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Abstract. A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying
ionic transport through biological ion channels. Our goal is to deal with the finite size of
particle using a Fermi like distribution without calculating the forces between the particles,
because they are both expensive and tricky to compute. We include the steric effect of ions
and water molecules with nonuniform sizes and interstitial voids, the correlation effect of
crowded ions with different valences, and the screening effect of water molecules in an inho-
mogeneous aqueous electrolyte. Including the finite volume of water and the voids between
particles is an important new part of the theory presented here. Fermi like distributions
of all particle species are derived from the volume exclusion of classical particles. Volume
exclusion and the resulting saturation phenomena are especially important to describe the
binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy
of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are
not considered. The classical Gibbs entropy is extended to a new entropy form — called
Gibbs-Fermi entropy — that describes mixing configurations of all finite size particles and
voids in a thermodynamic system where microstates do not have equal probabilities. The
PNPF model describes the dynamic flow of ions, water molecules, as well as voids with
electric fields and protein charges. The model also provides a quantitative mean-field de-
scription of the charge/space competition mechanism of particles within the highly charged
and crowded channel pore. The PNPF results are in good accord with experimental currents
recorded in a 108-fold range of Ca2+ concentrations. The results illustrate the anomalous
mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results
concerning water density, dielectric permittivity, void volume, and steric energy provide use-
ful details to study a variety of physical mechanisms ranging from binding, to permeation,
blocking, flexibility, and charge/space competition of the channel.

1. INTRODUCTION

Biological functions of proteins depend on the details of the mixtures of ionic solutions
found outside and inside cells. Trace concentrations (< 10−6 M) of calcium ions (Ca2+)
and other signaling molecules provide physiological control of many biological pathways and
proteins inside cells [1]. For example, voltage-gated calcium (CaV) channels exhibit the
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anomalous mole fraction effect that effectively blocks abundant monovalent cations by a
trace concentration of Ca2+ ions [2–4]. The fundamental mechanism of the calcium channel
is of great technological and biological interest [5, 6]. Multiscale analysis seems necessary
since calibrated all atom simulations of trace concentrations of ions in physiological solutions
are not likely to be available in the near future.

Interactions between diffusion and migration in the electric field are central to the biol-
ogists’ view of channels [7, 8]. Following the drift-diffusion (DD) model in semiconductors,
Eisenberg et al. [9–11] have proposed the Poisson-Nernst-Planck (PNP) model to calcu-
late rather than assume [7, 8] the electric field and then the ionic current in biological ion
channels. Interactions of ions and flows in narrow channels, and saturation in binding sites
are also central to the biologists’ view of channels [7, 8]. It has been difficult to combine
the two views — computed electric fields in channels showing interactions and saturation
— because charges in PNP (and quasiparticles in DD) are points with no diameter and so
cannot saturate the aqueous channel [1] the way real ions do. Recently, the saturation of
spheres of any size has been described by a Fermi like distribution derived in [12] from the
configuration entropy of mixtures of ions of any diameter and composition. The steric effect
has been shown to be very important to adequately describe equilibrium systems [12–14].

We extend the Poisson-Fermi model [12] in two important rather novel ways. We include
the excluded volume of water molecules and the ‘empty space’ created by packing constraints
and voids between particles. The equilibrium model is also generalized here to a nonequilib-
rium model called the Poisson-Nernst-Planck-Fermi (PNPF) model that can describe flow,
including the steric effect of all particles, the correlation effect of ions and water molecules,
the screening effect of water, as well as the charge/space mechanism in the channel pore
at and away from equilibrium. This treatment unites diffusion and electric current, with
interactions and binding in narrow channels.

Both discrete and continuum forms of Gibbs free energy of the electrolyte are developed
in this paper. The Gibbs-Fermi free energy functional for the Fermi distribution is shown
to reduce to the Gibbs-Boltzmann functional for the classical Boltzmann distribution when
both steric and correlation effects are not present. Moreover, a new entropy form called the
Gibbs-Fermi entropy is proposed here to connect the spatial distribution of ions, water, and
voids between them (that may vary) with the change of local probabilities of each species
(and void volume) which of course usually have different sizes. The Gibbs-Fermi entropy
is a consistent generalization of the global Boltzmann entropy and the classical local Gibbs
entropy widely used to describe systems without steric and packing constraints.

The steric effect. The steric effect of crowding produces a steric energy term in PNPF
that is a quantitative statement of the crowded charge effect of charge/space competition.
The charge/space competition theory introduced by Nonner and Eisenberg to explain cal-
cium selectivity has been developed in a long series of papers using Monte Carlo methods
by Boda and Henderson, and density functional methods by Gillespie and collaborators.
This ‘all spheres’ approach successfully describes almost all selectivity properties of calcium
channels and the main properties of sodium channels such as the micromolar Ca2+ affinity
for L-type calcium channels [15–17], the wide range of Ca2+ affinities for different types of
calcium channels, and the switch in selectivity from calcium to sodium when the side chains
of the selectivity filter are switched from EEEE (glu glu glu glu) to DEKA (asp glu lys
ala) [15, 18]. It also accounts for the selectivity between monovalent cations of different size
[19–21] and for the self-organized pore structures for selective ions [22]. In the biologically
crucial and special case of Na+ vs K+ selectivity in the DEKA sodium channel (so central
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to the function of the nervous system and metabolic budget of mammals with large brains
[23, 24]), control variables can even be identified that independently control selectivity and
binding [15, 18].

Interactions. Our main goal is to show how interactions of diffusion, electrophoretic
migration, steric exclusion, and imperfect packing of particles can all be treated quantita-
tively in a unified framework to analyze binding and flow in crowded ion channels, without
explicitly calculating forces between individual ions, water, or voids. We show that a Fermi
like distribution is able to describe these interactions well enough to account for a wide range
of important properties of ions in channels. We wonder how well this approach can describe
the myriad of nonideal properties reported in the physical chemistry experimental literature
(for more than a century) which have escaped canonical description up to now [25–34].

Numerical results produced by the PNPF model are in accord with the experimental
data reported by Almers and McCleskey in 1984 for CaV channels over a 108-fold range of
concentrations of calcium ions [2]. Their experimental data has been a benchmark for selec-
tivity ever since. Their data has been used as a target for models using a variety of methods
ranging from physiological and crystallographic [6], to molecular dynamics (MD) [35, 36],
Brownian dynamics (BD) [37–39], Monte Carlo (MC) [15, 17, 40], as well as continuum
approaches [41–43].

