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A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through
biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like dis-
tribution without calculating the forces between the particles, because they are both expensive and
tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes
and interstitial voids, the correlation effect of crowded ions with different valences, and the screening
effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of
water and the voids between particles is an important new part of the theory presented here. Fermi
like distributions of all particle species are derived from the volume exclusion of classical particles.
Volume exclusion and the resulting saturation phenomena are especially important to describe the
binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of
the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not consid-
ered. The classical Gibbs entropy is extended to a new entropy form — called Gibbs-Fermi entropy
— that describes mixing configurations of all finite size particles and voids in a thermodynamic
system where microstates do not have equal probabilities. The PNPF model describes the dynamic
flow of ions, water molecules, as well as voids with electric fields and protein charges. The model
also provides a quantitative mean-field description of the charge/space competition mechanism of
particles within the highly charged and crowded channel pore. The PNPF results are in good ac-
cord with experimental currents recorded in a 108-fold range of Ca2+ concentrations. The results
illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover,
numerical results concerning water density, dielectric permittivity, void volume, and steric energy
provide useful details to study a variety of physical mechanisms ranging from binding, to perme-
ation, blocking, flexibility, and charge/space competition of the channel. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4902973]

I. INTRODUCTION

Biological functions of proteins depend on the details
of the mixtures of ionic solutions found outside and inside
cells. Trace concentrations (<10−6 M) of calcium ions (Ca2+)
and other signaling molecules provide physiological control
of many biological pathways and proteins inside cells.1 For
example, voltage-gated calcium (CaV) channels exhibit the
anomalous mole fraction effect that effectively blocks abun-
dant monovalent cations by a trace concentration of Ca2+

ions.2–4 The fundamental mechanism of the calcium channel
is of great technological and biological interest.5, 6 Multiscale
analysis seems necessary since calibrated all atom simulations
of trace concentrations of ions in physiological solutions are
not likely to be available in the near future.

Interactions between diffusion and migration in the elec-
tric field are central to the biologists’ view of channels.7, 8

Following the drift-diffusion (DD) model in semiconductors,
Eisenberg et al.9–11 have proposed the Poisson-Nernst-Planck
(PNP) model to calculate rather than assume7, 8 the electric
field and then the ionic current in biological ion channels. In-
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teractions of ions and flows in narrow channels, and satura-
tion in binding sites are also central to the biologists’ view of
channels.7, 8 It has been difficult to combine the two views —
computed electric fields in channels showing interactions and
saturation — because charges in PNP (and quasiparticles in
DD) are points with no diameter and so cannot saturate the
aqueous channel1 the way real ions do. Recently, the satu-
ration of spheres of any size has been described by a Fermi
like distribution derived in Ref. 12 from the configuration en-
tropy of mixtures of ions of any diameter and composition.
The steric effect has been shown to be very important to ade-
quately describe equilibrium systems.12–14

We extend the Poisson-Fermi model12 in two important
rather novel ways. We include the excluded volume of wa-
ter molecules and the “empty space” created by packing con-
straints and voids between particles. The equilibrium model
is also generalized here to a nonequilibrium model called
the Poisson-Nernst-Planck-Fermi (PNPF) model that can de-
scribe flow, including the steric effect of all particles, the cor-
relation effect of ions and water molecules, the screening ef-
fect of water, as well as the charge/space mechanism in the
channel pore at and away from equilibrium. This treatment
unites diffusion and electric current, with interactions and
binding in narrow channels.
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Both discrete and continuum forms of Gibbs free en-
ergy of the electrolyte are developed in this paper. The
Gibbs-Fermi free energy functional for the Fermi distribu-
tion is shown to reduce to the Gibbs-Boltzmann functional
for the classical Boltzmann distribution when both steric
and correlation effects are not present. Moreover, a new
entropy form called the Gibbs-Fermi entropy is proposed
here to connect the spatial distribution of ions, water, and
voids between them (that may vary) with the change of lo-
cal probabilities of each species (and void volume) which
of course usually have different sizes. The Gibbs-Fermi en-
tropy is a consistent generalization of the global Boltz-
mann entropy and the classical local Gibbs entropy widely
used to describe systems without steric and packing con-
straints.

The steric effect. The steric effect of crowding produces
a steric energy term in PNPF that is a quantitative statement of
the crowded charge effect of charge/space competition. The
charge/space competition theory introduced by Nonner and
Eisenberg to explain calcium selectivity has been developed
in a long series of papers using Monte Carlo methods by Boda
and Henderson, and density functional methods by Gillespie
and co-workers. This “all spheres” approach successfully de-
scribes almost all selectivity properties of calcium channels
and the main properties of sodium channels such as the mi-
cromolar Ca2+ affinity for L-type calcium channels,15–17 the
wide range of Ca2+ affinities for different types of calcium
channels, and the switch in selectivity from calcium to sodium
when the side chains of the selectivity filter are switched from
EEEE (glu glu glu glu) to DEKA (asp glu lys ala).15, 18 It also
accounts for the selectivity between monovalent cations of
different size19–21 and for the self-organized pore structures
for selective ions.22 In the biologically crucial and special case
of Na+ vs K+ selectivity in the DEKA sodium channel (so
central to the function of the nervous system and metabolic
budget of mammals with large brains23, 24), control variables
can even be identified that independently control selectivity
and binding.15, 18

Interactions. Our main goal is to show how interactions
of diffusion, electrophoretic migration, steric exclusion, and
imperfect packing of particles can all be treated quantita-
tively in a unified framework to analyze binding and flow in
crowded ion channels, without explicitly calculating forces
between individual ions, water, or voids. We show that a
Fermi like distribution is able to describe these interactions
well enough to account for a wide range of important proper-
ties of ions in channels. We wonder how well this approach
can describe the myriad of nonideal properties reported in
the physical chemistry experimental literature (for more than
a century) which have escaped canonical description up to
now.25–34

Numerical results produced by the PNPF model are
in accord with the experimental data reported by Almers
and McCleskey in 1984 for CaV channels over a 108-
fold range of concentrations of calcium ions.2 Their ex-
perimental data have been a benchmark for selectivity ever
since. Their data have been used as a target for models us-
ing a variety of methods ranging from physiological and
crystallographic,6 to molecular dynamics (MD),35, 36 Brown-

ian dynamics (BD),37–39 Monte Carlo (MC),15, 17, 40 as well as
continuum approaches.41–43

The remaining part of the paper is organized as follows.
A derivation of the configuration entropy of hard-sphere ions
of different diameter and water with voids is proposed in
Sec. II, where a Fermi type of excess chemical potential,
Gibbs-Fermi free energy functional, and Gibbs-Fermi entropy
are also introduced. All these models seem to be new to the
literature, as far as we know, because they treat finite size
water molecules and voids explicitly. In Sec. III, we extend
the Gibbs-Fermi theory to the Poisson-Nernst-Planck-Fermi
theory for studying ionic transport, steric energy, water den-
sity, and void distribution in equilibrium or nonequilibrium
conditions. In Sec. IV, a molecular-continuum model specific
to L-type calcium channels is presented to show how to im-
plement in a consistent way the PNPF theory of the molecu-
lar filter region of few particles joined to the bath region of
numerous particles. Section V demonstrates that PNPF cur-
rents agree quite well with the experimental currents reported
in Ref. 2 under the same membrane potential and the same
108-fold range of Ca2+ concentrations measured in the exper-
iment. These conductance results seem to fit data better than
other models we know of. Some concluding remarks are given
in Sec. VI.

