

2

√
Σ̂2
B1
− 4e−(g+z)Σ̂B1

]
dφBε
dx (x)

(5.15)

and

1
q2 e

IexN =
D4−D3

2

√
Σ̂2
N1
−4e

−(g̃+z̃)Σ̂N1−D3+D4
2

[
Σ̂N1

+2(g̃+z̃)e
−(g̃+z̃)Σ̂N1

]
1+g̃Σ̂N1

+(g̃2−z̃2)e
−(g̃+z̃)Σ̂N1

dφBε
dx (x)

+q2

[
D3+D4

2 Σ̂N1
− D4−D3

2

√
Σ̂2
N1
− 4e−(g̃+z̃)Σ̂N1

]
dφBε
dx (x)

(5.16)

Hence as for (5.11) and (5.12), we may use (5.13)-(5.16) to get∫ x2

x1

IexA dx

= q1 e

∫ ΣA2

ΣA1

D2 −D1

2

{
(1− q1)− q1

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

−q1 e

∫ ΣA2

ΣA1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q1)Σ− q1 gΣ2 + (g + z) [2− q1 (g − z) Σ] e−(g+z)Σ

}
dΣ ,

(5.17)∫ x2

x1

IexM dx

= q2 e

∫ ΣM2

ΣM1

D4 −D3

2

{
(1− q2)− q2

[
g̃Σ +

(
g̃2 − z̃2

)
e−(g̃+z̃)Σ

]}
dΣ

−q2 e

∫ ΣM2

ΣM1

D3 +D4

2
√

Σ2 − 4e−(g̃+z̃)Σ

{
(1− q2)Σ− q2 g̃Σ2 + (g̃ + z̃) [2− q2 (g̃ − z̃) Σ] e−(g̃+z̃)Σ

}
dΣ ,

(5.18)∫ x2

x1

IexB dx

= q1 e

∫ ΣB2

ΣB1

D2 −D1

2

{
(1− q1)− q1

[
gΣ +

(
g2 − z2

)
e−(g+z)Σ

]}
dΣ

+q1 e

∫ ΣB2

ΣB1

D1 +D2

2
√

Σ2 − 4e−(g+z)Σ

{
(1− q1)Σ− q1 gΣ2 + (g + z) [2− q1 (g − z) Σ] e−(g+z)Σ

}
dΣ ,

(5.19)
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∫ x2

x1

IexN dx

= q2 e

∫ ΣN2

ΣN1

D4 −D3

2

{
(1− q2)− q2

[
g̃Σ +

(
g̃2 − z̃2

)
e−(g̃+z̃)Σ

]}
dΣ

+q2 e

∫ ΣN2

ΣN1

D3 +D4

2
√

Σ2 − 4e−(g̃+z̃)Σ

{
(1− q2)Σ− q2 g̃Σ2 + (g̃ + z̃) [2− q2 (g̃ − z̃) Σ] e−(g̃+z̃)Σ

}
dΣ ,

(5.20)
where ΣAj = ΣA1

(
φAε (xj)

)
, ΣMj = ΣM1

(
φAε (xj)

)
, ΣBj = ΣB1

(
φBε (xj)

)
, and ΣNj = ΣN1

(
φBε (xj)

)
for j = 1, 2. Combining (5.17)-(5.20) and using IexA,M = IexA + IexM , IexB,N = IexB + IexN , we may
complete the proof of (1.14) and (1.15).
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