The remaining part of the paper is organized as follows. A derivation of the configuration
entropy of all hard-sphere ions and water with voids is proposed in Section 2, where a
Fermi type of excess chemical potential, Gibbs-Fermi free energy functional, and Gibbs-
Fermi entropy are also introduced. All these models seem to be new to the literature,
as far as we know, because they treat finite size water molecules and voids explicitly. In
Section 3, we extend the Gibbs-Fermi theory to the Poisson-Nernst-Planck-Fermi theory for
studying ionic transport, steric energy, water density, and void distribution in equilibrium
or nonequilibrium conditions. In Section 4, a molecular-continuum model specific to L-type
calcium channels is presented to show how to implement in a consistent way the PNPF
theory of the molecular filter region of few particles joined to the bath region of numerous
particles. Section 5 demonstrates that PNPF currents agree quite well with the experimental
currents reported in [2] under the same membrane potential and the same 108-fold range
of Ca2+ concentrations measured in the experiment. These conductance results seem to fit
data better than other models we know of. Some concluding remarks are given in Section 6.

2. FERMI DISTRIBUTION AND GIBBS-FERMI ENTROPY

Based on the configurational entropy model proposed in [12] for aqueous electrolytes with
arbitrary K species of nonuniform size, hard spherical ions, we extend the free energy of the
model to

F (N) = φ

K+1∑

j=1

qjNj − kBT lnW (1)

by including specifically the excluded volume effect of the next species (K + 1) of water
molecules. Here, φ is the electrostatic potential, Nj is the total number of j species particles
carrying the charge qj = zje with the valence zj , e is the proton charge, kB is the Boltzmann
constant, and T is the absolute temperature. The volume of a j type particle is vj = 4πa3j/3
with radius aj. It is important to note that water is treated as a polarizable hard sphere
with zero net charge in Eq. (1), so zK+1 = qK+1 = 0. The polarizability of water and the
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inclusion of voids represent important generalizations from the classical primitive solvent
model used to describe calcium channels [44]. The last term in (1) describes the mixing
entropy of all ions and water molecules over a total of N available nonuniform sites in a
system with

W =
K+1∏

j=1

Wj =
N !

(
ΠK+1

j=1 Nj!
) (

N −
∑K+1

j=1 Nj

)
!
, (2)

where W1 = N !/(N1!(N −N1)!) is the number of combinations for the distribution of N1 in
all vacant sites N . W2 = (N − N1)!/(N2!(N − N1 − N2)!) is the number of combinations
for the distribution of N2 in N − N1 vacant sites after N1 being distributed, and so on.
After all particles are distributed, there remains (in this model) just a single site NK+2 =

N −
∑K+1

j=1 Nj = 1 that is used to represent the (continuously connected) voids created by
defects in the packing structure of all particles of all types and by Coulomb and steric forces
(e.g., Lennard-Jones) between particles. This void structure is represented as the last species
K + 2 in our model. We are unaware of other all-spheres models that deal explicitly with
the voids between spheres. We suspect that including such voids is needed because voids
are in different amounts depending on the composition of the solution and can move in any
system of spheres crowded into a small space.

Obviously, all properties of water cannot be represented this way: water is a highly
charged molecule although its net charge is zero, and polymeric structures can exist and
may be important, along with hydrogen bonds of the low or high energy type [45, 46].
Moreover, not all defects in packing can be represented by a single void site, just as not
all properties of water can be represented by uncharged spheres. The question is whether a
model that includes only the excluded volume of water and a continuous void space between
particles is able to deal with the selectivity data of the calcium channel. We will see that it
can.

The total volume V of the system consists of the volumes of all particles and the total
void volume vK+2, i.e., V =

∑K+1
j=1 vjNj + vK+2. Under the bulk condition, dividing this

equation by V yields the bulk void volume fraction

ΓB =
vK+2

V
= 1−

K+1∑

j=1

vj
Nj

V
= 1−

K+1∑

j=1

vjC
B
j (3)

expressed in terms of the nonuniform particle volumes vj and the bulk concentrations CB
j

of all particle species. We are aware that a model of this sort can be extended into an
all-spheres model of ionic solutions of the so called bio-ions Na+, K+, Ca2+, and Cl−.

Using the Stirling formula lnM ! ≈ M lnM − M with M >> 1, the electrochemical
potential of particle species i = 1, · · · , K + 1 is

µi =
∂F (N)

∂Ni

= qiφ+ kBT ln
Ni

N −
∑K+1

j=1 Nj

(4)

from which we deduce global probabilities Pi = Ni/N for all particle species. If we extend
our theory by introducing local probabilities pi(r) = viCi(r) that depend on location, in
effect allowing probabilities to depend on location as in the theory of stochastic processes
[47] (applied for example to ionic channels [11, 48, 49]), the electrochemical potential can
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be generalized locally to

µi(r) = qiφ(r) + kBT ln
viCi(r)

1−
∑K+1

j=1 vjCj(r)
= qiφ(r) + kBT ln

Ci(r)

CB
i

+ µex
i (r) (5)

µex
i (r) = kBT ln

viC
B
i

Γ(r)
, Γ(r) = 1−

K+1∑

j=1

vjCj(r) = vK+2CK+2(r), (6)

where Ci(r) is the concentration function of spatial variable r in the solvent domain Ωs,
µex
i (r) is the excess chemical potential, and Γ(r) is the void fraction function with CK+2(r)

representing the distribution function of interstitial voids. When φ = 0, Ci(r) = CB
i and

hence µex
i = µB

i = kBT ln
(
viC

B
i /Γ

B
)
is a constant.

The excess chemical potential is a measure of nonideality that helps understand qual-
itative behavior. For example, the larger the size vi of a type i particle, the larger is the
activation barrier µex

i (r) and the harder it is for the particle to make a transition at r from
a local minimum of µex

i to another local minimum nearby [50]. The transition mechanism
is related to the vacancy configuration as well, i.e., the smaller the value of Γ(r), the more
crowded the ions are at r, the harder transition. The excess chemical potential is closely
related to the sizes of all particles vj , their interstitial voids Γ(r), their configurations Cj(r),
as well as their bulk concentrations CB

j .
To our knowledge, all existing continuum models do not explicitly take into account the

finite size effect of water, let alone the effect of interstitial voids. We did not consider these
two effects in our previous work [12] in which water was treated as a single continuous
dielectric medium without any voids and the resulting electrochemical potential µi(r) was
shown to be a mathematical description of the primitive model of electrolytes, as used in
most Monte Carlo and density functional theory models. Our continuum primitive model
could well match Monte Carlo (discrete primitive model) results that were obtained in
equilibrium state. However, as we proceeded to study nonequilibrium systems using this
primitive model, we had difficulty computing the experimental currents reported in [2] due
to either inconsistent physics or divergent numerics.