II. FERMI DISTRIBUTION AND GIBBS-FERMI
ENTROPY

Based on the configurational entropy model proposed in
Ref. 12 for aqueous electrolytes with arbitrary K species of
nonuniform size, hard spherical ions, we extend the free en-
ergy of the model to

F (N ) = φ

K+1∑
j=1

qjNj − kBT ln W (1)

by including specifically the excluded volume effect of the
next species (K + 1) of water molecules. Here, φ is the elec-
trostatic potential, Nj is the total number of j species particles
carrying the charge qj = zje with the valence zj, e is the pro-
ton charge, kB is the Boltzmann constant, and T is the absolute
temperature. The volume of a j type particle is vj = 4πa3

j /3
with radius aj. It is important to note that water is treated as
a polarizable hard sphere with zero net charge in Eq. (1), so
zK+1 = qK+1 = 0. The polarizability of water and the inclusion
of voids represent important generalizations from the classical
primitive solvent model used to describe calcium channels.44

The last term in (1) describes the mixing entropy of all ions
and water molecules over a total of N available nonuniform
sites in a system with

W =
K+1∏
j=1

Wj = N !(
�K+1

j=1 Nj !
) (

N − ∑K+1
j=1 Nj

)
!
, (2)

where W1 = N !/(N1!(N − N1)!) is the number of combi-
nations for the distribution of N1 in all vacant sites N. W2
= (N − N1)!/(N2!(N − N1 − N2)!) is the number of com-
binations for the distribution of N2 in N − N1 vacant sites
after N1 being distributed, and so on. After all particles
are distributed, there remains (in this model) just a single
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site NK+2 = N − ∑K+1
j=1 Nj = 1 that is used to represent the

(continuously connected) voids created by defects in the pack-
ing structure of all particles of all types and by Coulomb
and steric forces (e.g., Lennard-Jones) between particles. This
void structure is represented as the last species K + 2 in our
model. We are unaware of other all-spheres models that deal
explicitly with the voids between spheres. We suspect that
including such voids is needed because voids are in differ-
ent amounts depending on the composition of the solution
and can move in any system of spheres crowded into a small
space.

Obviously, all properties of water cannot be represented
this way: water is a highly charged molecule although its net
charge is zero, and polymeric structures can exist and may
be important, along with hydrogen bonds of the low or high
energy type.45, 46 Moreover, not all defects in packing can be
represented by a single void site, just as not all properties of
water can be represented by uncharged spheres. The question
is whether a model that includes only the excluded volume of
water and a continuous void space between particles is able to
deal with the selectivity data of the calcium channel. We will
see that it can.

The total volume V of the system consists of the vol-
umes of all particles and the total void volume vK+2, i.e.,
V = ∑K+1

j=1 vjNj + vK+2. Under the bulk condition, dividing
this equation by V yields the bulk void volume fraction

�B = vK+2

V
= 1 −

K+1∑
j=1

vj

Nj

V
= 1 −

K+1∑
j=1

vjC
B
j (3)

expressed in terms of the nonuniform particle volumes vj and
the bulk concentrations CB

j of all particle species. We are
aware that a model of this sort can be extended into an all-
spheres model of ionic solutions of the so called bio-ions Na+,
K+, Ca2+, and Cl−.

Using the Stirling formula ln M! ≈ Mln M − M with
M � 1, the electrochemical potential of particle species
i = 1, · · · , K + 1 is

μi = ∂F (N )

∂Ni

= qiφ + kBT ln
Ni

N − ∑K+1
j=1 Nj

(4)

from which we deduce global probabilities Pi = Ni/N for all
particle species. If we extend our theory by introducing lo-
cal probabilities pi(r) = viCi(r) that depend on location, in
effect allowing probabilities to depend on location as in the
theory of stochastic processes47 (applied for example to ionic
channels11, 48, 49), the electrochemical potential can be gener-
alized locally to

μi(r) = qiφ(r) + kBT ln
viCi(r)

1 − ∑K+1
j=1 vjCj (r)

= qiφ(r) + kBT ln
Ci(r)

CB
i

+ μex
i (r), (5)

μex
i (r) = kBT ln

viC
B
i

�(r)
,

(6)

�(r) = 1 −
K+1∑
j=1

vjCj (r) = vK+2CK+2(r),

where Ci(r) is the concentration function of spatial variable r
in the solvent domain �s, μ

ex
i (r) is the excess chemical poten-

tial, and �(r) is the void fraction function with CK+2(r) repre-
senting the distribution function of interstitial voids. When φ

= 0, Ci(r) = CB
i , and hence μex

i = μB
i = kBT ln(viC

B
i / �B)

is a constant.
The excess chemical potential is a measure of nonide-

ality that helps understand qualitative behavior. For example,
the larger the size vi of a type i particle, the larger is the ac-
tivation barrier μex

i (r) and the harder it is for the particle to
make a transition at r from a local minimum of μex

i to another
local minimum nearby.50 The transition mechanism is related
to the vacancy configuration as well, i.e., the smaller the value
of �(r), the more crowded the ions are at r, the harder tran-
sition. The excess chemical potential is closely related to the
sizes of all particles vj , their interstitial voids �(r), their con-
figurations Cj (r), as well as their bulk concentrations CB

j .
To our knowledge, all existing continuum models do not

explicitly take into account the finite size effect of water, let
alone the effect of interstitial voids. We did not consider these
two effects in our previous work12 in which water was treated
as a single continuous dielectric medium without any voids
and the resulting electrochemical potential μi(r) was shown
to be a mathematical description of the primitive model of
electrolytes, as used in most Monte Carlo and density func-
tional theory models. Our continuum primitive model could
well match Monte Carlo (discrete primitive model) results
that were obtained in equilibrium state. However, as we pro-
ceeded to study nonequilibrium systems using this primitive
model, we had difficulty computing the experimental currents
reported in Ref. 2 due to either inconsistent physics or diver-
gent numerics.