The calcium channel operates very delicately in physiological and experimental condi-
tions as it shifts its exquisitely tuned conductance from Na+-flow, to Na+-blockage, and to
Ca2+-flow when bath Ca2+ concentration varies from 10−10 to 10−2 M. The 108-fold range
of experimental conditions make modeling and numerical implementation very challenging.
This huge dynamic range was accommodated in our previous work by using an artificial
potential to confine mobile oxygen ions of side chains within a filter region, just as that used
in all Monte Carlo simulations on the same channel (see e.g. [18]). The artificial potential
hindered our effort to match the experimental data since it is a gross approximation of the
constraining energy needed to keep the protein atoms in the filter region without specifically
considering the void effect. Indeed, using a restraining potential can lead to inconsistencies,
since maintaining the steric and electrical potential as conditions change requires injection
of energy and charge into the system [51]. We obtain convergent and consistent results using
the steric potential in place of the artificial constraining potential of earlier models. The
steric potential is an output of our model and varies automatically as conditions change. It
has the same units as a confining potential but is as different as the voltages at an input
and an output of an ideal amplifier. The following analysis shows that the void species in
our model is important not only to describe a consistent physics of the steric potential but
also to compute the steric energy that can reflect the 108-fold experimental conditions. It
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will be interesting to examine the properties of a model of bulk ionic solutions that contains
voids calculated consistently in an all-spheres model of ions and water.

Setting µi(r) = µB
i (see below for physical reason), the concentration of species i particles

can be expressed by the Fermi like distribution function

Ci(r) = CB
i exp

(
−βiφ(r) + Strc(r)

)
, Strc(r) = ln

Γ(r)

ΓB
, (7)

where βi = qi/kBT and Strc(r) is called the steric potential that describes the combined effect
of all excess chemical potentials µex

j of all particle species j = 1, · · ·K + 1. The distribution
(7) is of Fermi type since all concentration functions

Ci(r) =
αi − αi

∑K+1
j 6=i vjCj(r)

1 + αivi
<

1

(1/αi) + vi
=

1

vi
, (8)

i = 1, · · · , K + 1, are bounded from above with αi = CB
i exp (−βiφ(r)) /Γ

B > 0, i.e., Ci(r)
cannot exceed the maximum value 1/vi for any arbitrary (or even infinite) potential φ(r) at
any location r in the domain Ωs. In this mean-field Fermi distribution, it is impossible for
a volume vi to be completely filled with particles, i.e., it is impossible to have viCi(r) = 1
(and thus Γ(r) = 0) since that would make the excess chemical potential µex

i infinitely large
or Strc = −∞ and hence Ci(r) = 0, a contradiction. For this reason, we must include

the voids as a separate species if water is treated as hard spheres. Otherwise,
the volume vi would be easily filled by particles in the mean-field sense at moderate electric
potential such that the steric potential would be unphysical. The requirement of voids when
all particles are represented as hard spheres will be justified again from a viewpoint of Gibbs’
free energy.

The classical Boltzmann distribution appears if all particles are treated as volumeless
points, i.e., vi = 0 and Γ(r) = ΓB = 1. It may produce an infinite concentration Ci(r) → ∞
in crowded conditions when −βiφ(r) → ∞, close to charged surfaces for example, an im-
possible result [12–14]. The difficulty in the application of classical Boltzmann distributions
to saturating systems has been avoided in the physiological literature (apparently starting
with Hodgkin, Huxley, and Katz [52]) by redefining the Boltzmann distribution to deal with
systems that can only exist in two states. This redefinition has been vital to physiological
research and is used in hundreds of papers [53, 54], but confusion results when the physiolo-
gists’ saturating two-state Boltzmann is not kept distinct from the unsaturating Boltzmann
distribution of statistical mechanics [55].

To further account for the correlation effect of ions and the screening effect of water
molecules, we have developed efficient 3D methods [13] for solving the Poisson-Fermi (PF)
equation [12–14, 56, 57]

ǫs
(
l2c∇

2 − 1
)
∇2φ(r) =

K∑

i=1

qiCi(r) = ρ(r) (9)

self-consistently with Eq. (7) for φ(r), where lc is a correlation length [56, 57], ǫs = ǫwǫ0,
ǫw is a dielectric constant of water in the bath, and ǫ0 is the vacuum permittivity. The
fourth-order PF equation reduces to the classical Poisson-Boltzmann (PB) equation when
lc = Strc(r) = 0. If lc 6= 0, the dielectric operator ǫ̂ = ǫs(1− l2c∇

2) is used to approximate the
permittivity of the bulk solvent and the linear response of correlated ions [57]. The dielectric
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function ǫ̃(r) = ǫs/(1 + η/ρ) is a further approximation of ǫ̂. It is found by transforming
Eq. (9) into two second-order equations ǫs (l

2
c∇

2 − 1)Ψ = ρ and ∇2φ = Ψ. We introduce
a density like variable Ψ that yields a polarization charge density η = −ǫsΨ − ρ using
Maxwell’s first equation [12, 13].

The free energy formula (1) is useful for a thermodynamic system that involves a limited
number of particles for MD or MC simulations particularly without flow, or spatially nonuni-
form boundary conditions. If the system is nonequilibrium or has numerous particles and
complicated boundary conditions, the PF equation (9) will be more suitable for theoretical
investigation.

Free energy functional. We look at our model now from the perspective of a gener-
alization of free energy that we call the Gibbs-Fermi free energy. The PF equation is a
minimizer of the following Gibbs free energy functional

GFermi =

∫

Ωs

dr

{
−
ǫsl

2
c

2

(
∇2φ

)2
−

ǫs
2
|∇φ|2 + ρφ+ g

}
(10)

g = kBT

(
K+1∑

j=1

[
Cj ln (vjCj)− Cj − Cj ln (vK+2CK+2) +

λjCj

kBT

])

by taking energy variations with respect to φ, i.e., δGFermi

δφ
= 0. The Fermi distribution (7)

follows from δGFermi

δCi
= 0, where

λi = −µB
i = −kBT ln

viC
B
i

ΓB
(11)

is the Lagrange multiplier for the mass conservation (the total number Ni) of particle species

i [58]. The minimization δGFermi

δCi
= 0 is equivalent to setting µi(r) = µB

i for Eq. (7) with

the identity Γ = vK+2CK+2. The electrochemical potential (5) can also be defined by the
functional as

µi =
δGFermi

δCi
+ µB

i . (12)

When lc = Strc(r) = vj = 0, j = 1, · · · , K+1 (without correlation and steric terms), this
functional yields the PB equation −ǫs∇

2φ(r) = ρ(r) and the Boltzmann distribution Ci(r) =

CB
i exp (−βiφ(r)) since vK+2CK+2 = ΓB = 1 and g = kBT

∑K+1
j=1

[
Cj ln(Cj/C

B
j )− Cj

]
. Note

that all vj in g are canceled before setting vj = 0 since

Cj ln(vjCj) + λj
Cj

kBT
= Cj ln(vjCj)− Cj ln

vjC
B
j

ΓB
= Cj ln

CjΓ
B

CB
j

. (13)

We need vj in g to justify that the local electrochemical potential (5) can be defined by the
functional (10) and that the Fermi distribution (7) is a consequence of mass conservation
by (12).

Voids are needed. To establish a consistent generalization from Boltzmann to Fermi
distribution it is critical to express the energy functional (10) by means of the void fraction

function vK+2CK+2(r) = 1 −
∑K+1

j=1 vjCj(r) in g. Otherwise, ln (vK+2CK+2(r)) = ln 1 = 0

(without the void term) implies that
∑K+1

j=1 vjCj(r) = 0, i.e., all vj = 0 and the Boltzmann
functional of volumeless particles that we are seeking to replace. This means that it is
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impossible to treat all ions and water molecules as hard spheres and at the same

time achieve a zero volume of interstitial voids between all particles. Therefore, the
Gibbs-Fermi functional (10) is not only consistent but also needed (and of course physical)
with either vj = 0 (all particles are volumeless points) or vj 6= 0 (all particles are spheres).

Of course, we could treat ions as spheres but water as a continuous medium (without
voids) that then forms the single site in Eq. (2) in place of the voids as previously proposed
in our paper [12] for the primitive solvent model. The void fraction Γ(r) would then become

the water fraction Γ(r) = 1−
∑K

j=1 vjCj(r), where the upper limit isK instead ofK+1. This
is precisely the primitive model implemented in the Monte Carlo simulations of Boda and
Henderson. Consequently, the primitive model may yield incorrect water densities, pressures,
and dielectric coefficient in mean-field sense for nonideal and inhomogeneous systems (see
Section 5 for more details). This important limitation in the continuous water version of
the all-spheres model was pointed out early in its history [44].

Comparison with other treatments of finite sized particles. All existing free en-
ergy functionals that specifically include either uniform size (v = vj for all j) [57, 59–62]
or nonuniform sizes (vi 6= vj) [13, 63, 64] cannot reduce to their corresponding Boltzmann
functionals by directly setting vj = 0 [60, 64] because those functionals retain the local
probability form of vjCj ln (vjCj) = pj ln pj in their Gibbs entropy. They use an inconsistent
reciprocal term involving a uniform particle size, namely 1/v, instead of a consistent term
involving the nonuniform particle sizes. The local probability pj(r) of any particle species j
in our Gibbs entropy

− kB

K+1∑

j=1

Cj ln (vjCj)− Cj ln (vK+2CK+2) +
λjCj

kBT
= −kB

K+1∑

j=1

Cj ln
CjΓ

B

CB
j Γ

(14)

is instead expressed in terms of the local probability ratio Cj(r)/Γ(r) and the global prob-
ability ratio ΓB/CB

j between the particle fraction (probability) Cj(r) and the void fraction
Γ(r) per unit volume. In other words, the local probability pj(r) in the Gibbs-Fermi treat-

ment changes with varying configurations of all particles (Γ(r) = 1 −
∑K+1

j=1 vjCj(r)) and

voids (Γ(r) = vK+2CK+2(r)). The local probability at any location, including the binding
site, is also connected to the bulk conditions in the bath as implied by Eq. (7). It also
depends implicitly on the sizes of all particles, valences of ionic species, and long range
(Coulomb) as well as short range (Lennard-Jones) distances between all particles. All these

physical properties are lumped into the steric potential functional Strc(r) = ln Γ(r)
ΓB in a very

simple and unified way.
The void fractions ΓB and Γ represent the Lennard-Jones distances between all particles in

a mean-field approximation. More specifically, the L-J potential V (r) = 4 ((σ/r)12 − (σ/r)6)
[65] can be used to determine the distance r between any pair of particles. In bulk solutions,
the distance r = σ yields V (r) = 0 that corresponds to a finite but fixed distance σ be-
tween any two adjacent particles in the system and thus to the constant bulk void fraction
ΓB. Similarly, the nonuniform void function Γ(r) corresponds to nonuniform inter-particle
distances r that may or may not equal σ for all pairs of adjacent particles. Nonzero L-J
potentials are in general highly oscillatory and extremely expensive to compute in a system
of numerous particles. Including external fields adds problems of consistency with spatially
nonuniform far field boundary conditions to the problems of computational expense. The
void function Γ(r) or equivalently the steric potential Strc(r) is on the other hand quite
smooth and relatively very easy to compute. The convolutional density functional on any
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pair of concentration functions Ci(r) and Cj(r
′) with a L-J kernel or DFT representation of

the interaction potential proposed by Eisenberg et al. [66] is another mean-field approxima-
tion, which is more accurate (but much more difficult to compute reliably) than the steric
potential Strc(r) since the convolutional functional is nonlocal whereas Strc(r) is local. The
local steric potential of this paper can be used in place of the nonlocal L-J or DFT potential
of [66] and therefore the energy variational theory based on the Onsager dissipation principle
developed in [66] can be applied to the Gibbs-Fermi functional (10).

3. POISSON-NERNST-PLANCK-FERMI THEORY

For nonequilibrium systems, the classical PNP model [9–11] can then be generalized to
the Poisson-Nernst-Planck-Fermi model by coupling the flux density equation

∂Ci(r, t)

∂t
= −∇ · Ji(r, t), r ∈ Ωs (15)

of each particle species i = 1, · · · , K + 1 (including water) to the PF equation (9), where
the flux density is defined as

Ji(r, t) = −Di

[
∇Ci(r, t) + βiCi(r, t)∇φ(r, t)− Ci(r, t)∇Strc(r, t)

]
, (16)

Di is the diffusion coefficient, and the time variable t is added to describe the dynamics of
electric φ(r, t) and steric Strc(r, t) potentials. The flux equation (15) is called the Nernst-
Planck-Fermi equation because the Fermi steric potential Strc(r, t) is introduced to the
classical NP equation.