The calcium channel operates very delicately in physio-
logical and experimental conditions as it shifts its exquisitely
tuned conductance from Na+-flow, to Na+-blockage, and to
Ca2+ -flow when bath Ca2+ concentration varies from 10−10

to 10−2 M. The 108-fold range of experimental conditions
make modeling and numerical implementation very challeng-
ing. This huge dynamic range was accommodated in our pre-
vious work by using an artificial potential to confine mobile
oxygen ions of side chains within a filter region, just as that
used in all Monte Carlo simulations on the same channel (see,
e.g., Ref. 18). The artificial potential hindered our effort to
match the experimental data since it is a gross approximation
of the constraining energy needed to keep the protein atoms
in the filter region without specifically considering the void
effect. Indeed, using a restraining potential can lead to incon-
sistencies, since maintaining the steric and electrical potential
as conditions change requires injection of energy and charge
into the system.51 We obtain convergent and consistent results
using the steric potential in place of the artificial constraining
potential of earlier models. The steric potential is an output
of our model and varies automatically as conditions change.
It has the same units as a confining potential but is as dif-
ferent as the voltages at an input and an output of an ideal
amplifier. The following analysis shows that the void species
in our model is important not only to describe a consistent
physics of the steric potential but also to compute the steric
energy that can reflect the 108-fold range of experimental
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conditions. It will be interesting to examine the properties of
a model of bulk ionic solutions that contains voids calculated
consistently in an all-spheres model of ions and water.

Setting μi(r) = μB
i (see below for physical reason), the

concentration of species i particles can be expressed by the
Fermi like distribution function

Ci(r) = CB
i exp(−βiφ(r) + S trc(r)), S trc(r) = ln

�(r)

�B
, (7)

where β i = qi/kBT and S trc(r) is called the steric potential that
describes the combined effect of all excess chemical poten-
tials μex

j of all particle species j = 1, · · · K + 1. The distri-
bution (7) is of Fermi type since all concentration functions

Ci(r) = αi − αi

∑K+1
j �=i vjCj (r)

1 + αivi

<
1

(1/αi) + vi

= 1

vi

, (8)

i = 1, · · · , K + 1, are bounded from above with αi

= CB
i exp(−βiφ(r))/�B > 0, i.e., Ci(r) cannot exceed the

maximum value 1/vi for any arbitrary (or even infinite) po-
tential φ(r) at any location r in the domain �s. In this mean-
field Fermi distribution, it is impossible for a volume vi

to be completely filled with particles, i.e., it is impossible
to have viCi(r) = 1 (and thus �(r) = 0) since that would
make the excess chemical potential μex

i infinitely large or
Strc = −∞ and hence Ci(r) = 0, a contradiction. For this
reason, we must include the voids as a separate species if
water is treated as hard spheres. Otherwise, the volume vi

would be easily filled by particles in the mean-field sense at
moderate electric potential such that the steric potential would
be unphysical. The requirement of voids when all particles
are represented as hard spheres will be justified again from a
viewpoint of Gibbs’ free energy.

The classical Boltzmann distribution appears if all par-
ticles are treated as volumeless points, i.e., vi = 0 and �(r)
= �B = 1. It may produce an infinite concentration Ci(r)
→ ∞ in crowded conditions when −βiφ(r) → ∞, close to
charged surfaces for example, an impossible result.12–14 The
difficulty in the application of classical Boltzmann distribu-
tions to saturating systems has been avoided in the physiolog-
ical literature (apparently starting with Hodgkin, Huxley, and
Katz52) by redefining the Boltzmann distribution to deal with
systems that can only exist in two states. This redefinition has
been vital to physiological research and is used in hundreds of
papers,53, 54 but confusion results when the physiologists’ sat-
urating two-state Boltzmann is not kept distinct from the un-
saturating Boltzmann distribution of statistical mechanics.55

To further account for the correlation effect of ions and
the screening effect of water molecules, we have developed
efficient 3D methods13 for solving the Poisson-Fermi (PF)
equation,12–14, 56, 57

εs

(
l2
c∇2 − 1

)∇2φ(r) =
K∑

i=1

qiCi(r) = ρ(r), (9)

self-consistently with Eq. (7) for φ(r), where lc is a correla-
tion length,56, 57 εs = εwε0, εw is a dielectric constant of water
in the bath, and ε0 is the vacuum permittivity. The fourth-
order PF equation reduces to the classical Poisson-Boltzmann
(PB) equation when lc = S trc(r) = 0. If lc �= 0, the dielectric

operator ε̂ = εs(1 − l2
c∇2) is used to approximate the permit-

tivity of the bulk solvent and the linear response of correlated
ions.57 The dielectric function ε̃(r) = εs/(1 + η/ρ) is a fur-
ther approximation of ε̂. It is found by transforming Eq. (9)
into two second-order equations εs(l

2
c∇2 − 1) = ρ and ∇2φ

= . We introduce a density like variable  that yields a po-
larization charge density η = −εs − ρ using Maxwell’s first
equation.12, 13

The free energy formula (1) is useful for a thermody-
namic system that involves a limited number of particles for
MD or MC simulations particularly without flow, or spatially
nonuniform boundary conditions. If the system is nonequi-
librium or has numerous particles and complicated boundary
conditions, the PF equation (9) will be more suitable for the-
oretical investigation.

Free energy functional. We look at our model now from
the perspective of a generalization of free energy that we call
the Gibbs-Fermi free energy. The PF equation is a minimizer
of the following Gibbs free energy functional

GFermi =
∫

�
s

dr
{
−εsl

2
c

2
(∇2φ)2 − εs

2
|∇φ|2 + ρφ + g

}
,

(10)

g = kBT

( K+1∑
j=1

[
Cj ln(vjCj ) − Cj

−Cj ln(vK+2CK+2) + λjCj

kBT

])

by taking energy variations with respect to φ, i.e., δGFermi

δφ
= 0.