At equilibrium, the net flow of each particle species is a zero vector, i.e., Ji(r) = 0 (in
a steady state) which implies that Ci exp(βiφ − Strc) = const. = CB

i for φ = Strc = 0.
Therefore, the NPF equation (15) reduces to the Fermi distribution (7) at equilibrium.
Similarly, the classical NP equation reduces to the Boltzmann distribution at equilibrium.

The steric force. The gradient of the steric potential ∇Strc in (16) represents an en-
tropic force of vacancies exerted on particles. The negative sign in −Ci∇Strc means that
the steric force ∇Strc is in the opposite direction to the ‘diffusional’ force ∇Ci.

The larger Strc(r) = ln Γ(r)
ΓB (meaning more space available to the particle as implied by

the numerator) at r in comparison with that of neighboring locations, the more the entropic
force pushes the particle to the location r, which is simply the opposite mechanism of the
diffusional force ∇Ci(r) that pushes the particle away from r if the concentration is larger at
r than that of neighboring locations. Moreover, the Nernst-Einstein relationship [8] implies
that the steric flux DiCi∇Strc is greater if the particle is more mobile. Therefore, the gradi-
ents of electric and steric potentials (∇φ and ∇Strc) describe the charge/space competition
mechanism of particles in a crowded region within a mean-field framework. Since Strc(r, t)
describes the dynamics of void movements, the dynamic crowdedness (pressure) of the flow
system can also be quantified.

The motion of water molecules is directly controlled by the steric potential in our model
and their distributions are expressed by CK+1(r, t) = CB

K+1 exp (S
trc(r, t)). Nevertheless, this

motion is still implicitly affected by the electric potential φ(r, t) via the correlated motion of
ions described by other Cj(r, t) in the void fraction function Γ(r, t) and hence in the charge
density ρ in (9).
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Water is polarizable in our model. From (9), ∇2φ = Ψ, and η = −ǫsΨ − ρ, we
deduce that the Poisson equation

− ǫs∇
2φ = ρ− ǫsl

2
c∇

2Ψ = ρ+ η, (17)

which describes the electric field E = −∇φ in the system, contains the charge source not
only from the ions (ρ =

∑K
i=1 qiCi) but also from the polar water (η) provided that the

correlation length lc ≈ lBq
2
i is not zero. The polarization charge density η is proportional to

the fourth order of the ionic valence zi. The fourth order dependence shows that even in a
mean field theory valency of ions is expected to play an important role as known in chemical
and biological systems [5, 12–14, 17, 57, 67].

In summary, the PNPF model accounts for the steric effect of ions and water molecules,
the correlation effect of crowded ions, the screening effect of polar water, as well as the
charge/space competition effect of ions and water molecules of different sizes and valences.
These effects are all closely related to the interstitial voids between particles and described
by two additional terms, namely, the correlation length and the steric potential.

4. A MOLECULAR-CONTINUUM MODEL OF A CALCIUM CHANNEL

To test the PNPF theory, we use the Lipkind-Fozzard molecular model [35] of L-type Ca
channels in which the EEEE locus (four glutamate side chains modeled by 8 O1/2− ions)
forms a high-affinity Ca2+ binding site that is essential to Ca2+ selectivity, blockage, and
permeation. We refer to Fig. 9 in [35] or Fig. 1 in [14] for a 3D illustration of the EEEE
locus. A 2D cross section of a simplified 3D channel geometry for the present work is shown
in Fig. 1, where the central circle denotes the binding site, the other four circles denote the
side view of 8 O1/2− ions, Ωs is the solvent region consisting of two baths and the channel
pore including the binding domain ΩBind, ∂Ωs is the solvent boundary, and ∂ΩBath is the
outside and inside bath boundary. Fig. 2 is a sketch of the binding site and O1/2− ions,
where dCa

O is the distance between the center of a binding Ca2+ ion and the center cj of any
O1/2−, and A is any point on the surface of the site. In our model, the 8 O1/2− ions are not
contained in the solvent region Ωs. Particle species are indexed by 1, 2, 3, and 4 for Na+,
Ca2+, Cl−, and H2O with radii a1 = aNa+ = 0.95, a2 = aCa2+ = 0.99, a3 = rCl− = 1.81, and
a4 = aH2O = 1.4 Å, respectively.

In [14], we proposed an algebraic model for calculating the electrical potential φb and the

steric potential S
trc

b in ΩBind by using Coulomb’s law with the atomic structure of binding
ion and atoms in a channel protein as shown in Fig. 2, without solving the Poisson-Fermi
equation (9) in ΩBind. The binding potential φb is then used as a Dirichlet boundary condition
in ΩBind for solving the PF equation in the solvent region between the bath and binding
boundary, i.e., in Ωs\ΩBind, to obtain the potential profile φ(r) that connects φb in ΩBind to
the potential Vi (or Vo) on the inside (or outside) bath boundary.

The filter domain defined in [14] is simply taken to be the binding domain ΩBind in this
paper. The volume of this domain is an unknown variable vb that changes with different
charges in the binding site. We do not define an ad hoc filter for which its volume is fixed
to one value in one implementation and possibly to another value in other implementation.
We show that the variable binding volume vb plays an essential role in determining the steric
potential in and around the binding site and consequently the hydrophobicity of the EEEE
locus under different bath conditions.



11

FIG. 1: A simplified Ca channel geometry with baths, pore, and binding site. The channel is

placed in a cubic box with the length of each side being 40 Å. The solvent region Ωs consists of

two baths and the channel pore with the boundary ∂Ωs. The binding site ΩBind is contained in Ωs

but the O1/2− ions are not in Ωs. The outside and inside bath boundary is denoted by ∂ΩBath.

FIG. 2: The binding distance between the center of the binding Ca2+ ion and the center cj of the

jth O1/2− ion is denoted by dCa
O for j = 1, · · · , 8. A is any point on the surface of the binding ion.