The Fermi distribution (7) follows from δGFermi

δC
i

= 0, where

λi = −μB
i = −kBT ln

viC
B
i

�B
(11)

is the Lagrange multiplier for the mass conservation (the
total number Ni) of particle species i.58 The minimization
δGFermi

δC
i

= 0 is equivalent to setting μi(r) = μB
i for Eq. (7) with

the identity � = vK+2CK+2. The electrochemical potential
(5) can also be defined by the functional as

μi = δGFermi

δCi

+ μB
i . (12)

When lc = S trc(r) = vj = 0, j = 1, · · · , K + 1 (with-
out correlation and steric terms), this functional yields the
PB equation −εs∇2φ(r) = ρ(r) and the Boltzmann distri-
bution Ci(r) = CB

i exp(−βiφ(r)) since vK+2CK+2 = �B = 1
and g = kBT

∑K+1
j=1 [Cj ln(Cj/CB

j ) − Cj ]. Note that all vj in
g are canceled before setting vj = 0 since

Cj ln(vjCj ) + λj

Cj

kBT
= Cj ln(vjCj ) − Cj ln

vjC
B
j

�B

= Cj ln
Cj�

B

CB
j

. (13)

We need vj in g to justify that the local electrochemical po-
tential (5) can be defined by the functional (10) and that the
Fermi distribution (7) is a consequence of mass conservation
by (12).
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Voids are needed. To establish a consistent generaliza-
tion from Boltzmann to Fermi distribution it is critical to ex-
press the energy functional (10) by means of the void frac-
tion function vK+2CK+2(r) = 1 − ∑K+1

j=1 vjCj (r) in g. Oth-
erwise, ln(vK+2CK+2(r)) = ln 1 = 0 (without the void term)
implies that

∑K+1
j=1 vjCj (r) = 0, i.e., all vj = 0 and the Boltz-

mann functional of volumeless particles that we are seeking
to replace. This means that it is impossible to treat all ions
and water molecules as hard spheres and at the same time
achieve a zero volume of interstitial voids between all par-
ticles. Therefore, the Gibbs-Fermi functional (10) is not only
consistent but also needed (and of course physical) with ei-
ther vj = 0 (all particles are volumeless points) or vj �= 0 (all
particles are spheres).

Of course, we could treat ions as spheres but water as a
continuous medium (without voids) that then forms the sin-
gle site in Eq. (2) in place of the voids as previously pro-
posed in our paper12 for the primitive solvent model. The
void fraction �(r) would then become the water fraction
�(r) = 1 − ∑K

j=1 vjCj (r) , where the upper limit is K instead
of K + 1. This is precisely the primitive model implemented
in the Monte Carlo simulations of Boda and Henderson.
Consequently, the primitive model may yield incorrect water
densities, pressures, and dielectric coefficient in mean-field
sense for nonideal and inhomogeneous systems (see Sec. V
for more details). This important limitation in the continuous
water version of the all-spheres model was pointed out early
in its history.44

Comparison with other treatments of finite sized par-
ticles. All existing free energy functionals that specifically

include either uniform size (v = vj for all j)57, 59–62 or
nonuniform sizes (vi �= vj )13, 63, 64 cannot reduce to their
corresponding Boltzmann functionals by directly setting
vj = 060, 64 because those functionals retain the local prob-
ability form of vjCj ln(vjCj ) = pj ln pj in their Gibbs
entropy. They use an inconsistent reciprocal term involving a
uniform particle size, namely 1/v, instead of a consistent term
involving the nonuniform particle sizes. The local probability
pj (r) of any particle species j in our Gibbs entropy

−kB

K+1∑
j=1

Cj ln(vjCj ) − Cj ln(vK+2CK+2) + λjCj

kBT

= −kB

K+1∑
j=1

Cj ln
Cj�

B

CB
j �

(14)

is instead expressed in terms of the local probability ratio
Cj (r)/�(r) and the global probability ratio �B/CB

j between
the particle fraction (probability) Cj (r) and the void fraction
�(r) per unit volume. In other words, the local probability
pj (r) in the Gibbs-Fermi treatment changes with varying con-

figurations of all particles (�(r) = 1 − ∑K+1
j=1 vjCj (r)) and

voids (�(r) = vK+2CK+2(r)). The local probability at any lo-
cation, including the binding site, is also connected to the
bulk conditions in the bath as implied by Eq. (7). It also
depends implicitly on the sizes of all particles, valences of
ionic species, and long range (Coulomb) as well as short
range (Lennard-Jones) distances between all particles. All

these physical properties are lumped into the steric potential
functional S trc(r) = ln �(r)

�B in a very simple and unified way.
The void fractions �B and � represent the Lennard-Jones

distances between all particles in a mean-field approxima-
tion. More specifically, the L-J potential V (r) = 4((σ/r)12

− (σ/r)6)65 can be used to determine the distance r between
any pair of particles. In bulk solutions, the distance r = σ

yields V (r) = 0 that corresponds to a finite but fixed distance
σ between any two adjacent particles in the system and thus to
the constant bulk void fraction �B. Similarly, the nonuniform
void function �(r) corresponds to nonuniform inter-particle
distances r that may or may not equal σ for all pairs of ad-
jacent particles. Nonzero L-J potentials are in general highly
oscillatory and extremely expensive to compute in a system
of numerous particles. Including external fields adds prob-
lems of consistency with spatially nonuniform far field bound-
ary conditions to the problems of computational expense. The
void function �(r) or equivalently the steric potential S trc(r)
is on the other hand quite smooth and relatively very easy to
compute. The convolutional density functional on any pair of
concentration functions Ci(r) and Cj (r′) with a L-J kernel or
DFT representation of the interaction potential proposed by
Eisenberg et al.66 is another mean-field approximation, which
is more accurate (but much more difficult to compute reliably)
than the steric potential S trc(r) since the convolutional func-
tional is nonlocal whereas S trc(r) is local. The local steric po-
tential of this paper can be used in place of the nonlocal L-J or
DFT potential of Ref. 66 and therefore the energy variational
theory based on the Onsager dissipation principle developed
in Ref. 66 can be applied to the Gibbs-Fermi functional (10).

III. POISSON-NERNST-PLANCK-FERMI THEORY

For nonequilibrium systems, the classical PNP model9–11

can then be generalized to the Poisson-Nernst-Planck-Fermi
model by coupling the flux density equation

∂Ci(r, t)
∂t

= −∇ · Ji(r, t), r ∈ �s (15)

of each particle species i = 1, · · · , K + 1 (including water) to
the PF equation (9), where the flux density is defined as

Ji(r, t) = −Di[∇Ci(r, t) + βiCi(r, t)∇φ(r, t)

−Ci(r, t)∇S trc(r, t)], (16)

where Di is the diffusion coefficient, and the time variable
t is added to describe the dynamics of electric φ(r, t) and
steric S trc(r, t) potentials. The flux equation (15) is called the
Nernst-Planck-Fermi equation because the Fermi steric po-
tential S trc(r, t) is introduced to the classical NP equation.

At equilibrium, the net flow of each particle species is
a zero vector, i.e., Ji(r) = 0 (in a steady state) which implies
that Ciexp (β iφ − Strc) = const. = CB

i for φ = Strc = 0. There-
fore, the NPF equation (15) reduces to the Fermi distribu-
tion (7) at equilibrium. Similarly, the classical NP equation
reduces to the Boltzmann distribution at equilibrium.

The steric force. The gradient of the steric potential
∇Strc in (16) represents an entropic force of vacancies exerted
on particles. The negative sign in −Ci∇Strc means that the
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steric force ∇Strc is in the opposite direction to the “diffu-
sional” force ∇Ci.

The larger S trc(r) = ln �(r)
�B (meaning more space avail-

able to the particle as implied by the numerator) at r in com-
parison with that of neighboring locations, the more the en-
tropic force pushes the particle to the location r, which is sim-
ply the opposite mechanism of the diffusional force ∇Ci(r)
that pushes the particle away from r if the concentration
is larger at r than that of neighboring locations. Moreover,
the Nernst-Einstein relationship8 implies that the steric flux
DiCi∇Strc is greater if the particle is more mobile. Therefore,
the gradients of electric and steric potentials (∇φ and ∇Strc)
describe the charge/space competition mechanism of particles
in a crowded region within a mean-field framework. Since
S trc(r, t) describes the dynamics of void movements, the dy-
namic crowdedness (pressure) of the flow system can also be
quantified.

The motion of water molecules is directly controlled by
the steric potential in our model and their distributions are ex-
pressed by CK+1(r, t) = CB

K+1 exp(S trc(r, t)). Nevertheless,
this motion is still implicitly affected by the electric potential
φ(r, t) via the correlated motion of ions described by other
Cj (r, t) in the void fraction function �(r, t) and hence in the
charge density ρ in (9).

Water is polarizable in our model. From (9), ∇2φ

= , and η = −εs − ρ, we deduce that the Poisson
equation

−εs∇2φ = ρ − εsl
2
c∇2 = ρ + η, (17)

which describes the electric field E = −∇φ in the sys-
tem, contains the charge source not only from the ions
(ρ = ∑K

i=1 qiCi) but also from the polar water (η) provided
that the correlation length lc ≈ lBq2

i is not zero. The polar-
ization charge density η is proportional to the fourth order
of the ionic valence zi. The fourth order dependence shows
that even in a mean field theory valency of ions is expected to
play an important role as known in chemical and biological
systems.5, 12–14, 17, 57, 67

In summary, the PNPF model accounts for the steric ef-
fect of ions and water molecules, the correlation effect of
crowded ions, the screening effect of polar water, as well
as the charge/space competition effect of ions and water
molecules of different sizes and valences. These effects are
all closely related to the interstitial voids between particles
and described by two additional terms, namely, the correla-
tion length and the steric potential.

IV. A MOLECULAR-CONTINUUM MODEL
OF A CALCIUM CHANNEL

To test the PNPF theory, we use the Lipkind-Fozzard
molecular model35 of L-type Ca channels in which the EEEE
locus (four glutamate side chains modeled by 8 O1/2 − ions)
forms a high-affinity Ca2+ binding site that is essential to
Ca2+ selectivity, blockage, and permeation. We refer to Fig. 9
in Ref. 35 or Fig. 1 in Ref. 14 for a 3D illustration of the
EEEE locus. A 2D cross section of a simplified 3D chan-
nel geometry for the present work is shown in Fig. 1, where
the central circle denotes the binding site, the other four cir-

FIG. 1. A simplified Ca channel geometry with baths, pore, and binding site.
The channel is placed in a cubic box with the length of each side being 40 Å.
The solvent region �s consists of two baths and the channel pore with the
boundary ∂�s. The binding site �Bind is contained in �s but the O1/2 − ions
are not in �s. The outside and inside bath boundary is denoted by ∂�Bath.

cles denote the side view of 8 O1/2 − ions, �s is the solvent
region consisting of two baths and the channel pore includ-
ing the binding domain �Bind, ∂�s is the solvent boundary,
and ∂�Bath is the outside and inside bath boundary. Fig. 2
is a sketch of the binding site and O1/2 − ions, where dCa

O is
the distance between the center of a binding Ca2+ ion and
the center cj of any O1/2 −, and A is any point on the sur-
face of the site. In our model, the 8 O1/2 − ions are not con-
tained in the solvent region �s. Particle species are indexed
by 1, 2, 3, and 4 for Na+, Ca2+ , Cl−, and H2O with radii
a1 = aNa+ = 0.95, a2 = aCa2+ = 0.99, a3 = rCl− = 1.81, and
a4 = aH2O = 1.4 Å, respectively.

In Ref. 14, we proposed an algebraic model for calcu-
lating the electrical potential φb and the steric potential S

trc
b

in �Bind by using Coulomb’s law with the atomic structure of
binding ion and atoms in a channel protein as shown in Fig. 2,
without solving the Poisson-Fermi equation (9) in �Bind. The
binding potential φb is then used as a Dirichlet boundary
condition in �Bind for solving the PF equation in the sol-
vent region between the bath and binding boundary, i.e., in
�s\�Bind, to obtain the potential profile φ(r) that connects φb

FIG. 2. The binding distance between the center of the binding Ca2+ ion and
the center cj of the jth O1/2 − ion is denoted by dCa

O for j = 1, · · · , 8. A is any
point on the surface of the binding ion.
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in �Bind to the potential Vi (or Vo) on the inside (or outside)
bath boundary.

The filter domain defined in Ref. 14 is simply taken to
be the binding domain �Bind in this paper. The volume of this
domain is an unknown variable vb that changes with differ-
ent charges in the binding site. We do not define an ad hoc
filter for which its volume is fixed to one value in one imple-
mentation and possibly to another value in other implemen-
tation. We show that the variable binding volume vb plays an
essential role in determining the steric potential in and around
the binding site and consequently the hydrophobicity of the
EEEE locus under different bath conditions.

The algebraic model14 is defined in �Bind and consists of
the following equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ob
1 = vbC

B
1 exp

( − β1φb + S
trc
b

)
Ob

2 = vbC
B
2 exp

( − β2φb + S
trc
b

)
Ob

4 = vbC
B
4 exp

(
S

trc
b

)
, (18)

S
trc
b = ln

vb − v1O
b
1 − v2O

b
2 − v4O

b
4

vb�
B

, (19)

e

4πε0

⎛
⎝ 8∑

j=1

zO1/2−

|cj − A| + Ob
1 zNa+

aNa+
+ Ob

2 zCa2+

aCa2+

⎞
⎠ = φb, (20)

where Ob
1 , Ob

2 , and Ob
4 denote the occupancy numbers of

Na+, Ca2+, and H2O in vb, respectively, φb and S
trc
b are aver-

age electrical and steric potentials, and |cj − A| is the distance
between A and cj in Fig. 2.