The algebraic model [14] is defined in ΩBind and consists of the following equations




Ob
1 = vbC

B
1 exp(−β1φb + S

trc

b )

Ob
2 = vbC

B
2 exp(−β2φb + S

trc

b )

Ob
4 = vbC

B
4 exp(S

trc

b )

, (18)

S
trc

b = ln
vb − v1O

b
1 − v2O

b
2 − v4O

b
4

vbΓB
(19)
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e

4πǫ0

(
8∑

j=1

zO1/2−

|cj −A|
+

Ob
1zNa+

aNa+
+

Ob
2zCa2+

aCa2+

)
= φb, (20)

where Ob
1, O

b
2, and Ob

4 denote the occupancy numbers of Na+, Ca2+, and H2O in vb, respec-

tively, φb and S
trc

b are average electrical and steric potentials, and |cj − A| is the distance
between A and cj in Fig. 2.

In this mean field, we allow Ob
1 and Ob

2 (and hence the total charge Ob
1ezNa+ +Ob

2ezCa2+)
to vary continuously subject to the condition on their sum Ob

1 + Ob
2 = 1 in the binding

volume vb. Eqs. (18) and (19) uniquely determine the four unknowns vb, O
b
4, φb and S

trc

b

with Ob
1 and Ob

2 being given. Eq. (20) uniquely determines the locations (cj) of 8 O1/2− ions

(and thus the binding distance dCa
O or dNa

O in Fig. 2) once φb is obtained. Note that the

binding distance d
Ob

1Na+Ob
2Ca

O (or cj) changes continuously with varying Ob
1 and Ob

2 but φb

remains fixed, where the binding ion Ob
1Na+Ob

2Ca is a linear combination of Na+ and Ca2+.
Therefore, O1/2− ions are movable — the protein is flexible in our model — as their locations
cj changes with varying Ob

1 and Ob
2 [14]. Note that we change the probability notation Pi

in [14] to the occupancy notation Ob
i to reflect the deterministic, instead of probabilistic,

nature of the PNPF continuum model. In this simple algebraic model, we do not consider
the hydrogen ions that may react with carboxyl anions in the protein. Experiments done at
pH 8 (as many have been done) do not involve association of hydrogen ions with carboxyl
anions.

For the half-blockage experimental condition [2]

CB
Na+ = CB

1 = 32 mM, CB
Ca2+ = CB

2 = 0.9 µM,︸ ︷︷ ︸
Experimental Data

(21)

we follow convention and assume relative occupancies of a filled channel, Ob
1 = 0.5 and

Ob
2 = 0.5, and thereby obtain φb = −10.48 kBT/e, S

trc

b = −1.83, and vb = 4.56 Å3 [14].
The binding experiments [2] used a fixed CB

Na+
= CB

1 = 32 mM and various Ca2+ bath

concentrations CB
Ca2+

= CB
2 that imply different Ob

1 and Ob
2 of Na+ and Ca2+ occupying the

binding site. The occupancy numbers Ob
1 and Ob

2 are determined by

Ob
1

Ob
2

=
1−Ob

2

Ob
2

= exp(−(β1 − β2)φb)
CB

1

CB
2

, (22)

where φb was just obtained from the case of equal occupancy. The occupancy ratio in (22)
thus deviates from unity as CB

2 is varied along the horizontal axis of the binding curve from
its midpoint value CB

2 = 0.9 µM as shown in Fig. 5 in [14].
Keeping φb fixed is equivalent to assuming that the relation (22) between the occupancy

and bath concentration ratios is linear [14]. Moreover, keeping φb fixed in (20) is equivalent
to assuming that the O1/2− ions (cj) move continuously in response to the continuous change
of charges Ob

1zNa+ +Ob
2zCa2+ in the binding site. In [14], the charge change from zNa+ (Na+

occupying the site) to zCa2+ (Ca2+ occupying the site) reflects a change of pore radius of
about 2.3 Å that is surprisingly close to the value of 2 Å obtained by MD simulations [36].
Note that the vacuum permittivity ǫ0 is chosen in (20) since both MD models in [35, 36] treat
O1/2− ions explicitly as shown in Fig. 1 (or Fig. 9 in [35]). The Coulomb forces between
the binding ion and O1/2− ions should therefore be calculated in vacuum since nothing is



13

in between these ions. Our numerical results can thus be verified with those of MD. Of
course, our assumptions in the linear model should be modified if more accurate structural
information can be used to provide an extra equation for variable φb. The permittivity is
chosen as 30ǫ0 [14] in our forthcoming studies on the protein structure of a sodium/calcium
exchanger (NCX) [68]. Meanwhile, the linear model seems at least as good as the homology
structure itself, and provides potentially useful and interesting insights as we show in the
results section. Nevertheless, we imagine that nature might design flexible proteins so that
φb is fixed or slightly perturbed by small thermal variations so that the linear model is still
tolerable within numerical errors in theoretical simulations.

The simple atomic structure in Fig. 2 elucidates algebraic and subsequent PNPF calcu-
lations in a concise way. The molecular-continuum model presented here can be extended to
deal with more complex nonequilibrium systems in real protein channels in future studies.
Application of the algebraic model to the NCX structure [68] is briefly discussed in [14]. It
will be interesting to apply the present model to recent structures of a TRPV1 ion channel
[69] and a voltage gated calcium channel [6].

For nonequilibrium cases, the binding steric potential S
trc

b is assigned its equilibrium value
in subsequent PNPF calculations, i.e., the void fraction Γ(r) in ΩBind is assumed to remain
unchanged from equilibrium to nonequilibrium. The electrical potential φb will be modified
by the membrane potential Vi − Vo [70] and then used as a Dirichlet type condition for the
potential function φ(r) in ΩBind. We summarize the boundary conditions for the PF (9) and
NPF (15) equations defined in the solvent region Ωs in Fig. 1 as





φ(r) = φ̃b(r) in ΩBind, φ(r) = Vo,i on ∂ΩBath,
∇φ(r) · n = 0 on ∂Ωs\∂Ωf ,

C1(r) = CB
1 = [Na+]o,i, C2(r) = CB

2 = [Ca2+]o,i, C3(r) = CB
3 = [Cl−]o,i on ∂ΩBath,

Ji(r) · n = 0 on ∂Ωs\∂ΩBath,

(23)

where n is an outward unit vector on the solvent boundary ∂Ωs. Note that the electrostatic

potential φ(r) is prescribed as a Dirichlet function φ̃b(r) whose spatial average in ΩBind is the
constant φb. However, the binding domain ΩBind is treated as an interior domain instead of
boundary domain for the flux equation (15). An iterative process of solving PF (9) and then
NPF (15) is repeated until self-consistent solutions of φ(r) and Ci(r) are reached within a
tolerable error bound.