In this mean field, we allow Ob
1 and Ob

2 (and hence
the total charge Ob

1 ezNa+ + Ob
2 ezCa2+) to vary continuously

subject to the condition on their sum Ob
1 + Ob

2 = 1 in the
binding volume vb. Equations (18) and (19) uniquely deter-

mine the four unknowns vb, Ob
4 , φb and S

trc
b with Ob

1 and Ob
2

being given. Equation (20) uniquely determines the locations
(cj) of 8 O1/2 − ions (and thus the binding distance dCa

O or dNa
O

in Fig. 2) once φb is obtained. Note that the binding distance

d
Ob

1 Na+Ob
2 Ca

O (or cj) changes continuously with varying Ob
1

and Ob
2 but φb remains fixed, where the binding ion Ob

1 Na

+ Ob
2 Ca is a linear combination of Na+ and Ca2+. Therefore,

O1/2− ions are movable — the protein is flexible in our model
— as their locations cj changes with varying Ob

1 and Ob
2 .14

Note that we change the probability notation Pi in Ref. 14 to
the occupancy notation Ob

i to reflect the deterministic, instead
of probabilistic, nature of the PNPF continuum model. In this
simple algebraic model, we do not consider the hydrogen
ions that may react with carboxyl anions in the protein.
Experiments done at pH 8 (as many have been done) do not
involve association of hydrogen ions with carboxyl anions.

For the half-blockage experimental condition2

CB
Na+ = CB

1 = 32 mM, CB
Ca2+ = CB

2 = 0.9 μM,︸ ︷︷ ︸
Experimental Data

(21)

we follow convention and assume relative occupancies of a
filled channel, Ob

1 = 0.5 and Ob
2 = 0.5, and thereby obtain

φb = −10.48 kBT/e, S
trc
b = −1.83, and vb = 4.56 Å3.14 The

binding experiments2 used a fixed CB
Na+ = CB

1 = 32 mM and
various Ca2+ bath concentrations CB

Ca2+ = CB
2 that imply dif-

ferent Ob
1 and Ob

2 of Na+ and Ca2+ occupying the binding
site. The occupancy numbers Ob

1 and Ob
2 are determined by

Ob
1

Ob
2

= 1 − Ob
2

Ob
2

= exp(−(β1 − β2)φb)
CB

1

CB
2

, (22)

where φb was just obtained from the case of equal occu-
pancy. The occupancy ratio in (22) thus deviates from unity
as CB

2 is varied along the horizontal axis of the binding curve
from its midpoint value CB

2 = 0.9 μM as shown in Fig. 5 in
Ref. 14.

Keeping φb fixed is equivalent to assuming that the rela-
tion (22) between the occupancy and bath concentration ra-
tios is linear.14 Moreover, keeping φb fixed in (20) is equiv-
alent to assuming that the O1/2 − ions (cj) move continu-
ously in response to the continuous change of charges Ob

1 zNa+

+ Ob
2 zCa2+ in the binding site. In Ref. 14, the charge change

from zNa+ (Na+ occupying the site) to zCa2+ (Ca2+ occupy-
ing the site) reflects a change of pore radius of about 2.3 Å
that is surprisingly close to the value of 2 Å obtained by MD
simulations.36 Note that the vacuum permittivity ε0 is cho-
sen in (20) since both MD models in Refs. 35 and 36 treat
O1/2 − ions explicitly as shown in Fig. 1 (or Fig. 9 in Ref. 35).
The Coulomb forces between the binding ion and O1/2 − ions
should therefore be calculated in vacuum since nothing is in
between these ions. Our numerical results can thus be verified
with those of MD. Of course, our assumptions in the linear
model should be modified if more accurate structural informa-
tion can be used to provide an extra equation for variable φb.
The permittivity is chosen as 30ε0

14 in our forthcoming stud-
ies on the protein structure of a sodium/calcium exchanger
(NCX).68 Meanwhile, the linear model seems at least as good
as the homology structure itself, and provides potentially use-
ful and interesting insights as we show in Sec V. Nevertheless,
we imagine that nature might design flexible proteins so that
φb is fixed or slightly perturbed by small thermal variations so
that the linear model is still tolerable within numerical errors
in theoretical simulations.

The simple atomic structure in Fig. 2 elucidates alge-
braic and subsequent PNPF calculations in a concise way.
The molecular-continuum model presented here can be ex-
tended to deal with more complex nonequilibrium systems in
real protein channels in future studies. Application of the al-
gebraic model to the NCX structure68 is briefly discussed in
Ref. 14. It will be interesting to apply the present model to re-
cent structures of a TRPV1 ion channel69 and a voltage gated
calcium channel.6

For nonequilibrium cases, the binding steric potential
S

trc
b is assigned its equilibrium value in subsequent PNPF

calculations, i.e., the void fraction �(r) in �Bind is as-
sumed to remain unchanged from equilibrium to nonequi-
librium. The electrical potential φb will be modified by the
membrane potential Vi − Vo

70 and then used as a Dirich-
let type condition for the potential function φ(r) in �Bind.
We summarize the boundary conditions for the PF (9) and
NPF (15) equations defined in the solvent region �s in
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Fig. 1 as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ(r) = φ̃b(r) in �Bind, φ(r) = Vo,i on ∂�Bath,

∇φ(r) · n = 0 on ∂�s\∂�f ,

C1(r) = CB
1 = [Na+]o,i , C2(r) = CB

2 = [Ca2+]o,i, C3(r) = CB
3 = [Cl−]o,i on ∂�Bath,

Ji(r) · n = 0 on ∂�s\∂�Bath,

(23)

where n is an outward unit vector on the solvent boundary
∂�s. Note that the electrostatic potential φ(r) is prescribed as
a Dirichlet function φ̃b(r) whose spatial average in �Bind is
the constant φb. However, the binding domain �Bind is treated
as an interior domain instead of boundary domain for the flux
equation (15). An iterative process of solving PF (9) and then
NPF (15) is repeated until self-consistent solutions of φ(r)
and Ci(r) are reached within a tolerable error bound.

Treating the interior domain �Bind ⊂ �s in place of the
conventional boundary ∂�s for the potential condition φ(r)
= φ̃b(r) is not a conventional way to solve the Poisson equa-
tion. This method is needed because the binding potential φb

determined by (18)–(20) is coupled to the steric potential S
trc
b

that in turn depends crucially on the conformation of the bind-
ing ion and protein atoms, their interstitial voids, and their
charges as shown in Fig. 2. Water also plays a vital role as in
(19). The steric equation (19) is in the interior domain �Bind.