Treating the interior domain ΩBind ⊂ Ωs in place of the conventional boundary ∂Ωs for

the potential condition φ(r) = φ̃b(r) is not a conventional way to solve the Poisson equation.
This method is needed because the binding potential φb determined by (18)-(20) is coupled

to the steric potential S
trc

b that in turn depends crucially on the conformation of the binding
ion and protein atoms, their interstitial voids, and their charges as shown in Fig. 2. Water
also plays a vital role as in (19). The steric equation (19) is in the interior domain ΩBind.

In other words, for calculating S
trc

b we need to consider voids and water volume that are
interior quantities in ΩBind and cannot be specified on the solvent boundary ∂Ωs. We thus

need to impose φ(r) = φ̃b(r) in ΩBind because φ̃b(r) is given by φb in ΩBind.
If a conventional method is used to solve the Poisson (or PF) equation [13], the resulting

steric potential S
trc

b (as an output of φ(r) by (7)) may be completely incorrect in ΩBind

because the atomic equations (19) and (20) are not used. We do not have any differential
equation for the steric function Strc(r) for which appropriate boundary conditions near ΩBind

can be imposed if a conventional method is used. Moreover, the important role of water and
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its volume effect is not taken into account in conventional methods or models.
The models and methods proposed in this paper are still coarse approximations to ion

transport as the PNPF theory is in its early development. Nevertheless, the theory proposed
here provides many atomic properties such as (19) and (20) that have been shown to be
important for studying the binding mechanism in CaV channels [14] and are also important
for the transport mechanism as shown in the next section. Incorporating atomic properties
into continuum models is a step forward to improve and refine the continuum theory that
has been challenged for its accuracy when compared to (mostly equilibrium calculations)
MC, BD, or MD [5, 37, 71, 72]. Continuum models on the other hand have substantial
advantages in efficiency that are of great importance in studying a range of conditions and
concentrations, as are present in experiments.

5. RESULTS

CaV channel conducts primarily Na+ when the Ca2+ concentration is below 1 µM but it
conducts primarily Ca2+ in the physiological concentration range mM. In [2], 19 extracellular
solutions and 3 intracellular solutions were studied experimentally. The range of [Ca2+]o is
108-fold from 10−10.3 to 10−2 M as given in [2]. Explaining the biological function of trace
Ca2+ concentrations is a crucial task of biophysical models while dealing with the large
Ca2+ concentrations found in extracellular solutions of all biological systems. This range
of calcium concentrations poses severe obstacles for MD and BD simulations even on the
most advanced computers to date [73]. To our knowledge, a comparison of MD simulations
with experimental measurements [2] has not yet been reported without invoking arbitrary
(i.e., untested) extrapolation methods for handling the 108-fold variation of concentration
and the dynamics of ionic flow [73, 74].

PNPF results are in accord with the experimental data in [2] as shown in Fig. 3 under only
the same salt conditions of NaCl and CaCl2 in pure water, without considering protons and
other bulk salts in experimental solutions. With [Na+]i = [Na+]o = 32 mM and [Ca2+]i = 0,
the membrane potential is fixed at −20 mV (Vo = 0 and Vi = −20 mV) throughout, as
assumed in Fig. 11 of [2] for all single-channel currents (in femto ampere fA) recorded in
the experiment. Note that the experimental currents have been converted to single-channel
currents in Fig. 11 of [2] as shown on the right hand y-axis in that figure. The currents
are on the femtoscale because calcium channels have been long recognized to be in some
sense blocked sodium channels and here too we have small membrane potentials. The small
circles in Fig. 3 denote the estimated currents (by eye) from Fig. 11 of [2] and the plus
sign denotes the current calculated by PNPF. The channel is almost blocked by Ca2+ ions
with a current of about 15 fA at [Ca2+]o = 10−4.2 M. Half-blockage current (about 77 fA)
is defined by the one half of the saturation current (about 154 fA at [Ca2+]o = 10−10.3 M).
The half-blockage Ca2+ concentration is about [Ca2+]o = 0.9 µM and that is used to define
the midpoint binding condition (21).

PNPF deals naturally with the main experimental data of ionic flow based on this binding
definition. Physical parameters in (9) and (16) are summarized in Table 1 with their physical
meaning, numerical values, and units for ease of reference. The diffusion coefficient in the
channel pore is taken as θiDi for each ionic species, where Di are bulk values in the table
and θi = 0.1 are factors for the pore. All physical parameters are kept fixed throughout.

PNPF can provide more physical details of ion transport inside the channel pore such as
electrical potential (φ(r) in Fig. 4), steric potential (Strc(r) in Fig. 5), energy wells (E2(r)
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FIG. 3: Anomalous Mole Fraction Effect. Single-channel inward current in femto ampere (fA)

plotted as a function of log10[Ca2+]o. Experimental data marked by small circles are those in [2]

whereas the PNPF data are denoted by the plus sign.

in Fig. 6), water density (C4(r) shown in Fig. 7), void volume fraction (Γ(r) in Fig. 8),
dielectric function (ǫ̃(r) in Fig. 9), crowded ions in binding site (Fig. 10), concentrations
(C2(r) in Fig. 11), and flux densities (|J2(r)| in Fig. 12). The electric potential profiles
remain almost unchanged for various CB

2 as shown in Fig. 4 following the linear model of
the occupancy equation (22).

What is new? The steric potential profiles shown in Fig. 5 represent the novelty of
the PNPF theory. All effects of volume exclusion, interstitial void, configuration entropy,
short range interactions, correlation, polarization, screening, and dielectric response of this
nonideal system are described by the steric functional Strc(r). The Ca2+ energy landscape
E2(r) = (β2φ(r) − Strc(r))kBT (Fig. 6) is modified by this potential. The steric potential
in the binding region decreases drastically from −1.30 to −10.34 kBT as CB

2 increases from
10−7.2 to 10−2 M. The water density C4(r) = CB

4 exp(Strc(r)) (Fig. 7) and the void volume
Γ(r) (Fig. 8) decrease as well because more Ca2+ ions in the bath make the binding site
more crowded as was previously seen in the algebraic Fermi model [14].
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FIG. 4: The electrical potential φ(r) profiles (averaged over each cross section) along the pore axis

for various CB
2 ranging from 10−7.2 M to 10−2 M. All the following figures are obtained with the

same averaging method and the same range of CB
2 .