In other words, for calculating S
trc
b we need to consider voids

and water volume that are interior quantities in �Bind and can-
not be specified on the solvent boundary ∂�s. We thus need
to impose φ(r) = φ̃b(r) in �Bind because φ̃b(r) is given by φb

in �Bind.
If a conventional method is used to solve the Poisson (or

PF) equation,13 the resulting steric potential S
trc
b (as an output

of φ(r) by (7)) may be completely incorrect in �Bind because
the atomic equations (19) and (20) are not used. We do not
have any differential equation for the steric function S trc(r)
for which appropriate boundary conditions near �Bind can be

FIG. 3. Anomalous mole fraction effect. Single-channel inward current in
femto ampere (fA) plotted as a function of log10[Ca2+]o. Experimental data
marked by small circles are those in Ref. 2 whereas the PNPF data are de-
noted by the plus sign.

imposed if a conventional method is used. Moreover, the im-
portant role of water and its volume effect is not taken into
account in conventional methods or models.

The models and methods proposed in this paper are still
coarse approximations to ion transport as the PNPF theory is
in its early development. Nevertheless, the theory proposed
here provides many atomic properties such as (19) and (20)
that have been shown to be important for studying the binding
mechanism in CaV channels14 and are also important for the
transport mechanism as shown in Eq. (23) and in Sec. V. In-
corporating atomic properties into continuum models is a step
forward to improve and refine the continuum theory that has
been challenged for its accuracy when compared to (mostly
equilibrium calculations) MC, BD, or MD.5, 37, 71, 72 Contin-
uum models on the other hand have substantial advantages in
efficiency that are of great importance in studying a range of
conditions and concentrations, as are present in experiments.

V. RESULTS

CaV channel conducts primarily Na+ when the Ca2+ con-
centration is below 1 μM but it conducts primarily Ca2+ in
the physiological concentration range mM. In Ref. 2, 19 ex-
tracellular solutions and 3 intracellular solutions were stud-
ied experimentally. The range of [Ca2+]o is 108-fold from
10−10.3 to 10−2 M as given in Ref. 2. Explaining the bi-
ological function of trace Ca2+ concentrations is a crucial
task of biophysical models while dealing with the large Ca2+

concentrations found in extracellular solutions of all biolog-
ical systems. This range of calcium concentrations poses se-
vere obstacles for MD and BD simulations even on the most

TABLE I. Notations and physical constants.

Symbol Meaning Value Unit

kB Boltzmann constant 1.38 × 10−23 J/K
T Temperature 298.15 K
e Proton charge 1.602 × 10−19 C
ε0 Permittivity of vacuum 8.85 × 10−14 F/cm
εw Water dielectric constant 78.5
lc Correlation length 1.98 Å
D1 Na+ diffusion coefficient 1.334 × 10−5 cm2/s
D2 Ca2+ diffusion coefficient 0.792 × 10−5 cm2/s
D3 Cl− diffusion coefficient 2.032 × 10−5 cm2/s

CB
1 Na+ bath concentration 32 mM

CB
2 Ca2+ bath concentration 10−10.3 ∼ 10−2 M

Vi,o Inside (outside) voltage 0 (−20) mV
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FIG. 4. Electrical potential. The electrical potential φ(r) profiles (averaged
over each cross section) along the pore axis for various CB

2 ranging from
10−7.2 M to 10−2 M. All the following figures are obtained with the same
averaging method and the same range of CB

2 .

advanced computers to date.73 To our knowledge, a compar-
ison of MD simulations with experimental measurements2

has not yet been reported without invoking arbitrary (i.e.,
untested) extrapolation methods for handling the 108-fold
variation of concentration and the dynamics of ionic flow.73, 74

PNPF results are in accord with the experimental data in
Ref. 2 as shown in Fig. 3 under only the same salt conditions
of NaCl and CaCl2 in pure water, without considering protons
and other bulk salts in experimental solutions. With [Na+]i
= [Na+ ]o = 32 mM and [Ca2+]i = 0, the membrane potential
is fixed at −20 mV (Vo = 0 and Vi = −20 mV) throughout,
as assumed in Fig. 11 of Ref. 2 for all single-channel cur-
rents (in femto ampere fA) recorded in the experiment. Note
that the experimental currents have been converted to single-
channel currents in Fig. 11 of Ref. 2 as shown on the right
hand y-axis in that figure. The currents are on the femtoscale
because calcium channels have been long recognized to be in
some sense blocked sodium channels and here too we have
small membrane potentials. The small circles in Fig. 3 denote
the estimated currents (by eye) from Fig. 11 of Ref. 2 and the
plus sign denotes the current calculated by PNPF. The chan-
nel is almost blocked by Ca2+ ions with a current of about
15 fA at [Ca2+]o = 10−4.2 M. Half-blockage current (about

FIG. 5. Steric potential. The averaged steric potential Strc(r) profiles.

FIG. 6. Energy well. The averaged Ca2+ energy well E2(r) profiles.

77 fA) is defined by the one half of the saturation current
(about 154 fA at [Ca2+]o = 10−10.3 M). The half-blockage
Ca2+ concentration is about [Ca2+]o = 0.9 μM and that is
used to define the midpoint binding condition (21).

PNPF deals naturally with the main experimental data of
ionic flow based on this binding definition. Physical parame-
ters in (9) and (16) are summarized in Table I with their physi-
cal meaning, numerical values, and units for ease of reference.
The diffusion coefficient in the channel pore is taken as θ iDi
for each ionic species, where Di are bulk values in the table
and θ i = 0.1 are factors for the pore. All physical parameters
are kept fixed throughout.

PNPF can provide more physical details of ion transport
inside the channel pore such as electrical potential (φ(r) in
Fig. 4), steric potential (S trc(r) in Fig. 5), energy wells (E2(r)
in Fig. 6), water density (C4(r) shown in Fig. 7), void volume
fraction (�(r) in Fig. 8), dielectric function (̃ε(r) in Fig. 9),
crowded ions in binding site (Fig. 10), concentrations (C2(r)
in Fig. 11), and flux densities (

∣∣J2(r)
∣∣ in Fig. 12). The electric

potential profiles remain almost unchanged for various CB
2 as

shown in Fig. 4 following the linear model of the occupancy
equation (22).

What is new? The steric potential profiles shown in
Fig. 5 represent the novelty of the PNPF theory. All effects
of volume exclusion, interstitial void, configuration entropy,
short range interactions, correlation, polarization, screening,

FIG. 7. Water density. The averaged water density C4(r) profiles.
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FIG. 8. Void fraction. The averaged void volume fraction �(r) profiles.

and dielectric response of this nonideal system are described
by the steric functional S trc(r). The Ca2+ energy landscape
E2(r) = (β2φ(r) − S trc(r))kBT (Fig. 6) is modified by this po-
tential. The steric potential in the binding region decreases
drastically from −1.30 to −10.34 kBT as CB

2 increases from
10−7.2 to 10−2 M. The water density C4(r) = CB

4 exp(S trc(r))
(Fig. 7) and the void volume �(r) (Fig. 8) decrease as well
because more Ca2+ ions in the bath make the binding site
more crowded as was previously seen in the algebraic Fermi
model.14

In physiological bath conditions CB
2 = 10−2 ∼ 10−3 M,

Fig. 7 shows that the region containing the binding site with
the length about 10 Å is very dry (hydrophobic), which agrees
with the recent crystallographic analysis68 of the Ca2+ bind-
ing site of the related protein NCX with the EETT locus show-
ing a hydrophobic patch (also about 10 Å in length) formed
by the conserved Pro residues. The hydrophobicity near the
binding site in our model is described by the continuous wa-
ter density function C4(r) via the continuous steric function
S trc(r) as shown in Fig. 5. At CB

2 = 10−2 M, the magnitude of
the steric energy Strc = −10.34 kBT is comparable to that of
the electrostatic energy φ = −10.48 kBT/e. This surprisingly
large energy due only to the steric effect has not been quanti-
fied and observed by MD, MC, or other continuum methods in
CaV channel modeling, as far as we know. As observed from
Fig. 3, ionic transport is blocked by the competition between

FIG. 9. Dielectric function. The averaged dielectric function ε̃(r) profiles.

FIG. 10. Crowded charge in binding site. The volume fractions of
voids, water, and ions per unit volume at the Ca2+ bath concentration
CB

2 = 10−5.7 M.

Na+ and Ca2+ ions in the range CB
2 = 10−5.7 ∼ 10−4.2 M. In

this blocking range, the corresponding steric profiles in Fig. 5
are wider indicating that the water density or the void volume
is more evenly distributed.

Fig. 9 demonstrates the combined effects of correla-
tion, polarization, and screening in this highly inhomoge-
neous electrolyte by means of the variation of dielectric co-
efficient produced by the Poisson-Fermi equation (9). Note
that the dielectric function can also be calculated by ε̃(r) = εb

+ C4(r)(εw − εb)/CB
4 using the water density function C4(r)

as proposed in Ref. 75, where εb = 2. Fig. 10 illustrates
how ions crowd in the highly charged binding site and, in
the meantime, voids and water vacate under the condition
CB

2 = 10−5.7 M.
The Ca2+ occupancy Ob

2 in the binding site increases
from 0.69 (not shown) at CB

2 = 10−5.7 M to almost 1 at
CB

2 = 10−2 M. The corresponding peak Ca2+ concentration
shown in Fig. 11 also increases from 261.83 to 408.53 M in
this range. The largest concentration is still below the max-
imum allowable value CMax

2 = 1/v2 = 408.57 M as implied
by the Fermi distribution (7). We obtained this incredibly
large concentration since Ob

2 ≈ 1 in (19), which in turn yields
1/vb ≈ 408.53 M as vb ≈ v2 indicating the importance of

FIG. 11. Calcium concentration. The averaged Ca2+ concentration C2(r)
profiles.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

74.93.74.254 On: Tue, 09 Dec 2014 15:09:46



22D532-11 J.-L. Liu and B. Eisenberg J. Chem. Phys. 141, 22D532 (2014)

FIG. 12. Calcium flux. The averaged Ca2+ flux density
∣∣J2(r)

∣∣ profiles.

the atomic nature of the steric potential (19) with variable
vb. This figure demonstrates that the PNPF model can cap-
ture the atomic properties of ions in flow, a critical (however
small) step in continuum theory toward the ultimate accuracy
in theoretical simulations. From Fig. 3, we observe that Ca2+

currents increase dramatically when [Ca2+]o increases from
10−3.2 to 10−2 M in the physiological mM range of CaV chan-
nels. The corresponding flux density profiles in the binding
region increase dramatically too as shown in Fig. 12.

We make a final remark about these results. As inten-
sively studied in Refs. 37, 71, and 72, the classical PNP model
fails to yield ionic concentrations and currents properly (com-
pared with those of Brownian dynamics), especially for nar-
row channels, because the classical model does not include
the volume effect of ions, water, and voids, the correlation
effect of ions, and the screening effect of water. The PNPF
model not only computes ionic currents comparable to the
experimental data (Fig. 3) for the narrow calcium channel but
also provides many physical properties (Figs. 5–10, for ex-
ample) that are shown to depend critically on the proposed
steric potential. The PNPF model overcomes the limitation
of the classical PNP model with respect to these effects and
properties.

VI. CONCLUSION

We propose a Poisson-Nernst-Planck-Fermi model for
studying equilibrium and nonequilibrium systems of ionic liq-
uids and solution electrolytes. The excluded volume effect of
different sizes of ions and water molecules, the correlation
effect of crowded ions, and the screening effect of polar wa-
ter molecules in inhomogeneous aqueous electrolytes are all
included in this model. The model was verified by a set of ex-
perimental currents of L-type Ca channels recorded in a 108-
fold range of Ca2+ concentrations that show the exceptional
selectivity of these channels.

We also propose a consistent Gibbs free energy func-
tional leading to a Fermi like distribution of hard spherical
particles in the electrolytic system. The Gibbs-Fermi func-
tional is shown to converge to the Gibbs-Boltzmann func-
tional that yields the Boltzmann distribution as the volumes of
all particles and the correlation length approach zero. More-

over, we introduce a Gibbs-Fermi entropy for which the ex-
cluded volume of water molecules and the dynamic distribu-
tion of interstitial voids between particles are needed to estab-
lish a consistent generalization of nonideal inhomogeneous
electrolytes for both equilibrium and nonequilibrium systems.
The local probability of any particle species in the Gibbs-
Fermi entropy is expressed in terms of the local and bulk ra-
tios between the particle and void fractions per unit volume.
We show that if all particles are treated as hard spheres, the
voids must be included in the Gibbs free energy functional.
The voids are created by packing defects and Lennard-Jones
and Coulomb forces between particles. The void effect plays
an essential role in our theory as well as in our results, espe-
cially in the steric energy.

Most of the results in this article seem to be novel, be-
cause consistent models including voids, water volume, and
Fermi distributions have not been developed previously, as far
as we know. These numerical results provide useful tools to
develop insight into a variety of physical mechanisms rang-
ing from binding, to permeation, blocking, flexibility, and
charge/space competition of the channel.
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