Table 1. Notations and Physical Constants

Symbol Meaning Value Unit

kB Boltzmann constant 1.38× 10−23 J/K

T temperature 298.15 K

e proton charge 1.602× 10−19 C

ǫ0 permittivity of vacuum 8.85× 10−14 F/cm

ǫw water dielectric constant 78.5

lc correlation length 1.98 Å

D1 Na+ diffusion coefficient 1.334× 10−5 cm2/s

D2 Ca2+ diffusion coefficient 0.792× 10−5 cm2/s

D3 Cl− diffusion coefficient 2.032× 10−5 cm2/s

CB
1 Na+ bath concentration 32 mM

CB
2 Ca2+ bath concentration 10−10.3 ∼ 10−2 M

Vi,o inside (outside) voltage 0 (−20) mV

In physiological bath conditions CB
2 = 10−2 ∼ 10−3 M, Fig. 7 shows that the region

containing the binding site with the length about 10 Å is very dry (hydrophobic), which
agrees with the recent crystallographic analysis [68] of the Ca2+ binding site of the related
protein NCX with the EETT locus showing a hydrophobic patch (also about 10 Å in length)
formed by the conserved Pro residues. The hydrophobicity near the binding site in our
model is described by the continuous water density function C4(r) via the continuous steric
function Strc(r) as shown in Fig. 5. At CB

2 = 10−2 M, the magnitude of the steric energy
Strc = −10.34 kBT is comparable to that of the electrostatic energy φ = −10.48 kBT/e. This
surprisingly large energy due only to the steric effect has not been quantified and observed
by MD, MC, or other continuum methods in CaV channel modeling, as far as we know. As
observed from Fig. 3, ionic transport is blocked by the competition between Na+ and Ca2+
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FIG. 5: The averaged steric potential Strc(r) profiles.

FIG. 6: The averaged Ca2+ energy well E2(r) profiles.

ions in the range CB
2 = 10−5.7 ∼ 10−4.2 M. In this blocking range, the corresponding steric

profiles in Fig. 5 are wider indicating that the water density or the void volume is more
evenly distributed.

Fig. 9 demonstrates the combined effects of correlation, polarization, and screening in this
highly inhomogeneous electrolyte by means of the variation of dielectric coefficient produced
by the Poisson-Fermi equation (9). Note that the dielectric function can also be calculated
by ǫ̃(r) = ǫb +C4(r)(ǫw − ǫb)/C

B
4 using the water density function C4(r) as proposed in [75],

where ǫb = 2. Fig. 10 illustrates how ions crowd in the highly charged binding site and, in
the meantime, voids and water vacate under the condition CB

2 = 10−5.7 M.
The Ca2+ occupancy Ob

2 in the binding site increases from 0.69 (not shown) at CB
2 = 10−5.7

M to almost 1 at CB
2 = 10−2 M. The corresponding peak Ca2+ concentration shown in Fig.
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FIG. 7: The averaged water density C4(r) profiles.

FIG. 8: The averaged void volume fraction Γ(r) profiles.

11 also increases from 261.83 to 408.53 M in this range. The largest concentration is still
below the maximum allowable value CMax

2 = 1/v2 = 408.57 M as implied by the Fermi
distribution (7). We obtained this incredibly large concentration since Ob

2 ≈ 1 in (19),
which in turn yields 1/vb ≈ 408.53 M as vb ≈ v2 indicating the importance of the atomic
nature of the steric potential (19) with variable vb. This figure demonstrates that the PNPF
model can capture the atomic properties of ions in flow, a critical (however small) step in
continuum theory toward the ultimate accuracy in theoretical simulations. From Fig. 3, we
observe that Ca2+ currents increase dramatically when [Ca2+]o increases from 10−3.2 to 10−2

M in the physiological mM range of CaV channels. The corresponding flux density profiles
in the binding region increase dramatically too as shown in Fig. 12.

We make a final remark about these results. As intensively studied in [37, 71, 72], the
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FIG. 9: The averaged dielectric function ǫ̃(r) profiles.

FIG. 10: Crowded Charge in Binding Site. The volume fractions of voids, water, and ions per unit

volume at the Ca2+ bath concentration CB
2 = 10−5.7 M.

classical PNP model fails to yield ionic concentrations and currents properly (compared with
those of Brownian dynamics), especially for narrow channels, because the classical model
does not include the volume effect of ions, water, and voids, the correlation effect of ions, and
the screening effect of water. The PNPF model not only computes ionic currents comparable
to the experimental data (Fig. 3) for the narrow calcium channel but also provides many
physical properties (Figs. 5-10, for example) that are shown to depend critically on the
proposed steric potential. The PNPF model overcomes the limitation of the classical PNP
model with respect to these effects and properties.
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FIG. 11: The averaged Ca2+ concentration C2(r) profiles.

FIG. 12: The averaged Ca2+ flux density |J2(r)| profiles.

6. CONCLUSION

We propose a Poisson-Nernst-Planck-Fermi model for studying equilibrium and nonequi-
librium systems of ionic liquids and solution electrolytes. The excluded volume effect of
different sizes of ions and water molecules, the correlation effect of crowded ions, and the
screening effect of polar water molecules in inhomogeneous aqueous electrolytes are all in-
cluded in this model. The model was verified by a set of experimental currents of L-type
Ca channels recorded in a 108-fold range of Ca2+ concentrations that show the exceptional
selectivity of these channels.

We also propose a consistent Gibbs free energy functional leading to a Fermi like dis-
tribution of hard spherical particles in the electrolytic system. The Gibbs-Fermi functional
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is shown to converge to the Gibbs-Boltzmann functional that yields the Boltzmann distri-
bution as the volumes of all particles and the correlation length approach zero. Moreover,
we introduce a Gibbs-Fermi entropy for which the excluded volume of water molecules and
the dynamic distribution of interstitial voids between particles are needed to establish a
consistent generalization of nonideal inhomogeneous electrolytes for both equilibrium and
nonequilibrium systems. The local probability of any particle species in the Gibbs-Fermi
entropy is expressed in terms of the local and bulk ratios between the particle and void frac-
tions per unit volume. We show that if all particles are treated as hard spheres, the voids
must be included in the Gibbs free energy functional. The voids are created by packing
defects and Lennard-Jones and Coulomb forces between particles. The void effect plays an
essential role in our theory as well as in our results, especially in the steric energy.

Most of the results in this article seem to be novel, because consistent models including
voids, water volume, and Fermi distributions have not been developed previously, as far
as we know. These numerical results provide useful tools to develop insight into a vari-
ety of physical mechanisms ranging from binding, to permeation, blocking, flexibility, and
charge/space competition of the channel.
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